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ON THE NOTION OF COMPACTNESS IN SUPERGEOMETRY

U G O BRUZZO AND VLADIMIR PESTOV

We discuss the problem of finding an analogue of the concept of topological space in
supergeometry, motivated by the search for a procedure to compactify supermanifolds
along odd coordinates. In particular, we examine the topologies arising naturally on
the sets of points of locally ringed superspaces, and show that in the presence of
a nontrivial odd sector such topologies are never compact. The main outcome of
our discussion is the following new observation: not only the usual framework of
supergeometry (the theory of locally ringed spaces), but the more general approach
of the functor of points, need to be further enlarged.

1. INTRODUCTION

Geometries with anticommuting variables (supergeometries) have been considered
in connection with several issues in theoretical physics, notably to study supersymmetric
field theories and superstring theory; some physical motivation for their introduction is
discussed in [2]. Supergeometries were quite intensively studied in the 1970s and 1980s.

One natural question to ask is what are the proper analogues of the major concepts of
topology for such geometries. In particular, how can we find 'topologies' which are capable
of carrying information about the structure of superspaces 'in the odd directions' ? This is
not an idle question, as, for example, finding the right 'super' analogue of compactness and
the ways to compactify supermanifolds are likely to have an impact on the formulation of
some physical theories. (As a major example we cite the issue of the compactification of
the moduli space of super Riemann surfaces in connection with superstring theory.) And
the lack of a satisfactory cohomology theory for superspaces is just another manifestation
of our failure to conceive (super)geometric objects which exhibit nontrivial topological
structure in their odd sector.

We begin by outlining the sheaf-theoretic setting of supermanifold theory, which
serves as the basis for supergeometry, whose key notion is that of a locally ringed super-
space.
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474 U. Bruzzo and V. Pestov [2]

Next we address the problem, first explicitly stated by LeTtes and Manin, of finding
supergeometric analogues of compactness. In supergeometry, to every superspace there
is associated a covariant functor from the category, G, of all finite dimensional Grass-
mann algebras and graded-preserving algebra homomorphisms, to the category Sets of
all sets and mappings. Such functors, X, are termed virtual superspaces. The image of
a Grassmann algebra, A(q), of rank q under a virtual superspace functor, X, is denoted
by pt,(3£) and called the set of g-points of X. Let Top denote the category of all topo-
logical spaces and continuous mappings. It is quite natural to take as a basic concept of
'supertopology' that of a virtual topological superspace, that is, an object of the category
TopG, formed by all covariant functors from G to Top and the corresponding functorial
morphisms. We shall show that if X is a locally ringed superspace and the ground field
k is topological (as is the case in all the standard examples), then for every q € N the
set of g-points of X carries a natural topology. Therefore, a virtual superspace associated
to an arbitrary locally ringed superspace has in fact a richer structure—that of a virtual
topological superspace. We shall show, however, that a virtual topological superspace
determined by a locally ringed superspace and having a nontrivial odd sector is never
'supercompact.' At best, such spaces are locally compact.

The category of virtual topological superspaces possesses natural compactifications;
however, it seems that some of the most interesting conjectural objects of 'supertopology',
such as the hypothetical 'purely odd projective space', do not correspond to objects of
this category.

Our results suggest that, in order to embrace the phenomenon of compactness, the
existing framework has to be further extended.

2. GRADED ALGEBRA PRELIMINARIES

Let k denote an arbitrary field. We shall assume all algebras (over k) to be associative
and unital. The word graded will be always synonymous with Z2-graded.

A graded vector space is a vector space E together with a fixed direct sum decompo-
sition E = EQ © E\. Elements of £0 are said to be even, while elements of Ex are referred
to as odd. For any element x € E0L)Ei one denotes by x € Z2 the parity ofx, determined
by the rule x 6 E5 and computed mod 2. Elements of EQ U E\ are called homogeneous.
An example is supplied by the 'arithmetical' graded vector space km^n, which is just the
vector space km+n equipped with the grading (&m|n)0 = km, {km^n)i = kn.

Most of the basic constructions of linear algebra extend to the graded case and, in
particular, direct sums and tensor products of graded vector spaces carry a natural (and
often self-evident) grading. For details, we refer the reader to [17, 2].

A graded algebra is an algebra carrying a structure of a graded vector space, A —
Ao © A\. The two structures are required to agree with each other in the sense that
for every x,y € AQ U A\ one has xy = x + y. An associative unital graded algebra
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[3] Compactness in supergeometry 475

A = AQ(BAI is called graded commutative if for &llx,y G A0UAi one has i t / = (-l)*Vyx.

