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Abstract. Let k be a perfect field of a positive characteristic p, K — the fraction field of the ring of
Witt vectors W (k). Let X be asmooth and proper scheme over W (k). We present a candidate for a
cohomology theory with coefficients in crystalline local systems: p-adic étale local systems on X i
characterized by associating to them so called Fontaine-crystals on the crystalline site of the special
fiber X,. We show that this cohomology satysfies a duality theorem.
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1. Introduction

In this article we prove a duality theorem in the conomology of crystalline local
systems.

Let k& be a perfect field of a positive characteristic p, K — the fraction field of
the ring of Witt vectors W (k). Let X be a smooth and proper scheme over W (k).
In [5] Faltingsintroduced the notion of crystallinelocal systems: p-adic étale local
systemson X characterized by associating to them so called Fontaine-crystalson
the crystalline site of the special fiber X .. Etale cohomology sheaves, generic fibers
of finite flat p-group schemeson X, and Tate-twists tend to form such systems.

We present here a candidate for acohomology theory with such coefficients. In
the particular case of the Tate-twists Z /p™(r), r > O, it is equa to the syntomic
cohomology introduced by Fontaine and Messing [7]. In general, it should be
thought of as a p-torsion analogue of the arithmetic étale cohomology of X with
coefficientsin locally constant sheaves with torsion different from p.

Pursuing this analogy one would expect that, in the case k is finite, these coho-
mology groups would satisfy certain duality. We show here that this isindeed the
case. Thisis done by a careful study of a map from our cohomology to the étale
cohomology of X i and follows from Faltings comparison theorem between crys-
talline and étale cohnomologies, and the crystalline, étale, Galois, and Bloch—-Kato
dualities. As an interesting byproduct of our computations we get a degeneration
of the Hochschild—Serre spectral sequence of crystalline local systems.
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Throughout the paper p will be a fixed odd prime, for afield K, K will denote
afixed algebraic closure of K, and, for ascheme X, X’ will denote the associated
forma scheme. Locally constant étale sheaf on X will mean, depending on a
context, an element of the Ind-category of finite étale covers of X or the Ind-
category of finite étale commutative group schemes over X.

2. Thecategories MF}, (X)

Let V denoteacompletediscrete valuation ring with afraction field K of character-
istic 0 and a perfect residuefield & of characteristic p. Assumethat V' is absolutely
unramified. L

Let R beasmooth V -algebra. Fix asemilinear endomorphism ¢: R — R lifting
the Frobenius on R/pR. For al integers a, b, a < b, we have the following
category M}"[Z,b} (R, $) [5]: an object of M}"[Z,b} (R, ¢) is a p-torsion, finitely
generated R-module M with a descending filtration F* M such that F*M = M,
F**1M = 0and R-linear maps ¢': F' M ® py R — M suchthat ¢ (z) = p¢' ()
for z € Fi+1M . Let R-module M be the colimit of the followi ng diagram

Frle MFC 2y MF « MFHY 2 ML,

The above condition is equivalent to the fact that the maps ¢* induce an R-linear
homomorphism ¢: M ® re¢ R — M. One additionaly requires this homomorphism
to be an isomorphism.

M is aso equipped with an integrable nilpotent connection V: M — M ®g
O,y stisfying Griffithstransversality, i.e,, V(£°M) C F'""*M ® pQ}, . More-
over themaps ¢* are parallel with respect to the map de.. /p: Q}{/V QreR— Q}z/v.
In a more convenient form, the connection V induces a connection (integrable
and nilpotent) on M @ r¢ & and the above condition is equivaent to the map
¢: M @pg R~ M being parallel in the usual sense,

Category M]—"[Zyb] (R, ¢) has many nice properties:

(1) itis Abelian;

(2) thefiltration is by direct summonds;

(3) F'M islocally adirect sum of modules of the form R/p°R;

(4) forb — a < p — 1, itisindependent of the choice of the Frobeniuslift ¢, i.e.,
if ¢1 is another Frobenius lift, then there is an equivalence of the categories
M]—"[Zyb](R, $) and M]—"[Zyb](R, ¢1) satisfying a cocycle condition. In fact,
thereisawell defined parallel transition map

Ozd)’mZM@R(p R= M@Rm R.

such that a.g, ¢,0,6, = g, p,-
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From now on we will assumethat0 < b —a <p — 2

Let X be asmooth and separated scheme over V. To globalize the above con-
struction one covers X with affinesU; = Spec(R;) and chooses Frobeniuslifts ¢;:
Ri— R;. MF}, ,(X) isdefined asthe glueing of the categories MY, (Ri, ;)
viathemapsay, 4. Thus MF [V ]( X) consistsof filtered O x - modulesM eqw pped
with an integrable, quasi- nllpotent and Griffiths transversal connection, and, for
every i, a structure of an M}"[a, (R;, ¢i)-object on My, such that on U;; the
two structures glue well under o, 4. It easily follows that MF; ,(X) does not
depend on the choice of the data { (R;), (¢;)} and that it is an Abelian category.

Recall [3] that given afiltered Ox-module M equipped with an integrable,
guasi-nilpotent and Griffiths transversal connection, there is a unique filtration on
the associated crystal M whose value on X' is the given filtration and such that for
every thickening U — T in Cris(X'/Spf(V')), and for every k,

Jr N FkMT _ J,ZEL]kalMT + J,Z[E]Fk*ZMT + -y

where J; istheideal of U inT'. In addition, we also know that, for every morphism
f:T"—= T inCris(X/Spf(V)),

FkMT/ = F}CMTI —+ JT/Ff]-C_lMT/ +

where F}MT/ = Im(f*FiMT — Mqv).

The maps ¢' acting on objects of M}"[Va,b} (X) can also be lifted to some
thickenings. Take a smooth V' -algebra R and an embedding Spec(R) — W into a
smooth V-scheme . Choose Frobenius lifts ¢ on R and 1 on W — the p-adic
formal scheme associated to TW. Let D be the p-adic completion of the divided
power envelope algebra of Spec(R) in W. Denote by 1, the extension of 1 to D.
D being p-torsion free, we can give it a structure of an M F-object: set D* equa

to D if 4 < 0, to the closure of the ideal J][J} if 0 <4 < p—1,andto O otherwise,
and define%,: D' — D asthe divided Frobenlust/pZ.

LEMMA 2.1. For any M € M]—"[Zb](R, ¢), thereis a canonical D-linear map

$p: Mp ®pyp D — Mp,

where, in the definition of M, thefiltration on M p, is cut by setting FiM, = 0
for i > p — 1+ a. Moreover, the map ¢, isindependent of the choice of ¢.

Proof. Fix a retraction : R — D. Define M", as ~-object associated to the
filtration

] i—kypx ok
Mp= > D" FRF*Mg

i—k<p—1
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on Mp. Since M5 ~ grp(Mgz), it easily follows that the natural map w:
5*7\71/13(2)0 D — M, sending z* @ 37, oF € h* FF M, y7 € D7 to zbyd in M
is an isomorphism.

Define pp: Mp ®py, D — M p asthe composition

——— T~ w — ~
Mp ®@py, D—)M% Qpyp D — (h*Mﬁ ®p D) ®py, D

~ h*Mﬁ Qpyp D &p Dy, ®p D

:M§®}A{D®D¢D D®p Dy, ®p D

Yol M~ ®~ R®~D®p Dy, @p D
~ R °Ro R D Fyp D

$R2(W))
R—D>M§®§D®DD2MD-
Here, ¢ is the structural map ¢5: M ®p, R ~ Mg, and the map ayp, 4 is

the transition map of Faltings [5]: in local coordinates ty,...,t, on R and for
meF' Mg,

aypp(m®1) = V(0r)(m) @
1

((z/mh(t) - h¢(t>)f>
(I!pmin(z’fa,m)) ’

where, for any multindex I = (i1, ...,1q4), V(0r) is an endomorphism of M~
corresponding to the PD-differential operator 0; (0; = 0/0t;). Here, V(0r)(m) is
considered as an element of FM(@i=11) Aq .

As expected, in the case when ¢ and ) commute, the map ¢p is the obvious
composition of ¢ and ¢p.