In particular, every commutative unital associative algebra, A, equipped with the trivial

grading (Ao = A, A\ = (0)), yields an example of a graded commutative algebra.

An ideal / C A of a graded algebra A is called graded if / = Io @ I\, where / , = / n A{,

i = 1,2. A graded commutative algebra .A is called local if it contains a unique maximal

proper graded ideal M; the quotient A/M, called the residue field of A, is a field extension

of the ground field k.

The most important example of a local graded commutative algebra is provided by

the exterior, or Grassmann, algebra A(q) of rank q—the associative unital algebra freely

generated by q pairwise anticommuting elements C1.C2.---1 C«; every element of A(q) is a

polynomial in the variables Ci with coefficients from k, having the form

(2.1)

where a C { 1 , 2 , . . . , q}, Ca = CaiCo2 • • • Co|a|i and C0 = 1- Generators are subject to the

anticommutation relations

CiCj = -OCi for a lH, j = 1 , . . . , q.

Every collection of q odd elements a i , . . . , aq of an arbitrary graded commutative (unital

associative) algebra A determines a unique graded algebra homomorphism from A(q) to

A with Ci >-> a i , called an A-point of A(q).

An element of A(q) is even (odd) if it can be represented as a sum of monomials in the

free anticommuting generators Ci having even (odd) degree. The maximal graded ideal

N of A(q) consists of all nilpotent elements, which are exactly those polynomials p(C)

having vanishing constant term. The augmentation homomorphism (also called, in super-

geometric jargon, the body map) is the quotient homomorphism /?: A(q) -¥ A(q)/N = k,

associating to every polynomial (2.1) the constant term 0$.

The following result shows that the Grassmann algebra of rank one A(l) is a sense

'large enough' to be the target for a surjective homomorphism from every subalgebra of

a Grassmann algebra with a nontrivial odd sector.

LEMMA 2 . 1 . Let A be a graded united subalgebra of a finite dimensional Grass-

mann algebra A(q). If the odd part of A is nontrivial, then there is a surjective graded

algebra homomorphism h: A —> A(l).

PROOF: Define m as the smallest cardinality of a subset j3 C {1,2, . . . , q} such that

in the expansion (2.1) of at least one odd element a € A one has a^ ± 0. It follows from

our assumptions on A that m is positive and odd. Fix such a (5.

Denote by x a fixed odd generator of the Grassmann algebra A(l) and define a
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476 U. Bruzzo and V. Pestov [4]

grading-preserving A;-linear mapping A(q) —¥ A(l) by the rule

(2.2) 5 Z a°C° •-> a,

The image of A under the above mapping is all of A (1), and thus it suffices to prove that
its restriction to A, say h, is an algebra homomorphism. (It is easy to see that in general
the linear map (2.2) is not a homomorphism on all of A(q).)

Let x, y € A be arbitrary. Represent x = x0 + ZiC + x2, y = yo + 2/iC^ + 2/2> where
2:0,2/o G k, and in the expansion (2.1) of X2 and y2 both the constant terms and the terms
of order f) vanish. One has

h(x) = xo + xix, h{y) = yo

and consequently

h(x)h(y) = xoy0 + (zO2/i

At the same time,

xy = (x0 + xxC,0 + x2)(y0 + yiC0 + 2/2)

+ xiyo)C
p

• 0 + {xiy2 + x2y{)^ + x2y2.

We claim that the image under h of the terms in the last line of the above formula is
zero, which finishes the proof. Firstly, since xo,yQ € k and h(x2) = hfa) — 0, it follows
from the linearity of h that h(x0y2 + 2/0̂ 2) = 0. Both x2 and y2 have no constant term,
which implies that the term of order (3 in the expansion (2.1) of {xiy2 + x2yi)C0 vanishes
(as well as the constant term of course) and, as a consequence, h((x\y2 + x2yi)C^) = 0.
Finally, x2y2 has no constant term and it cannot have a nonvanishing term of order (3
either, because otherwise either x2 or y2 would contain a monomial of the form a7£7 with
a7 7̂  0, |7| odd, and I7I < m = |/?|, which is impossible by the choice of /?. D

A very detailed treatment of Grassmann algebras from the viewpoint of supergeom-
etry is to be found in the book [4].

3. BASIC NOTIONS OF SUPERGEOMETRY

3.1. GENERALITIES The notions of presheaf and sheaf of graded algebras on a topo-
logical space, and that of stalk of a such a (pre)sheaf, are defined as usual, by requiring
all the morphisms involved to be morphisms of graded algebras. For the basics of sheaf
theory, the reader may consult, for example, [10].