A transition map between the constructions corresponding to two different
choices of h can be induced from the transition map between two retractions of
M . That it commutes with our maps follows from the fact that M is a Frobenius
twisted crystal, that the Frobeniuses acting on M are parallel and that thetransition
maps « are compatible with the change of the retraction.

Independence of the construction from the choice of ¢ is easily seen. O

Forany M € M]-"[Zyb] (R, ¢),the D-module M j, isequipped withan Oy -connection
whichisintegrable, quasi-nilpotent, and compatible with the natural connection on
D. Oneeasily checksthat it isalso Griffiths transversal. We will need the following
fact.

LEMMA 2.2. Themaps¢’,: F* M p®pg, D — Mp areparallel, i.e., thefollowing
diagram commutes
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FiMp Y Fi=IMy Qo Qxlzy/v
o) ll@dw*/p
Mbp

Mp R0y, QJW/V.

Proof. Define a connection, that is compatible with the connection on D, V:
Mp®pyp D — Mp@py, DRo,, Qll/v/v by sendingm®1to (1®diy./p)(V(m)).
Both connectionson M p and D being integrable, we get an integrable connection.
Griffiths transversality of V and the fact that My /p ~ gr(Mp/p) yield also
that V is nilpotent. We can thus look at the corresponding hyperstratifications ey
and e and to see that they commute with ¢, it suffices to use that ¢ itself is
paralel and that the maps « (being parallel) exhibit certain compatibility with the
transition maps between different retractions. R being smooth, the computations
are tedious but easy. O

In what follows, we will denote by M}"[Z,b} (X,,) the subcategory of objects from
Mf[va,b} (X) annihilated by p".

LEMMA 2.3. If
O—-—L—-M-—N-—=O0

is exact in M]—"[Z’b} (Xn), then, for every fundamental thickening U — T in
Cris(X,,/Vy,), the sequence

0—>ET—>MT—>NT—>O

is exact in the filtered sense.
Proof. It is enough to argue locally. Assume thus that U is affine and that there
isaretraction h: T'— U. We want an exactness of

0= S IR Lr— Y I EF My Lo S I E N 0,
k k k

where Jy istheideal of U in T'. First, we claim that, for every i, k, the sequence

0— JWF Lr — I E My — I EI NG - 0

isexact. Notethat /1@ o, Fj My ~ JH Fi My, Indeed, since FiMp ~ h* F'M,
it suffices to show that Tor;©v (FiM, O/ Ji) = 0, which follows by devissage
on OT/Jgd, Jj[?]/JJ[?“] being locally free on U. Thisyields the exact sequence

JRF Ly — TP Fi My — JFFIN 0.
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Since L — M, we aso get an injection. Returning to the previous sequence
we seethat the onIy nontrivial fact isthe exactnessin the middle. Wewill argue by

inductionona < n < bsuchthatz € Zk>nJ[i_k]F’“MT,f( ) = 0.Thecasen = b
follows from the above Assume now that we know the exactness for the elements
of Spon i MEE My, Take o € Sysn Ji M FF My such that f(z) = 0. Write

T=y+z, yE E,MJ; }F,’fMT,z € J[T ]F;}MT.Smcef( )= f(y)+f(z) =
0, fy) e JT "ERNT N (Sksndi M FENT). But Np ~ gry, Nr, locally, so
Fly) e JEEM NG, Take o € JEFP My such that f(y)) = f(y). Set
' =y —y.Wehavethat f(z') = 0andz’ € Ek>nJ¥*k}F,fMT. By induction, =’
comesfrom Ek>nJ¥_k}F,’f£T. Sncex=y+z=y —2'+z2=—-2"+(y + 2),

fy+2z)=0andy' +z€ Jj[f*”}F,?MT, y' + z comesfrom Jq[f*”]F,’;L‘,T and we
are done. |

3. Cohomology of MF}, ,1(X)-crystals

Let V. = W (k) be the ring of Witt vectors over a perfect field £ of positive
characteristic p. Let X be a smooth, separated scheme over V' of relative dimen-
siond.

Choose a covering of X by a finite number of U; = Spec(R;), i€ 1, and
embeddings U; — W; into affine, smooth V'-schemes W; = Spec(T;). For every
J CI,set

Uy = Spec(Ry) = () Uj,
jed

Wy =Spec(Ty) = [[ Wj»  Ds=Dr,(Ty).
jeJ

Fix n. Let M€ MFY 1(Xp), b —a < p — 2. We will reduce everything above
mod p™ but, aslong asthis does not cause confusion, wewill try to omit theindices.

Define Q(MJ)' as the complex Mp, ®7, Q'T v Filter the D y-modules
Mp, @1, 1y, by submodules F*(Mp, @1, Qf, ) = F*~ MDJ®TJQTJ/V
Griffithstransversality givesthat, for fixed k, thesubmodules F¥(Mp , ©r, Qf. )
form asubcomplex F*Q (M) of Q(M,)".

Choose Frobenius lifts ¢; on RJ and 1); on T and set ¢; = TIy;. For k <
p — 1+ a, the maps

¢§’i: Fk_iMDJ Q1 Q%“J/V — Mbp, ®r; Q%“J/Vv

¢t = ¢k ® dipy./p', glue (Lemma 2.2) to a Frobenius ¢F: F*Q(M,) —
QM,)".
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Assumenow that p — 1+ a > 0. Set

S(M,) = Cone(FQ(M,) =2 (M,))[=11.

Thisisindependent of the choice of n such that p" M = 0.

Now we globalize. Take an index set K C J. There is the obvious restriction
map resg j: Q(Mpg) — Q(M ). It clearly preserves thefiltrations and it is easy
to seethat it behaveswell with respect to the connections. Also, sincethefollowing
diagram commutes

My @Dy Dk —> Mp,®@p,p, Dy
D %D,
Mop, Mop,

(use the transition maps «), it behaves well with respect to the Frobenius.

The restriction maps satisfy the usual compatibilities, hence varying J we get
from the complexes S(,M ;) a double complex. Denote by S(M)" the associated
simple complex.

LEMMA 3.1. For any two choices of the covering, there is a canonical quasi
isomor phism between the corresponding complexes S(M)".

Proof. Assume that we have two choices A = (U;, ¢r, Wi, 4;), B = (V}, 87,
Zj, ;). Consider two new choices

Cl = (Uz N I/j7¢17VVi X Z]71/)7, X ’Y])v
Co= UiV, By, Wi X Zj, hi X j).

The complexes associated to C1, C2 are in fact identical (Lemma 2.1). In studying
thepairs (A, C1) and (B, C2) we may disregard the Frobenius and then the required
quasi isomorphisms follow from filtered cohomological descent for crystalline
cohomology. O

For M € MFY, (X)), define

Hj o p(X, M) = H (S(M)),
It follows from Lemma 2.3 that, for every n, H} , ,(X, ) is acohomology theory
on MFY i (Xp).

Remark 1. Various generalizations of the syntomic cohomology of Fontaine
and Messing appear in thework of many people. In particular, we believe, although
we didn’t check the details, that our construction agrees with that of [14].

Remark 2. When the relative dimension of X over V is 0, our cohomology
theory H}ya,b(X, -) agrees with that of Bloch and Kato [3].
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PROPOSITION 3.1 If M € MFY, \(X), then H} , (X, M) = Ofori > —a +
d+ 1.

Proof. We can assume that p M = 0. Consider a set of data (U;, ¢.s, Wy, 1),
iel, J C I asabove, and the associated complex S(M)'. Denote by Sg( M)
the induced complex of étale sheaves on the special fiber X. By the last lemma
Se& (M), modulo quasi isomorphisms, is independent of all choices. We clearly
havethat H* (X}, Se(M)") ~ H*(S(M)"). From the spectral sequence

HP (X, HY(Sg(M))) = HP (X}, Sa(M)')

andthefactthat cd, (X}) < d+1, weseethat it sufficesto show that 7{9(Sg(M)') =
Oforq > —a.
We can now assume that X = Spec(R) and M € M]—"[Z,b} (R, ¢) for some

choice of the Frobeniuslift ¢. We claim that the map ¢° — 1. FOQ(M)" — Q(M)
is an isomorphism in degrees strictly bigger than —a and a surjection in degree
—a. Indeed, indegreek > —a, ¢° — L F "M @/, Q’;z/pR—>M Or/pR Q’;z/pR
is equal to ¢~F ® de,/p* — 1. But —k < a, O F*M = F'M = M and
¢™F = p*tFge = 0. Hence ¢° — 1 = —1. Indegree k = —a, ¢° — LM ®p i
sz(;pR — M®g/pr sz(;pR isequal to ¢* ® d¢, /p~® — 1. Looking at logarithmic
differentials we see that it suffices to prove that the morphism ¢ — 1: M — M
is surjective in the étale topology of R/pR. That easily follows from the fact that
M~ ®R/pR. O

PROPOSITION 3.2. If M € MF}, ,(X), then the morphism
HG(X/V, M) = H{*H(X, M)

isan isomorphismfor —b > d or —b > k + 1. Itisaninjection for —b > k.
Proof. From the definition of S(M)" we get the long exact sequence
— Hf(X, M) = Hg(X/V, F'(M))
=, HE(X/V, M) = HFPH (X, M) — .
Let Gr%Q'X/V(M) be the complex

Grio My —— Gris LM ® )y .