A locally ringed superspace (else: geometric superspace) over A; is a pair X = (X, S),
where AT is a topological space and Sx is a sheaf of local graded commutative A;-algebras.
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[5] Compactness in supergeometry 477

The latter means, through a slight abuse of language, that for every V ^ 0, S(V) is a lo-
cal graded commutative algebra, and that every stalk Sx,x is a local graded commutative
algebra. The unique maximal ideal of Sx,x will be denoted by m,x,x, and the correspond-
ing residue field Sx,x/mx,x by kx(x) or k(x). Sections / € S(U) of the structure sheaf
of a geometric superspace are called superfunctions on an open set U.

A morphism of geometric superspaces, <f>: X —> 2), 4> = (<po,(jfl), is formed by a

continuous map <f>0: X —¥ Y, and a local morphism of sheaves of fc-algebras $: SY -*
<Po,*{Sx)\ locality means that for every x € X the induced homomorphism between the
stalks, (j>\.\ SY40{X) -* Sx,x, satisfies the condition 4 ( m y * ( i ) ) Q "*x>- Here (f>olt(Sx) is
the direct image sheaf on Y.

Let X = (X, S) be a geometric superspace, and let U be a nonempty open subset
of X. Then (U,S\u) is a geometric superspace, which one may call an open geometric
subsuperspace of X.

For a section / 6 Sx (U) over an open set U C X and for any x G U one can define the
value of / at x, denoted by f(x), as the image under the augmentation homomorphism
Sx,x —> k(x) = <S*,x/mx- The necessity to introduce the functor of points (see the
next section) stems from the fact that superfunctions—and therefore morphisms between
superspaces—are not uniquely determined by the collection of their values.

Every locally ringed superspace, X — (X, S), has a reflection in the category of locally
ringed spaces and their morphisms, which we shall denote by 3Ceven- The underlying
topological space of Xeven is X, and for every open U C X the algebra of sections is just
S{U)o- The pair formed by the identity mapping of X and the embedding of the sheaf
So into S forms a superspace morphism from X to Xeven, which we shall denote by reven.
It has the following universal property: for every purely even locally ringed superspace
2) and every superspace morphism / : X —¥ 2) there exists a unique morphism of locally
ringed spaces / : Xeven ->• 2) such that / = / o reVen-

Every locally ringed superspace, X, has also a purely even coreflection, denoted by
Xred and called the reduced subsuperspace of X. There is a canonical morphism i: Xrea ->
X such that every morphism from a purely even geometric superspace, 2J, to X, factors
through i. The structure sheaf of 3Ered is the quotient sheaf of Sx by the sheaf of ideals
generated by the odd sector of Sx-

3.2. SUPERMANIFOLDS An important example of a locally ringed superspace over k —
R is provided by a graded domain Um'n of dimension (m,n), where m,n are natural
numbers. Its underlying topological space is an open domain, U, in an m-dimensional
Euclidean space, while the structure sheaf is isomorphic to the sheaf of germs of infinitely
smooth mappings from U to the Grassmann algebra of rank n. In other words, for every
open subset V C U the graded algebra of superfunctions on V, S(V), is isomorphic to the
graded tensor product C°°(V) <g> A(n) 2* C°°(V, A(n)), where C°° is the sheaf of smooth
real-valued functions on U C Km.
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By definition one has an epimorphism of sheaves of R-algebras IT: S —> C°°, and for
every x € U, the maximal ideal of Sx is the inverse image of the maximal ideal of C£°
under vr. The kernel of TT coincides with the sheaf of nilpotents of S, which we denote A/".

If n = 0, the definition of graded domain is identical with that of smooth domain
of dimension m. At the other end there is the case m = 0, leading to a 'purely odd'
superspace which we shall denote by ptn. Its underlying topological space is a singleton,
{*}, while the constant structure sheaf is A(n). The (0,0)-dimensional superdomain pto

is just a singleton considered as a trivial smooth manifold. One can introduce the concept
of the spectrum of an arbitrary graded-commutative algebra A, very much in the same
fashion as is done in algebraic geometry for commutative algebras; then the superspace
ptg is exactly SpecA(<?) [14].

If U — Rm and n is a fixed natural number, the corresponding graded domain is
called a Euclidean superspace and is denoted Rm'n.

A (real) smooth finite dimensional supermanifold (graded manifold), X, of dimension
(m, n) is a geometric superspace over the ground field k = R that is locally isomorphic to
an (m, n)-dimensional graded domain. The underlying topological space of X is a smooth
manifold X of dimension m. Every superdomain is a supermanifold. Every smooth
manifold is a supermanifold of dimension (m, 0). If X = (X, S) is an (m, n) dimensional
supermanifold, one has an epimorphism of sheaves of R-algebras TT: S —^ Ĉ j?, whose
kernel is the nilpotent subsheaf A/" of <S. The quotient sheaf N'/A/"2 is a rank n locally
free Cjf-module, that is, it is the sheaf of sections of a rank n vector bundle.

Morphisms between supermanifolds are just the geometric superspace morphisms
described above. Thus, supermanifolds form a full subcategory of that of locally ringed
superspaces and their morphisms.

3.3. GLOBAL STRUCTURE OF SUPERMANIFOLDS If E is a rank n vector bundle on an
m-dimensional differentiable manifold X, and £ is the sheaf of sections of E, let S = A£
be the exterior algebra sheaf of S, that is, the sheaf of sections of AE. It is quite easy
to check that (X, S) is an (m, n) dimensional supermanifold. The vector bundle that,
according to our previous discussion, can be associated to (X, S), is straightforwardly
proved to be isomorphic to E. We may wonder whether this construction is general,
in the sense that, given a supermanifold (X, S), the sheaf 5 is globally isomorphic to
the exterior algebra sheaf of A/*/A/"2. This is indeed true, and this is usually known as
Batchelor's theorem (see, for example, [2]). The isomorphisms between 5 and A(A/"/AT2)
are in a one-to-one correspondence with the sections of the epimorphism TT: S -* C^,
namely, with the morphisms of sheaves of R-algebras a: C~ —¥ S such that TT O a = idc~.
The validity of Batchelor's theorem relies on the fact that the structure sheaf S of a (real)
supermanifold has trivial Cech cohomology since it admits partitions of unity.

Meticulous introductions to locally ringed superspaces and supermanifolds (graded
manifolds) may be found in [4, 12, 13, 14, 15, 16, 2].
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[7] Compactness in supergeometry 479

4. F U N C T O R O F POINTS

The functor of points traces its origins to algebraic geometry. Here we shall present
it in the form it has assumed in supergeometry. Let X be an arbitrary superspace, and let
q 6 N. A q-point of X is any superspace morphism £: pt , -> X. We shall first establish
the following analogue of a well-known result holding for locally ringed spaces [8, p. 119].

PROPOSITION 4 . 1 . Let X = (X,S) be a locally ringed superspace over an
arbitrary Geld k. The 0-points ofX are in a naturai one-to-one correspondence with the
points x € X having k as their residue Geld ('rational points').

P R O O F : Since every unital algebra homomorphism between fields is an isomorphism,
the image of {*} under a 0-point must have A; as its residue field. On the other hand,
a morphism pt0 -» X is uniquely determined by the choice of the underlying mapping
{*} —> X, which is in turn given by selecting a point in X. 0

The origin of this terminology is clarified by the remark that if X = (X, S) is a
supermanifold, then 0-points of X are in a natural one-to-one correspondence with the
points of the underlying smooth manifold of X. This follows from the isomorphism
Sx ~ Cf ® A(n) holding for every x e X (here C°° is the sheaf of C°° functions on X,
and n is the odd dimension of X).

Denote the collection of all g-points of X by ptq(X). The following is obvious from
this definition.

PROPOSITION 4 . 2 . Let U be an open subsuperspace of a locally ringed su-
perspace X. Then for every q € N t ie set ptq(U) is a subset of ptq(X) in a natural
way.

REMARK 4.3. A superspace need not have g-points at all. Using Proposition 4.1, it
is easy to construct a nontrivial geometric superspace X such that for every q, the set
pt9(X) is empty, see, for example, a similar example in [19].

A morphism of graded algebras ip: A(q) -» A(p) determines a superspace morphism
</?': ptp —> ptq. If now £: pt? —»• X is a g-point of a locally ringed superspace X, then the
composition f o <p" is a p-point of X. Thus, <p determines a mapping

having the form

Pt,(£) 3 e-> c <v e pys).

Using this observation, it is easy to verify that the correspondence

A(g) H-y p
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from the category G to the category Sets is a covariant functor, which is of course
representable by its very definition, with X as the representing object:

p t , (X)=Hom(pt , ,X) .