We get the ‘Hodge spectral sequence’
By = H™(X,GriQy (M) = HEY (X/V, FO(M)).

Since M € MF}, ;1(X), this thus yields that H(X/V, FO(M)) = 0 for —b >
min(z, ), from which the proposition follows. O
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4. Thering BT

In the next two sections p is allowed to be equal to 2. Let V' be a complete discrete
valuation ring of mixed characteristic (0, p) with aperfect residuefield k. Let R be
asmooth V-algebrasuch that R/pR # 0. Consider the p-adic completion R. For
simplicity, we will assume that Spec(R/pR) is connected, which implies that Ris
anormal domain. In general, Risa product of norma domains and what follows
appliesto each factor.

We will briefly recall the construction and properties of the ring B+ (R ) [5].
Denote by R the normalization of R in the maximal étale extension of R[1/p].
We will write z = p™/™ if 2 = p™ and this does not cause problems. Let
S = projlim E/pﬁ, where the maps in the projective system are the pth power

maps. With addition and multiplication defined coordinatewise S is a ring of
=A
characteristic p. We will also find useful the projective limit S = proj limR

where the transition maps are the pth power maps and multiplication is defi ned
coordinatewise. The projection S —> S isamultiplicative isomorphism: theinverse
(« (n)) of @ is given by setting z(™) = [im,, o0 3% ., where ~ means a lift from

R/pto R
TheFrobeniusof S ishijective, sothat thering of Witt vectors IV (.S) isp-torsion
free, complete and separated for the p-adic topology.

=N
There is a homomorphism ¢ from W(S) to R :0 maps (zo, z1,...) € W(S),
T = (nm) € S, to the limit over m of z a;om +pa;1m - + oo+ p™Fm- Thisisa

surjection if Frobeniusis surjective on R/ p. Thekernel of 6 is being generated by
¢ = [(p)] +pl(—1)], where(p), (—1) € S are the reductionsmod p of sequences of
p-roots of p and (—1) respectively (if p # 2 wemay and will choose (—1) = —1).
In what follows we fix p¥/(?—1) € § — a sequence of p-roots of a fixed element =
such that 2P~ = p and (p) isequal to (p¥/(P—1))P-1,

We will need

LEMMA 4.1. Let 0 < € < 1 bearational number. Let p° be a sequence of p-roots
of p°. Themap S/(p )—>R/p sending z to xo is always injective. It is surjective
if Frobeniuson f%/p is surjective.

Proof. It sufficestoshowthat, if =, y ¢ ER P =z, € p‘5R ,theny e p5/pR
Setn = L(s/pj—i-l andif z = p°r, TER taker yERSUChthatr = rmodp”R
y = ymodp”R Then ¥ = p rmodp”R so §? = p’F + p"a, a€R and

(§/p’/P)? = 7 + p"~*/Pa. R being normal, 5/p%/? € R, hence yep’P R as
wanted. O

The ring B+(1§) is defined as the p-adic completion of the divided power enve-
lope D¢(W(S)) of the idea (W (S) in W(S). Let J denote the PD ideal of
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D¢(W(S)). B*(R) is an algebra over B+ (V) having the following four pro-
perties:

(1) the Frobeniusautomorphism on S induces an automorphisms ¢ on W (.S) and
B*(R);

(2) BY(R)is equipped with a decreasing separated filtration F"B*(R) suchthat
(F"B*(R)) C p"B*(R) (in fact, F*B*(R) is the closure of the ideal
consisting of those elementsin the n-th divided power of J whose ¢-imageis
divisible by p™); B

(3) the Galois group Gal(R/R) acts on B*(R); the action is continuous, com-
mutes with ¢ and preserves the filtration; B

(4) there exists an element ¢ € F1B* (R) such that ¢(t) = pt and Gal(R/R) acts

on ¢ via the cyclotomic character: if we fix e € S — a sequence of nontrivial
p-roots of unity, thent = log([¢]).

5. Thefundamental exact sequence

Recall that R iscalled small if thereisan étdemap V[T, ..., T — R.If Ris

small, Frobeniusis surjective on R/p Forn > 0, writen = r(n) + (p — 1)g(n),
0<r(n) <p—landsettint = ¢y (tp 1/p).

PROPOSITION 5.1. For small R, there is an exact sequence of Gal (};%/f%)—
modules

0—Z,tt" — F"B*(R) et

B*(R)—0, forr > 0.

Proof. The proof follows closely that of Fontainefor thecase R = V. We advice
the reader to consult [9, 5.3.6] for details. Themain point isthat, assuming R small,
we can solve certain polynomials involving Frobenius already in R/p.

Sety = p"¢—1. Wewill firstshowthatker v = Z,,t{"}. Clearly Z,,t1"} e ker v
Assumethat = € kerv. Then

cell —{.’L‘EB+( R) | ¢"(z) € nEN}

To proceed we will need few more facts about the structure of the ring B*(R).
Setm. =[e] —1eW(S), ¢ = Zeer,[e]Dif p#£2andg = [e] + [e] Lif p =2,
and, for z € W(S), set z’ = ¢~ 1(x). One easily checks [8, 2.4] that the element
Ensop" [un] € W(S) generates the kernel of 6 if u&o) isaunitin RA. In particular,
that istrue of X, ¢ ¢, [¢']/9).

Having that, the arguments of Fontaine [9, 5.2. 7] suffice to prove that every
a € BY(R) can be written as a = = Y,500n7n(tP1/p), Where the coefficients
an € W(S) converge p-adically to 0. We also have (cf., [9, 5.1.4]).
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LEMMA 5.1. Theideal I = 1Y N W (S) isgenerated by 7. = [¢] — 1.
Proof. Seto = p/(p—1). Onechecksasin[8, 4.16] that if z = (:ro,ml, ) €El,

then :v( ) € plttp” "R for everyr > 0. This gives that :v( )Ep”R ‘takea € R
such that o = a;é ) modp”R and consider the element «/p” eK(fz). Since
a/p® Ep‘fﬁ for arbitrarily small ¢, it liesin all the localizations of Ra height
one primes. Hence a/p? € R, aswanted.

We clam that I C (., p). Take z = (xo,x1,...) € I. We want to see that
20€ (e —1)S or,sincee — 1 = (p?) unit [9,5.1.2], that zo € (p7?)S. We already

know that xéo) € p"l’z%A . Since the composition
S/(p")S%» S/ (pHP=V) s = R/pY -V R

where the last map sends v = (uy,) 1O wo, is injective, it suffices to prove that
=A
#V e pt/@=-DR". But that follows from the proof of Lemma4.1. Now, since
0(¢"(m)) = O([e]P" — 1) = e’ — 1 =0, m. € I. Thus, to finish it would suffice
=N
to know that if px € I, then x € I: consider the map w: W (S) — (R )N sending
=N
a 1o (8(¢™(a)))nen. Since pz € I, we have 0 = w(pz) = pw(z). But (R )N is
p-torsion free, so w(z) = 0 as wanted. O

Using the above lemma one can prove as in [9,5.3.1] that II"! is the closure
of the W (S)-module generated by {5}, s > r. Hence we can write our = as
z = Yysrasti®h, where the coefficients a; € W (S) converge p-adically to 0.
For neN, (p~"¢)"(z) = ¢"(a,)t{" modp" BT (R). So, since z € kerv, z =
¢"(a,)t1"t modp™ BF (R). If weset b = lim,,_00 ¢"(a;), b€ W (S), we have that
z = bt", ¢(b) = b. R being a henselian domain (with respect to the ideal pR), we
getthatbe Z,,.