DEFINITION 4.4: Denote by SetsG the category formed by all covariant functors
X: G —> Sets and naturally defined functorial morphisms between them. Objects of
this category, X, are called virtual superspaces. To keep the notation consistent, we shall
denote the image of A(q) under a functor X by pt9(3C). A morphism from a virtual su-
perspace X to a virtual superspace 2J (a functorial morphism) is a collection of mappings
/„ : ptn(X) -¥ ptn(2J), n € N, commuting with mappings between the sets of points
induced by each morphism between Grassmann algebras: a morphism h: A(n) —> A(m)
induces mappings h(X): ptn(3E) -> ptm(£) and /i(2)): ptn(2J) ->• ptm(2J), and the re-
quirement making / into a functorial morphism is that fm o h(X) = /i(2J) ° fn-

By assigning to every locally ringed superspace X the virtual superspace [A(q) i->
pt?(£)], one obtains a functor from the category of locally ringed superspaces to the
category of virtual superspaces. Indeed, every superspace morphism / : X —> 2J gives rise
to a collection of mappings / , : ptg(X) -» pt,j(2J) in a consistent way. Here

(4.1) /,(£) = / ° £ € p t , ( 2 J )

for every g-point f of X.

For more on the relationship between smooth supermanifolds and the associated
virtual superspaces, see, for example, [6, 25].

EXAMPLE 4.5. The set pt?(Rm'n) of g-points of the (m, n)-dimensional Euclidean su-
perspace Rm'" is the even sector of the graded vector space A(q) <g> Kml", where Km|™
stands for the graded vector space Rm © R". To put it otherwise, pt9(Rm'n) is the set of
elements of the vector space [Rm <g> A(q)o] ® [R" ® A(g)i].

REMARK 4.6. The image, pt/1(Rm'"), under the functor of points determined by Rm'n

of a 'grassmannian' algebra A forms a graded ^4-module, Am'n, which was routinely
accepted as the basic object of superanalysis and supergeometry by many theoretical
and mathematical physicists. The resulting approach to supergeometry is known as
the DeWitt-Rogers approach, see [9, 21, 11]. The approach we are following here is
known as the Berezin-Leites-Kostant approach, see [5, 12, 13, 14, 4, 17]. A functorial
link between the two approaches was pointed out by Leites [14] and (independently)
A. Schwarz [22, 23], and remains to date largely unexplored. A brief discussion can be
found in [18] and [3]. See also a paper by Schmitt [24], containing an excellent account of
the functor of points in supergeometry. An early reference is the Stockholm preprint [6].
Some nontraditional aspects of the functor of points in infinite dimensional geometry are
discussed in [20]. Notice that an infinite-dimensional 'grassmannian' algebra A usually
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[9] Compactness in supergeometry 481

carries a natural locally convex algebra topology which must be taken into account in the
definitions; the emerging subtleties may be disruptive for the expected pattern of results,
see [7].

REMARK 4.7. Some virtual superspaces are represented by actual geometric super-
spaces, while others are not. Examples of such virtual superspaces are described in
Remark 6.6.

Virtual superspaces can be considered as 'shadows' of actual objects of supergeom-
etry, or sometimes as 'blueprints' for those objects still to be constructed. They are
of little use in themselves. The authors of [l] have stressed that the progress in some
areas of mathematical physics is hampered by the fact that though some objects (say,
supermoduli spaces) admit a pretty clear interpretation via the functor of points, there
are no known 'genuinely geometric' objects of supergeometry representing them—while
such objects, and not their 'shadows', are exactly what one needs for work.

5. VIRTUAL TOPOLOGICAL SUPERSPACES

We begin with an auxiliary construction. Let X = (X, S) be a locally ringed su-
perspace over a field k, let q 6 N, and let / be a superfunction on X. For an arbitrary
£ € pt9(X), the sheaf morphism £" is in essence a graded algebra homomorphism from
the stalk <Sx,{0(«) *° *n e Grassmann algebra A(q). (Here * is the only element of the
topological space underlying ptfl.) Denote by fa the germ of / at the point £o(*)-

Let / ,(£) = £" (/{)• This is an element of the algebra of global sections of pt?, which

is isomorphic to the Grassmann algebra A (q). As £ runs over the set of all ^-points of X,

we thus obtain a mapping

Notice that for q = 0, the element /0(£) coincides with the value of / at the point £O(*)J

that is, the image of the germ of / under the augmentation homomorphism Sx£0(*) ~* k-

DEFINITION 5.1: Let A; be a topological field, and let X = (X, S) be a locally ringed
superspace over k. For every natural number q, we define the natural topology on the
set ptg(3i) as the coarsest topology with the following property: for every open subset
U C X and every superfunction / € S(U), the mapping / , : ptq(U) -4 A(q) is continuous
with respect to the subspace topology on ptq(U) and the standard product topology the
Grassmann algebra supports as a finite dimensional vector space over k.