Remains to prove that v is surjective Define N as the closure of the W (S)-
submodule of B+( R) generated by q'7-y,, (= 1/p) with j +n(p — 1) > r. Clearly
N C F'B*(R R). Also, for p # 2, t/q' € B*(R), thus Z,t{"} c N. Since both
N and B*(R) are p- adlcally complete and separated, it suffices to show that
the induced map N/p -~ B*(R)/p is surjective. Take a € B (R) and write it
asa = Sp50anYn (P /D), an € W(S). If a = = Zpsr/(p—1)anYn(tP~ 1/p), then

n(p —1) > r,ae N, and we can take z = —a to get v(z) = o modpB*(R).
Remainsto show that, for every i € N suchthat i(p—1) < randall b € W (5), there
isan z € N such that the element v/(z) — bry;(#?~/p), modulo pB*(R), belongs
to the W (S)-submodule generated by ,, (t?~1/p), n > i.

First, let us prove the following

LEMMA 5.2. Let be S and write ¢’ also for the reduction modp of ¢' € W (S).
Let £ > O be an integer. Then, for » big enough, the polynomial P(X) = X? —

¢FX — b, € R/p|X], hasasolutionin R&/p.
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Proof. Lift ¢/, to V and b, to R. Consider the R-algebra A = R[X]/(X? —
¢ X — by). Itisafinite, flat algebrawith the discriminant §(A[1/p]/R[1/p]) =
(XP~1 — g% /p). Easy computations all show that the element (¢, /p)? — (b;,/
(p—1))* L belongsto d(A[1/p]/R[1/p]). Now, the reader will note[9, 5.1.2] that,
if n > 1, thenv(q),) = 1/})”’1 if p# 2andv(q,) = 1/p" 2 if p = 2, where v
is the p-adic valuation on V' normalized by v(p) = 1. In particular, ¢/, # 0. Also,
v(p/qF) = 1—k/p"Lifp £ 2andv(p/q,F) = 1— k/p"2if p = 2. Thus, for n
big enough, v(p/q,F) > 0. Hence 1 — (b, /(p — 1))”~*(p/q,¥)? isaunitin R and,
since q;fp is aunit up to p-powers, we get that A[1/p] is &tale over ﬁ[l/p]. The
lemma follows now from the definition of R. |

Consider now the composition

S/ =+ S/(0) = R/p.

where the last map sends x to zg. Since Frobenius is surjective on ﬁ/p, this
is an isomorphism. Take the polynomia P(Y) = Y? — ¢*Y —be S[Y], k =
r — (p — 1)i. By the above lemma and the isomorphism there are y, s € S such that
P(y) = (p)?" s for somebign > 2. Set = [y]q *v;(t*~1/p). Compute

v(@) — byi(t"/p)
=p "d(z) —z — by /p)
=p ()" PP (/) — lylg (" /p) — byi(# Y/ p)
= [y")g"p vt /p) — [ylg Fvi (¢ /p) — bri(#/p).
Fontaine [9,5.2.5] computed that, in thg case p # 2, q/p can be written as
1+ uy1(t?~1/p) for some unit u € B (R) of the form u = ¥,,50a,7,(#?~1/p)
for a, € W (k) converging p-adically to 0. The case p = 2 is simpler: (¢/p —

e pB+(R). Thus, if we set u1 equal to u or O depending on the characteristic,
we get

v(z) = byi(t"~*/p)
= (¢"[y) + b+ ()" DL+ (P /p) *3i (7~ /p)
~[ylg "y (#~Y/p) — byi(t*"1/p) modpB*(R)
= {1+ wmn (@ /p)* = Lo+ ¢ ) /p)
@) [s](L+ waya (7 /p)) oy (7~ /)
= {(1 4wt Yp)* — 13+ ¢ F)vi (Y /p)
+p™" e ([(0)]) [8](X + waya (07 /p) (8 /p),
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which, modulopB™*(R), belongstothe W (S)-submodule generated by v;(tP~1/p),
j > 14, aswanted. O

Remark 3. Since we are dealing in this paper only with the integral theory, that
is, our r is never greater than p — 2, the above proposition states more than we will
need here. Proof of the proposition in the case r < p — 2 simplifies considerably
and can already befoundin [5].

COROLLARY 5.1. Fixn > 0and0 < r < p— 1. Let R besmall andp > 2. There
exists an M such that for all m > M, there is an exact sequence of Gal(R/R)-
modules

p o1
_—

0—Z/p"t\"Y 5 F'BY(R),.m BT (R)pm—0,

where B+ (R)nm = BH(R)/(p"B*(R) + J™).

Proof. We have ¢(£["1) = pl"l([(p)] P! (p—1)! +[(=1)]P)". For p # 2, thisimme-
diately gives that, for m big enough, ¢(JI™) c p"t"B*(R). Since F* BT (R) is
equal to the closure of JI'] itself, the exactness of the above sequence follows from
the last proposition. O

6. Etale cohomology and Galois cohomology

Let V' be a complete discrete valuation ring of mixed characteristic (0, p) with a
perfect residuefield £ and afraction field K. Wewill now introduce, after Faltings
[5], two auxiliary topoi, topoi of ‘sheaves of local systems'. Let X be a smooth,
separated scheme of finite type over V' or astrict henselization of such.

Let X be the following category. An object of X is a collection L = ((Ly),
(ruqw,)) of locally constant étale sheaves Ly on Uk, for every étale open U of
X and, for every pair U — Uy, a morphism ry,1,: Ly, | (U1) k — Ly, such that
TULUsTULU, = T, @d rpp = 1d. One also requires that for every tranquated
étale hypercovering Uy XUy — U, Ly is the maximal locally constant subsheaf
of ker(jo« Ly, = j1+ Ly, ), Where j;: (U;) k — U Morphism f: L — M in X isa
collection of morphisms of locally constant sheaves fy: Ly — My compatible
with TULU;-

The category X is a topos. We will also denote by X the equivalent topos,
where al U’s are assumed to be affine. _

The following notation will be useful. A presheaf on X is a collection L =
((Ly), (royw,)) satisfying the usual compatibilities. Every presheaf L has an asso-
ciated sheaf. First, define

(LM)v = injlimker(jo. Ly = g1 L)),

where the limit is over tranquated étale hypercoverings U = (U1 XUy —U),
ker refers to the maximal locally constant subsheaf of the sheaf kernel, and
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Jii(Ui)k = (U)g. It is a separated preasheaf (cf., [1]). We get a sheaf by
taking L;;*. This construction is functorial and has the expected adjointness
property.

~ For a map of schemes f:X —Y, we get an associated map of topoi
f: X —=Y: the pushforward of I associatesto U — Y the local system fy. Ly,
where fi: B((Ux)x D B(Uk), and, for a noetherian K-scheme Z, B(Z) is the
topos of locally constant sheaveson Z. The pullback is the sheaf associated to the
presheaf (f*L)y = injlim f% Lz, wherethelimit is over the diagrams

v—1rz gz
x—1 vy,

Thereisacanonical map p from the étale toposof X i to X . First, one equippes
every étale and irreducible U — X with a geometric generic point, and every map
U1 — U, between two such étales with a path between the chosen points. Then
the inverse image of L by p is the direct limit over all tranquated hypercoverings
U1XUp— X of ker(jo« Ly, =41 Ly, ); the direct image of F associates to U
the locally constant subsheaf corresponding to the global sections of 7 on the
universal covering of Uy . While computing cohomology of X itisoften convenient
to use the left exact functor +/ from X to the étale topos of X, sending L to
the sheaf U +— Ly (Ug). Since HO(X,L) = Lx(Xg) = H°(X,L), we have
H*(X,L) = H*(X, RyL).

We also have a projection 7: X — B(X k). The inverse image 7* L associates
to j: U — X, thelocal system j} L, the direct image = L isequal to L x .

One checks [5] that, for alocally constant sheaf L on X, there is an isomor-
phism H*(X, p.L) ~ H* (X, L): it suffices to show that R*p, L = Ofor k£ > 0.
But (R*p, L)y = RFw, Ly, ,wherew: U — B(Ug ). Henceitistrivial inthe case
U isa K (m,1) space. Since such U’s form a base for the topology of X, we are
done.

Faltings also defines the geometric cohomology H* (X, L) := (R*7.L)x,
where 7: X — B(K). Since B(K) is equivalent to the étale topos of Spec(K ), we
have the following commutative diagram

Xy P X

K

Hence, by the above, we get an isomorphism H*(X z, p.L) ~ H*(X, L), for
any locally constant sheaf . on X .

https://doi.org/10.1023/A:1000100917913 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000100917913

COHOMOLOGY OF CRYSTALLINELOCAL SYSTEMS 81

The cohomology H*(X,L) (resp. H*(Xg, L)) can be computed as the limit
over the hypercoverings U. of X of the generalized Cech complexes of B(Uk)-
cohomology (resp. B(U)-cohomology) complexes of L. Also the construction
of X can be done with the Zariski topology on X instead of the étale topology.

For X as before we also have a category X'. An object of X' is a collection
L = ((Lv), (rv,u,)) of locally constant étale sheaves Ly on Spec( Ak ), for every
U = Spf(A) —an étale open of X with A —a p-adically separated, complete V-
agebra, and, for every pair U, — Uy = Spf(.A2) — Spf(A1), amorphism 7y, ,:
ft0,Luy = Lu,, where ff; . istheinduced map Spec(Az, k) — Spec(Ay, k) sat-
isfying the usual compatibilities. Further the definition is analogous to that of X.
In particular, we equip every irreducible A as abovewith a K (.A)-point, and every
map A — A’ between two such algebras with amap between K (.A) and K (A’).

The category X is a topos. As before, to an affine morphism of schemes
f:X =Y, we can associate a map of topoi f: X =Y, and, for an affine scheme
X, we can definea projection 7: X — B(A(X) k). Also, thereisamapz: X — X.
The inverse image 7* L is the sheaf associated to the presheaf sending Spf5 — X
to the direct limit over the diagrams

Spf B —L+ SpecA

o

X X

of the local systems f. L 4, where fr: Spec(Bk) — Spec(Ak ). The direct image
7. L therefore associates to Spec(A) — X the induced local system under the map

Spec( A ) — Spec(Ax).

PROPOSITION 6.1. For any proper, smooth scheme X over V' and any sheaf L

on X, the inverse image induces an isomorphism H*(X',7*L) < H*(X,L). In

particular, for alocal system L on X ., H*(X x, L) can be computed on X'
Proof. We can write

H*(X,7*L) ~ H*(X, R1,*L) ~ H*(X, Ry R7,7*L).
Similarly, H*(X, L) = H*(X, Ry L). It suffices thus to study the composition
* / * D g * S —
H*(X,RyL) . H*(X, RyL) - H*(X, Ry Ri,7*L).

Here Ry L is the complex of sheaves associated to the complex of presheaves
RyYL o ¢, where ¢ maps U to the union of these connected components whose
special fiber is nontrivial. We will prove that both f and g areisomorphisms(f by
agloba argument, g — by alocal one).
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First, consider the map f. It fitsinto the sequence of morphisms
H*(X,RyL) L H*(X, RpL) —5 H*(X,i.i* RyL),

withi: X, — X . By proper base change theorem, the composition ¢ f isan isomor-
phism. Also, the map ¢ is anisomorphism. In fact, the morphism Ry L — i,i* Ry L
is an isomorphism, as one can easily check looking at stalks. Thus f itself is an
isomorphism.

Consider now the map g. We claim that the morphism Ry L — Ry Ri,7* L is
aquasi isomorphism. Take a geometric point z over the special fiber. We have to
show that the map

injlimHY(U, L) —injlimH9(U,7* L),

where the limit is over affine connected étale neighborhoods of z in X, is an
isomorphism. Consider the commutative diagram

~ 7 ~

u U

‘5(1 ‘ﬁU
Spf(O% 7)==+ Spec(Ox )™,
and the induced commutative diagram of maps

injlimHY(U, L) = inj limHY(U,7° L)

inj lim 3, inj limpy,

H(Spec(Ox o). 5" L) —= H'(SpH(O%2)"p 1°L) = H'(SpH(O%,2), 75" L),
where p: Spec(Ox z)”— X, p: Spf(O% ;)" — X. By Elkik’s theorem [4, Theo-
rem 5] 7 is an isomorphism (both cohomologies being isomorphic to the corres-
ponding Galois group cohomologies). Remains to show that both inj Iimf?; and
inj limpy; are isomorphisms. The arguments being similar, we present here only
the onefor inj Iimﬁ}. We claim that for a sheaf F on X, there is an isomorphism

inj lim 29U, F) — HY(Spf(OX =)D F).

Since both sides define cohomological functors it suffices to check their behaving
for ¢ = Oandfor injectives. Wethus haveinj lim HO(U/, F) = injlim F (A(U) i ).
On the other hand

HO(Spf(O% )"0 F)

HO(Spec(0% 5(1/p)), (5 Floy )
= H°(Spec(O% z[1/p)), inj lim £, Fy)
= HO(B(O% z[1/p)), inj lim f5, Fy),
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where f,: Spec(O% z[1/p]) — Spec(AU) k).
We claim now that there is an equivalence of topoi

B(O% ;[1/p]) = projlimB(AU) k).
Indeed, consider the following commutative diagram

proj lim B(AWU) k) 0NN proj lim B(A(U)%)

B(p) B(p")

B(OA 4[1/p]) —2 . B(Ox 2[1/p)),

where h denotesthe henselization at p. In view of the fact that all theringsin sight
are noetherian, we can again use Elkik’s theorem to conclude that both B(7) and
B(iz) are equivalences. Also, since Ox z x = injlim A(U)"%, the sameis true of
B(p") and finally of B(p).

The aboveyields

HO(B(O% z[1/p)), injlim £, Fu)
~inlimHY(B(AWU) k), Fu) = injlim F (AU) k)

as wanted. N N
Now, let I be an injective sheaf on X and ¢ > 0. Clearly, inj lim H4(U, I) = 0.
On the other hand, we have

*

H(Spf(O% z)p 1)

HYB(O% 1(1/p)). (" Doy, )

HY(B(OY z[1/p]),inj lim f; 1)
~ injlim HY(B(AU) k), 1)) = 0

1

¢

aswell. O

There is also the geometric cohomology H* (X, L) := (R*#.L) %, where 7:
X — Spec(K), © = 7. The above then yields, for a proper X, an isomorphism
H*(Xg,i*L) & H*(Xg, L).

Since the cohomology H* (2? , L) can be computed as the limit over the hyper-
coverings U. of X of the generalized Cech complexes of B(.A(1/) x)-cohomology
complexes of L;,, the above proposition asserts that, in the case X is proper, in
computing H *(X , L) we can use, instead of the B(Ug )-group cohomology, the
‘completed’ B(A(U) x)-group cohomology. Same for the geometric cohomology
H*(Xg, L).

As before we can use the Zariski topology on X instead of the étale topology.
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PROPOSITION 6.2. Let X be a smooth, separated scheme over V. Let L be a
local systemon X i . Then thereis an isomorphism H*(Xzg, L) = H*(Xg, L).

Proof. The functor +/ reducesthe question to alocal one, namely, that, for every
point z € X, the map inj lim H* (Uza, L) — inj lim H*(Ug, L), where the limit is
over affine, Zariski neighborhoodsof x, isan isomorphism. Wewill provethat both
limits are isomorphic (viathe inverse images of the projections 7) to

inj lim H* (B(A@U)[1/p]), ) ~ H*(B(O% ,[1/p]), L).