It is easy to show that the natural topology is well defined on sets of ^-points for
every locally ringed superspace over an arbitrary topological field.

E X A M P L E 5.2. If the structure sheaf on a 'purely even' superspace X — (X,S) is a
subsheaf of the sheaf of germs of continuous A;-valued functions on X, then the natural
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topology on pto(3£) is contained in that induced from X. In particular, if X is either a
Tychonoff topological space with the sheaf of germs of continuous functions, or a smooth
manifold with the sheaf of germs of smooth real-valued functions, then X coincides with
the set of all 0-points and the natural topology on X is identical with the initial topology.

E X A M P L E 5.3. The natural topology on the set of g-points pt,(ptp) = (A(<?)i)p is easily
shown to coincide with the product topology.

E X A M P L E 5.4. An arbitrary topological space X is made into a (purely even) locally
ringed superspace by equipping it with the sheaf of germs of continuous real-valued
functions endowed with the trivial (purely even) grading. The stalks, Sx, of the locally
ringed space thus denned admit no nontrivial R-valued derivations, and consequently
the only homomorphism Sx —> A(q) is the augmentation / t-t f(x). Consequently, for
every q e N, the set of ^-points of X admits a canonical bijection with X itself, and the
topology on pt9(X) is the completely regular replica of the topology of X. In particular,
if X is Tychonoff, then pt,(X) is canonically homeomorphic to X itself for each q.

LEMMA 5 . 5 . For every graded algebra morphism <p: A(p) —¥ A(q), the corre-
sponding mapping <p(X): ptp(3E) —> pt9(3£) is continuous with respect to the natural
topologies on both spaces.

P R O O F : Let an open subset U C. X and / S S(U) be arbitrary. Since the functions
of the form / , : ptq(U) —> A(q) determine the topology on pt?(3C), it is enough to verify
that the 'pull-back' of / , on ptp(f/) by means of the mapping tp(X): ptp(3T) -» pt,j(3:) is
continuous. In other words, it suffices to check the continuity of the mapping

fq\ptq(u)O<p(X):ptp{U)^A{q).

To this end, it is enough to notice that / , o ip(X) is the composition of the continuous
mapping /p | p t (t/) with the graded algebra homomorphism <p which is also continuous
being a linear mapping between finite dimensional fc-vector spaces. D

The following is straightforward.

P R O P O S I T I O N 5 . 6 . The correspondence

Pt, >-» ptq(X), ip>

is a covariant functor from the category G to the category Top.

DEFINITION 5.7: A covariant functor from G to Top will be called a virtual topo-
logical superspace. The category whose objects are the virtual topological superspaces,
and whose morphisms are the corresponding functor morphisms, will be denoted by
TopG.

LEMMA 5 . 8 . For every morphism f: X -> 2) between two locally ringed susper-
paces and for every q € N the mapping fq: ptq(X) -¥ pt,(2)) defined by formula (4.1) is
continuous with respect to the natural topologies.
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PROOF: For each open subset U C Y and every superfunction g € SY(U), the
pull-back gq o fq coincides with (/"(j)) , where P(g) is an element of the algebra of
sections fo,,(Sx)(U), canonically isomorphic to Sx(fo1(U)), and is therefore continuous

; D
The following is an immediate corollary.

PROPOSITION 5 . 9 . The assignment of a virtual topological superspace to ev-
ery locally ringed superspace described in Proposition 5.6 is functorial (in a covariant
way).

The following structural result is very simple yet useful.

PROPOSITION 5 . 1 0 . Let X be a virtual topological superspace. Then for every
natural number q, the space ptg(3t) is fibred over pto(£) in a canonical manner. IfX is
[determined by] a locally ringed superspace, then the fibre over x is homeomorphic to
Hom(Sx,A(q)).

PROOF: The augmentation homomorphism /?: A(q) —> k = A(0) determines a su-
perspace morphism /?.: pto(X) -> pt?(3G). The image of P. under the functor X is a con-
tinuous mapping and therefore supplies the desired canonical fibration /?.(£): pt9(X) —>
pto(X). The inclusion A(0) = k '-* A(q), X •-» A • 1 is a homomorphism of unital graded
algebras and therefore determines a superspace morphism i: pt9 —» pt0; one thus obtains
a continuous mapping i(X): pto(£) -» pt?(^) . The obvious property poi = i implies that
0(X) oi(X) = i(X), that is, 0(X) is a retraction of pt?(j£) onto a subspace homeomorphic
to pto(3t), and in particular all fibres are nonempty.