For the Zariski limit, since the ring O)A(,x is local, one can argue as in the proof
of Proposition 6.1. For the étale one, note that the inverse image z* induces an
isomorphisminj lim H* (Ug, L) & injlim H*(U%, L). Indeed, the arguments from
the proof of Proposition 6.1 will work as soon as we know that a ‘proper’ base
change theorem holds for U”. But this was proved by Gabber in [10]. Now,
since, by Elkik, H*(B(A(U)"1/p]),L) = H*(B(AU)[1/p]), L), and aso, by
a K (m,1) argument, H*(U}, L) =% H*(U"[1/p], L), it suffices to show that the
inverseimageof the projectionwinducesan isomorphismH*(B((’)Q(’z[l/p]), L)y=
H*(O% [1/p], L). But thering O% _ can be represented as a direct limit of rings
of the sameform as Ox . Itisthusa K (rr, 1) space and we are done. O

7. Cohomology supported on the special fiber

Assume now that V' is a complete, absolutely unramified discrete valuation ring
of mixed characteristic (0, p) with a perfect residue field & and afraction field K.
Let X be a smooth, separated V -scheme. We choose, once and for al, for every
irreducible, étale Spf(.A4)/ X, a K(.A)-point, and for every map A — A’ between
two such étalesamap between K (A) and K (.A’). Everything below isindependent
of this choice.

Consider a set of data (U;, ¢pr, Wy, 4;), i€ L, I C L, where U; = Spec(R;) is
assumedto besmall. Forevery I C L, we havethefollowing commutative diagram

~ —

Ur De(W(S1))
| |
U |4

—

Take M € MFY, ;;(X). We can evaluate M on B} := BT (R;) = D¢(W(Sr))
Choose a retraction h: R; — B} (such a retraction always exists, U; /p" being
V/p"-projective). Set M Bf = h*M 7 Filter it by the saturation of the filtration
defined by h*F* Mg , i.e, F'Mpy = Z}le[?;]rh F kaz,’ where J+ is the
PD ideal of B;.
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Asin [13] one checks that Griffiths transversality yields that these definitions
are, up to canonical isomorphism, independent of the choice of the retraction h.
Concerning the Frobenius, from the structural maps ¢y: M  ®Ror Ri =

Mﬁz and the divided Frobenius (,75BI+/pZ F'Bf =B}, i<p-— 1 we can induce,
as we did before (Lemma 2.1), a canonical compatible family of maps ¢§3+:
I

F MB;F ®BI+¢BI+ B; _>MB;~Z < p—1+a. Again, up to canonical isomorphism,
this does not depend on h and the Frobeniuslift on Ry.

LEMMA 7.1. If
0—-L—>M—>N—=0

isexact in M}"[Z,b} (X,,), then
O_)EB}% _)MB}ZL _)NB}% —0

isexact in the filtered sense. R
Proof. First, we claim that for any retraction h: R; ;, — B}in the sequence

0— h*‘ch,n — h’*MRI,n — h’*NRI,n —0

is exact. Suffices to prove that Tor 7 (Ng, ,, Bf,,) = 0. Since, locally, N ~

@Ry, this reduces us to proving that Tor: "~ (R; x, Bf,,) = 0. But, B, being
flat V,,-module, we get the exact sequence

0— Rry ®r, .1 B, — Rrn ®r, .0 Bf,, = Rk ®r, .1 Bf,, =0,

where k' = n — k. In particular, Tor ™= (R; 4, B},) = 0 aswanted.
Next, we will need the fact that, for any & there is an exact sequence

0~ JM W FLy,, — T8 WF Mp,, —>J[ h*FW
I,n I.n

Since, by the above (and the fact that, locally, Lg, , ~ grpLg, ), the injection
is clear, it suffices to show that Jgﬂ W F'Mg,, ~ Jl[f;}r ®p+ h*FiMR,n,

I,n >
or, that Tory "'~ (F' Mg, ., B}, /J[k] ) = 0. By devissage on B} / B+ :

1]
reducethequestlontothecomputatlonof Torlan(FZMR,n, B+ /J b+ ) Since

B+ /Jéfl o~ Rln isaflat Ry ,-module, the last group is clearly O. The rest of
the argument follows the proof of Lemma 2.3. |
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Fix now n. Consider theresolutionof Oy;, /v, by thelinearization of the de Rham

complex QW Vi

O—)OUI w/Va _>£(QWI n/Vn)

It is alocally free resolution, acyclic for the projection into the Zariski topos of
Urn.
Toke M € MFyy ) (X») andfix I C L. We get aresolution

O—> MUI,n/Vn - MUI,n/Vn ®OU],n/Vn E(QW[,TL/VTL)

The complex L‘,(QW Vi ) isequipped with a canonical filtration. If we induce the
tensor product filtration on Mu, Ve ®0u, /v L(Q'W o Va ), the above turns out

to be a resolution in the filtered sense as well. Evaluate it on Bf,.- L(, 1 /Vi)
being flat we get afiltered resolution

0— MB}ﬁn - MB}ﬁn ®B}’:n E(Q'VVI,TL/VTL)B?—,”'
To study the Frobenius note that

L(QWI,n/Vn)B;':n = B;:TL h®RI,n E(QWI,TL/Vn)UI,TL

~

~ B}, 0i®1;, Dw, v (V) ®1p v Qv

where . is, say, the reduction mod p” of aretraction h: R; — B; and i is the map
.U — Wj.

A well-known formula[2, p. 275] gives afiltered isomorphism Bj’n hi 1y,
Dy, v (1) = D (Bf,, xv, Trn), where DAI (Bf,, xv, Trn) isthe PD—
enveloping algebra df U, in Spec(B m) Xy, Wi, compatible with the PD-
structure on J B + pB;r’n. Thisyields afiltered resolution

_ + .
O_> MB?—,n - MB?—,n ®B;’:n D/él,n (Bl,n XVn TI’n) ®TI*"/V” QWI,TL/VTL.

Consider now D; = projlim,, DA (Bfn xv, Trn). It is p-torsion free V-
algebra. Take M € M}"[V 5 (X). It can be evaluated on D: choose a retraction

h: Ry — Dy and set Mp, = h*MA Define the filtration as the saturation of the
filtration coming from MA and mduce in the usual way, a compatible family of

maps ¢, 1 F'Mp, ®p, z/nD[ —Mp,, i < p— 1+ a, from the corresponding
maps on M ~ and D;. Here ¢or: Dy — DI is the Frobenius coming from W; and
I

B} . Up to canonical isomorphism this definition does not depend on the choice of
h and the Frobenius ifts.
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LEMMA 7.2. If
0—-L—>M—>N—=0

isexact in M}"[Z,b} (X,), then
0—Lp,, +Mp,, —=Np,,—0

isexact in the filtered sense.
Proof Note that locally DIn /DIn is a direct sum of free modules over

B+ /J};i'l,o i < k-1 Since Jil /Jl+l = Ry ., thisyieldsthat DY)

DE }z isaflat Ry ,-module and the Iemmafollowsas inthe caseof B} . 0

Think now about M 5, ascoming from Mp, . Equipit withtheintegrable 77 ;,-
connection induced from the one on M Dy and compatible with the canonical

T} n-connection on Dy ,,. Note also that the natural isomorphism M B, ® B}, X

Drn = Mp, iscompatiblewith the Frobenius, identifiesthefi ltration on M D,
with the tensor product filtration and yields an isomorphism of filtered, FrobeniUs
equivariant resolutions

0 g MBI*” ” MBI*” ®B;rn Din @1y, QWI,R/Vn

| |

00— MB}F MDI,n 1y, QWl,n/Vn'

Everything aboveis equipped with an action of the fundamental group of RL K
and it is easy to check that the Frobenius, filtration and the resolutions behave
well with respect to this action (use compatibility of the transition maps « with
the change of the retraction). An important thing to note is that though the Galois
action on M B}, involves connection, the Galois action on M comes only
from the actlon on Dy ,, (themap Dy, — Dy, bei ng Galois equwarlant)

Define the following complex of sheaveson B(R[, K)

Q(MB?’) = MDI,n ®T1,n QW]’n/Vn

It isindependent of the choice of n such that p"" M = 0.
Choose now a number m > p — 1 such that ¢(Jl[?"ﬂ) c ptr-UB}. Set
I

B+

I,nm —

- BIR/JL";} . Since, by the choiceof m, fori < p — 1+ aq,
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F'M,yt _FiMB;Cn/Jg?nMan and gy |J }MB;n:O,

I,n,m B

all of the above goes through for M Bf, in amanner compatible with M BY

Assumenow that X issmooth and properoverV Leta, bbesuchthat —a < p—1
andb—a < p— 2. Fix apositiveinteger n. Take M € M}"[a,b}( n)- Wewill now
define a morphism from S(M)" to a complex computing the étale cohomology
groups H*(Xg,L(M)) of the crystalline local system L (M) associated to M
by Faltings [5]. Recall that the local system L (M) on X is the unique local
system inducing a compatible family of local systemsL (M 1%-) on Spec(f%i[l/p]),

where L (Mg ) = Hom(M 7, B*(R;){a}(a) ® Q,/Z,)*. Here, the homo-
morphisms are supposed to be B+ ( R, )-linear, respecting the filtrations and Frobe-
niuses. The symbols {a}, (a) are the M F-twist and the Tate-twist respectively.

First, fix Q, a sufficiently big algebraically closed field of characteristic 0. In
particular, we requirethat, for all étale Spf(.4) /X, the Q-points of Spec(. A ) form
a conservative family of the associated étale topos. Also, for any étale Spf(.A)
over X and a sheaf F on B(Ag), denote by G"(F) the Godement resolution of
F. Itisacomplex of locally constant sheaves on Spec(A ), acyclic for B(Axk)-
cohomol ogy.

Next, fix a sufficiently big number m. For each J C L, we have a sequence of
morphisms between complexes of sheaveson B(R k).

QM) — Q(MBj,n)' - G(Q(MBjn))

S OMge )L My )

J,n,m J,n,m

— G (L(My) ®z, an,m{a}(a)).

By the above, the morphism (1) is a quasi isomorphism. This sequence yields a
morphism

S(M.) = Cone(G' (L(My) @z, FUUBY, . (a)(Ryk)

a(z)il —~
—— @'(LMy) ®z, B}, ,.(a) (k) [-1],
which is functorial with respect to the change of J (note that the restriction maps
are independent of the choice of the path between the base points). R
To proceed, define the sheaf Bﬁ;m on the topos A" by associating to Spf(R),
for Spec(R) — X small, affine and étale, the locally constant sheaf on Spec(Rx)

defined by the Galois module B+ (R),., = B*(R)/(p"B*(R) + J][3+](R)) For
any R as above, we can use the fundamental exact sequence (of locally constant

sheaveson Spec(Ry ))
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0= L(M)7—L(M)7 8z, FC9 BT (R)nm(a)
— 0 L(M); 2, BY (R)pm(a) =0
to construct a quasi isomorphism
G (L(M)3)(Ri)
— Cone(G' (L (M) ®z, FTYB (a) ) (Ri)
2O G (LMY 5 ®z, Bl () 2) (R))[=1).

Denote by U. — X the chosen hypercovering of X. We find the desired mor-
phism [ into the étale cohomology as the composition

S(M) — Cone(G' (L (My) ®z, FCIB, (a)u) (AU) k)
2O G (L(Mu) @z, By (@)) (AU &) [-1]

~ Cone(G" (L (M)y ®z, F©"V B}, (a)u) (AU) k)
PO G LMy ©z, By (@) (AU &) [~1]

&G (LM)u)(AU) k)
injlim

- V. € HR(X) G'(L (M)V)(-A(V)K)

Here HR(X) denotes the homotopy category of affine hypercoverings of X. By
Lemmas 7.1 and 7.2, [ definesanatural transformation of cohomology theories

U HG (X, ) = HY (X, L ().

Everything above is independent of choices.
We will now treat products.

PROPOSITION 7.1. If M € M]—"[Vayb](X), N e M]—"[Zd}(X), then there exists a
canonical product

U: H?

Pap(X M) @ HE (X, N) = HEL L (X, M@ N)

which is anticommutative and associative. Moreover, it commutes with the mor-
phismi: H7(X,) = H*(Xk,L()).

Proof. Consider a set of data (U;, o7, Wi, ), i€ L, I C L, where U;’s are
assumedto besmall. For agivenJ C L, wecanuse[12, Prop. 3.1] and thede Rham
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product (M) @ QN;) = Q((M ® N) ;) to define a homotopic family of
maps of complexes

UZS(MJ)' QSWNy) =SMsN;), acZ,

(#1,72) | J(y1,92) = (22U y1, 22U (2¢®(2) + (1 — )ya)

«

+ (—1)%9%1((1 — ) ¢%(z1) + az1) U o).

Moreover, the maps Ug, U are associative and U, Uy, anticommute.
Everything behaving well with respect to the change of the index set J, we
can combine, by [12, Prop. 3.1], the above family and Cech products to define
a homotopic family of maps of complexes U,: S(M) @ S(N) - S(M @ N,
a€Z,. The maps Up, Uz are associative and U, U1, anticommute modulo a
homotopic to the identity transposition operator. This induces a cup product

U HY (X, M) @ HY (X, N) = HE (X, M@ N).

We can now follow step by step the definition of themap!, usethe de Rham, Cech
and Godement products, and [12, Prop. 3.1] to induce, at every step, compatible
families of homotopic pairings. This will show compatibility of the map [ with
products. O

For M € MF},
X as

SH;ya,b(X? M)

](X ), define the cohomology with support on the special fiber

‘= H*(Cone(S(M) - VinglFi:&) G (LM)V)(AV)k))[-1).

From this definition we get the long exact sequence
= H Xk, L(M)) = sH} (X, M)
= Hj (X, M) =5 HI(X e, L(M)) .

Aswe will seein the next section, for sufficiently big p, this long exact sequence
splitsinto short exact sequences.

Remark4. Notethat the cohomology groups H 7 , (X, M) and s H , (X, M),
and the map [ do not really depend on the a and b chosen.

PROPOSITION 7.2. If M € MF}, ,(X), then

sHj o p(X, M) & H Y (X, L(M)) for i>—a+dimX +2
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Proof. It follows from thefact that H , ,(X, M) = 0fori > —a+dimX +1
(Proposition 3.1). O

8. Duality
Assume that X is proper and smooth over V, of pure relative dimension d. Set
Gx = Ga(K/K) and B*(V),, = BT (V) /Jgﬁ(v).

LEMMA 8.1. For any M € MF}, ,(X) annihilated by p", b —a < p - 2,
—a < p — 1, and sufficiently big m, the morphism

H'(Xg,L(M)), = H (X, L(M) ®z, FCY B (a))

isan injection.
Proof. We have the following commutative diagram

H'(Xg,L(M)) —— H'(Xg,L(M) ®z, FCYB (a))

f |

0 H'(X, L(M)) —= H'(Xg,L(M)) ®z, FTYVBT(V)m(a).

The left vertical morphism is an isomorphism by Proposition 6.1. The right
one is an amost isomorphism by [5, Th. 3.3], i.e, its kernel and cokernel are
killed by a power of mp, where mp is the preimage of the maximal ideal of
VN viathe map BT (V) — V/. Itis, in fact, an injection: it suffices to check
that there is no elements z in H'(Xz,L (M)) ®z, FEYBH(V),,(a) annihilat-
ed by mk, for some k, or, since H*(X;,L(M)) is finitely generated, that that
is the case for FCO BT (V) /p! = (J5iy/Tge)/p? for any j. Filtering
(J 1[31“(}\/) /J I[B"l](v)) /v’ with divided powers of -y, we reduce to showing that
if - € V and pz €p’V for every ¢, then z € p/ V', which is clear. O

Hence, the short exact sequence of sheaves on X, for n such that p"L (M) = 0,
for sufficiently bigm, and —a < p — 1,

0—L(M)—=L(M)®z, FC9B;, (a)
2L L(M) ®2, B (@) 0,
yields the short exact sequences of G i -modules
0— H'(Xg,L(M)) = H' (X, L(M) ®z, FCY B}, (a))

2L HY(Xg,L(M) @z, B),,(a)) = 0.
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Recall that, by Faltings [5], for every M € MFF (X), b—a+d <p—2,
the crystalline cohomology groups H(X/V, M) are in MFap+q (V). More-
over [5,5.3], the crystalline G i-representation L (He, (X/V, M)) associated to
Hg (X /V, M) iscanonically isomorphicto H* (X z, L (M)). In particular, we can
apply to H,(X/V, M) theresults of [3] and [12].