Now assume that X is determined by a locally ringed superspace, which we shall
for simplicity denote with the same symbol X = (X,S). According to Proposition 4.1,
O-points of X correspond to the points x € X having k as their residue field. It follows
that if £: ptg -»• X is a g-point, then £0(*) = x € X is a O-point of X, while f can
be thought of as an arbitrary graded algebra homomorphism from the stalk Sx to A(q).
Notice that £0(*) is exactly /?(£)(£). Therefore, the collection of all g-points £ with
£o(*) = x coincides with the fibre of the canonical fibration (3,{X): pt,(3C) —> pto(3t) over
the point x. Another way to describe this fibre is as the collection Hom(<Sz, A(q)) of all
graded algebra homomorphisms from the stalk Sx to A(q). The proof is thus finished. D

6. NONCOMPACTNESS OF LOCALLY RINGED TOPOLOGICAL SUPERSPACES

It is natural to call a virtual topological superspace, X, compact if for every q, the
topological space of g-points, ptQ(X), is compact. However, here we shall show that the
only occurrences of such a phenomenon are in a sense trivial, and thus, informally speak-
ing, compactness along the odd directions is never observed among virtual topological
superspaces.
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First of all, we need to define what it means that a virtual topological superspace
determined by a locally ringed superspace is nontrivial in the odd sector.

DEFINITION 6.1: Let X be a locally ringed superspace. We say that the virtual
topological superspace determined by X is trivial in the odd sector if for every q € N and
£ € ptg(£) the graded subalgebra £}{SX) of A{q) has trivial odd sector.

Here is an equivalent reformulation of the same concept. Recall that i: £red -> X is
the canonical morphism from the reduced subsuperspace (even co-reflection) of X.

PROPOSITION 6 . 2 . Let X be a locally ringed superspace. The corresponding
virtual topological superspace is trivial in the odd sector if and only if for every q €
N, the continuous mapping iq: pt?(3fred) -> pt,(£) is a homeomorphism. Equivalently,
the functor associating a virtual topological superspace to X factors through the even
coreQection Xred-

Loosely put, this is the case where the odd sector of a superspace, X, tells us nothing
about the topology on g-points that is not already encoded in the even subsuperspace

£red-

LEMMA 6 . 3 . Let X be a locally ringed superspace, and let x e pto(3£) and q e N.
The restriction of the natural topology to the fibre, Hom(iSx, A(q)), of the canonical
Bbration ptg(£) - • pto(X) over x coincides with the topology induced from the Tychonoff
topology on the infinite product A(q)Sx under the embedding Hom(«SX) A(g)) «—>• A(q)Sx.

P R O O F : The natural topology on the fibre Hom(5x, A(q)), formed by all g-points £
with £o(*) = x, is, by the definition, the coarsest topology making every mapping of the
form £ i—> /(£) continuous, where / € S(U), and U is an arbitrary open neighbourhood
of x. If h{ is a homomorphism from the stalk Sx to A(q) associated to £, then the natural
topology is the coarsest one making every mapping of the form £ •-» h^(f) continuous,
where / is the germ of a superfunction / as above. This is exactly the topology of simple
convergence on elements of the stalk <Sr, that is, the topology induced on Hom(5x, A(g))
from A(q)Sx, as required. D

The following result shows that among virtual topological superspaces determined
by locally ringed superspaces, every compact superspace is trivial in the odd sector, that
is, it comes from a locally ringed space rather than superspace.

THEOREM 6 . 4 . Let k be an infinite topological field, and let X = (X, Sx) be a
locally ringed topological superspace over k. Assume that the topological space ptx(3£)
(with the natural topology) is compact. Then the virtual topological superspace deter-
mined by X is trivial in the odd sector.

PROOF: Assume that the virtual topological superspace determined by X is non-
trivial in the odd sector, that is, there is a q € N+ and a g-point of X, £, such that
A = £}{SX) has n«ntrivial odd sector as a graded subalgebra of A(q). According to
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Lemma 2.1, there is a surjective morphism of graded algebras j : A ->• A(l). Denote by
f3: A -» k the restriction of the augmentation homomorphism A(g) -> k to A. It is clear
that for every even element O,Q G AQ one must have J(OQ) — 0{a,o). From here it follows
that for every value of the parameter X E k the linear mapping j \ : A —>• A(l) determined
by jx{ao + ai) = 0{ao) + Xj(ai), a{ e At, i = 0,1, is a graded algebra homomorphism.
For two different values Ax ^ A2, the homomorphisms jXl and jx2 are distinct. Every
composition of the form j \ o^ is a graded algebra homomorphism from Sx to A(l), and
therefore determines a 1-point of X, and, moreover, an element of the fibre of the fibration
ptj(3t) —>• pto(3C) at the point x (Proposition 5.10). We shall denote such a 1-point by
x\. For different values of A, the points x\ are different. It follows from Lemma 6.3 that
the set of all points {x\: A € k} equipped with the natural topology is canonically home-
omorphic to the basic field k. Indeed, in the topology of pointwise convergence, a net ax
converges to a point x^ if and only if for every z € A{q) the net jx, (£*(.z)) converges to
3it(€Hz))> which is easily shown to be equivalent to the convergence \v ->• /i. Moreover,
the set {x\: A g k) is readily verified to form a one-dimensional affine subspace in A(q)Sx

and therefore is closed with respect to the (locally convex HausdorfF) Tychonoff product
topology on A(q)Sl. Since an infinite topological field is never compact [26], it means
that the fibre of pt^X) over x is noncompact. But it is closed in pt^X), which is a
contradiction. D

REMARK 6.5. Observe that the category of virtual topological superspaces possesses
'compactifications.' Suppose a virtual superspace, X, is 'Tychonoff' in the sense that for
each q, the space pt,(3C) is Tychonoff. Define for each n 6 N

ptn((3X) = P(ptn(X)),

where 0 denotes, as usual, the Stone-Cech compactification. Every continuous map-
ping / : ptn(X) —> ptm(£) extends to a unique continuous mapping / : p(ptn(X)) -t
P(ptm(X)), which enables one to turn the correspondence A(n) —> /3(ptn(3C)) into a co-
variant functor and indeed a virtual topological superspace, containing X as a virtual
topological subsuperspace in a natural fashion.

Since every supermanifold X is 'super-Tychonoff' in the sense that the natural topol-
ogy on each set ptn3E is Tychonoff, it admits a nice compactification in the category of
virtual topological superspaces.

The compactification procedure for virtual topological superspaces certainly deserves
further attention. In particular, it enables one to produce numerous examples of virtual
topological superspaces that do not come from locally ringed superspaces. Such is, for
instance, the above described 'compactification' of [the virtual topological superspace
assigned to] any supermanifold, X, whose odd dimension n ^ 0.

REMARK 6.6. It is, however, important to realise that the above compactification pro-
cedure does not provide an answer, or at least a complete answer, to the problem of
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compactifying supermanifolds—simply because some of the most intriguing hypothetical
objects of supertopology, such as the purely odd projective superspace, do not corre-
spond to any virtual topological superspace. The setting of functor of points is, thus, too
restrictive.

This is the first time such an observation has been made. The often held viewpoint
has previously been that the functor of points provided an adequate setting for the notion
of compact superspace, and only translating this notion into a geometric language posed
a problem. To quote from Leites's problem survey article [15, pp. 650-651]:

Consider for instance GL(n) acting on the space of the identity representation. There
are two orbits: the origin and the rest. If we now look at the space as an (0, n)-
dimensional supermanifold we see that the complement to the origin is just a kind
of halo, indescribable except in the language of the point functor. The functor corre-
sponding to the complement of the origin is not presented by a supermanifold.
Functors on the category of commutative (super)algebras represented by manifolds or
supermanifolds are good because you can construct differential or "at least" algebraic
geometries on them. How to distinguish subfunctors corresponding to the orbits of
supergroup action! (A similar problem takes place for groups and their orbits in
prime characteristics.)
Is it possible to construct mechanics on such orbits, that is, integral and differential
calculus'?

In fact, the situation is even less favourable than appears from the above: the 'functor
corresponding to the complement of the origin' referred to by Leites simply does not exist.
If X were such a virtual superspace, then one would have

(6.1) pto(X) = pto(pt,) \ {0} = 0

and, by the covariance of X,

(6.2) pt,(3e)

for all q, where /3: A (q) -> A(0) = k is the homomorphism of augmentation.

We conclude that none of the known frameworks for supergeometry, not even the
functor of points, allows for the existence of some of the most interesting objects one
would like to see implemented in supertopology.
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