LEMMA 8.2. For M € M}"[Va,b}(X), b—a+d<p—2 —a<p-1,thereisa
long exact sequence

- H},a,b(X? M) - FoHér(X/Va M)

_ 40 . .
S HE(X)V, M) = HEL (X, M) -

Proof. From the definition of S(M)" we get the long exact sequence

— H o (X, M) = Hy(X/V, FO(M))

1_¢0 i .
- Hcr(X/VaM) — H}jtb(XaM) 7,

and we know, from [5], that the morphism HZ (X/V, FO(M)) — HL.(X/V, M) is
aninjection, i.e,, that H:.(X/V, FO(M)) = FOHL(X/V, M). 0

. _ 40 .
Letc = max(b+d, 0). Thecomplex FOHE (X/V, M) ~—% Hi (X/V, M) com-

putes the cohomology groups H7 , .(V, HE(X/V, M)). Hence, the above lemma
yields the short exact sequences

0— Hf, (V,Hy H(X/V,M)) = H} , (X, M)
— HY, (V. H,(X/V,M)) 0.

PROPOSITION 8.1. For M € MF}; (X),b—a+d<p—2,and—a<p -2,
thereis a commutative diagram

HY, (V, Hy(X/V,M)) —~ HG g, H'(Xg,L(M)))

H'(Xg,L(M)).

H]i”,a,b (X7 M)

Proof. For n such that p” M = 0 and sufficiently big m, we have the following
commutative diagram
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FPHY(X/V, M) H'(X,LM)® FCYB} ,.(a) —

|

Hj’,a,b(X: M)

— H'(Xg,LM) @ FC9B}, (a)) «—H' (X, L(M)) @ FCYBY (V) (a)

H' (Xz,L(M)) H'(Xg,L(M)).

Recall [12] that the map I: H}(V, Hy (X/V, M)) — HY(Gk, H' (X g, L(M))) is
induced from the morphism

HE(X/V,M) @y B (V)i (a) = H'(Xg,L(M)) ®z, B* (V) (a)
fitting into the commutative diagram
H(X/V, M) @vB* (V) (a) H'(Xg,L(M) ®z,B; . (a))

N\ /

H'(Xg,L(M) @z, BY(V)m(a)

The statement of the proposition follows now easily from the above commutative
diagram and the injectivity of the map

H'(Xg,L(M)) @z, FCV BV ) (a)

- H{(Xg,L(M) @2, FC9B} (a)). 0

COROLLARY 8.1 Let M e MFY, (X),b—a+d<p—2and—a<p—2If
the residuefield of V' isfinite, then the Hochschild—Serre spectral sequence

H'(Gg, H (X, L(M))) = H™ (X, L(M))
degenerates. . .
Proof. Here since H}’(V,ng(X/V,M)) > HYGg,H (Xgz,L(M))) and
H}(X, M) = HY(V, H;(X/V, M)), the proposition gives that
H (X, M) = HY (G, H (X g,L(M))).

By Poincaréduality, H?(G i, H (X g, L (M))) = H"+?(X ¢, M). Thegroup Gk
having cohomological dimension 2 we are done. O
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PROPOSITION 8.2. For M€ MF}, (X),b—a+d<p—2and-a<p-2
the morphismi: H}(X, M) — H'(Xk,L(M))) isaninjection.

Proof. Let z € Hy(X, M) mapto 0in H'(X g, L (M)). First, notethat, by the
last proposition, theimage of = in FOHE (X/V, M) istrivia. Hence z comesfrom
HiY(X/V, M). Taken such that p” M = 0 and sufficiently big m, and consider
the following commutative diagram

Hj(X, M)

Hg™'(X/V, M) H' 7YX, L(M) ® B ,.(a)) =

HYGx,H™ "X, L(M)))

|

—— H'7 (X, LM) ® B . (a) 9%

(H'™H(Xg, LM)) ® B (V)m(a) 7"

e B (P, L (M) @ FOVB 1 (0) 9% o (7 (X, L(M)) 0 FCD B (V) (@) 5.

A diagram-chase shows that the image of any lifting of = to Hi1(X/V, M) in
HYG g, H (X, L(M))) iszero. Since the map
LHHV, HE Y (X/V, M) = H (G x, H (XK, L(M)))

mapping crystalline extensions to unrestricted extensions is injective, z itself is
zero. O

Assume now that the residue field of V' is finite, and for M € M}"[Va,b} (X) let
MP € MFY, 41 4 4 1(X) denote M*{—d — 1}, where M* denotes the

MF-dual [5] (assuming, of course, that the width of the crystal does not exceed
the admissible range).

THEOREM 8.1 Let —(p—2) < a < 0,b—a+d < p—3.Forany M € MFp,  (X)
annihilated by p”, thereis a perfect pairing

sHjif,a,b(Xa M) &® H]%:ijbsrdiflyfafdfl(X, MD)
SHJ%:iat%J—d—l,—d—l(Xa Ox /[p™{—d —1})

tr n
— Z/p".
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Proof. Concerning the trace map, we have
GH2 3y g1 a-1(X,Ox /p"{—d — 1})
& H* (X, Z/p"(d + 1)) & HA(G, H* (X, Z/p"(d + 1))

L H2(G,Z /(L) = Z/pn

Here, the first isomorphism now follows, since H}(X, Ox /p"{—d —1}) = Ofor
1 > 2d + 1. This, in turn, holds because we have the long exact sequence

— H{(X,0x [p"{—d — 1}) = FOHL(X/V, Ox [p"{—d — 1})
— H,(X/V, Ox [p"{—d — 1}) — HIY(X, Ox [p"{~d — 1})

and H:.(X/V,Ox /p"{—d — 1}) = Ofor i > 2d. We also have the commutative
diagram

Hj(X, M) ® Hf 7' (X, M)

HY (X, 0x [p"{~d — 1}) =0
Q1

H (Xre, L(M)) ® ¥ 27 (X, L(MP)) —— B**(Xx, Z/p"(d + 1)),

which shows that H;(X, M) and H7*+2~"(X, MP) annihilate each other. Since
themorphismi: Hf (X, M) — H' (X, L (M)) isaninjection, this diagram and
the products on étale conomology and on f-cohomology induce a product

SH]i‘ab(X?M) HZdjg—dl—l —a—d—l(X’MD)
H%Jr—?;;—d—l _a-1(X, Ox /p*{—d — 1}).
We have a complex
i ! -
0— HiH (X, M) =+ H'} (X, L(M))
t —i *
s g23-i(X, MP) 50,
where the map ¢ is induced by the étale product. It is a surjection since via étale
dudlity (H" (X, L(M)) = H*F3 (X, L(MP))*) t = I p
It remains to prove that the Z,,-length of H'~1(X ¢, L (M)) isequal to the sum

of the Z,-lengths of H{ (X, M) and H;*"*~*(X, MP). | hope that the reader
will forgive somewhat abusive notation in the following computations.
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We have
H} (X, M) + HF 27 (X, MP)
= HJ(V, Hy(X/V, M) + H}(V, HE H(X/V, M)
+HQV, HE?7H(X )V, MP)) + HF(V, HE (X v, MP))
= H)(V, Hy(X/V, M) + H (G, H (X g, L(M)))
—H{(V, HH(X/V, M) + HJ(V, HE 27 (X V, MP))
+HF(V, Hy H(X/V, M)),

by crystalline duality [5] (HiY(X/V, M) = HZ+1=(X /v, MP)P) and the
isomorphism [12] Hl(V NPy = HY Gk, N)/HF(V,N), for N '€ MF; (V)
suchthats < 0,5 > Oand]—z<p 3.

For a Iocal system L on X i annihilated by p™ denote by L” the local system
Hom(L,Z/p"(d + 1)). We get

H} (X, M) + HZ* 27 (X, MP)

= HJ(V, Hy(X/V, M) + H (G, H (X g, L(M)))
+H(V, HE 7 (X/V, MP))

= H°Gk,H (X, L(M))) + HY(Gk, H (Xz,L(M)))
+HO(GK,H2d+27i(Xf(, L(M)D))

= H(Gg, H' (X, L(M))) + HY (G, H (X, L(M)))
+H*(Gg, H *(X g, L(M)))

= H'(Xk,L(M)),

by étale Poincaré duality, Galois duality and the degeneration of the Hochschild—
Serre spectral sequence. O

COROLLARY 8.2 Let —(p—2) < a < 0,b—a+d < p—3.For MEMF}, (X)),
sHj o p(X, M) =0 for i <—b+1
In particular, there are isomor phisms
HE N X[V, M) S HY (X, M) S HY (X, L(M))
for i < —b.
Proof. By the above theorem, we have that

SH}’a’b (X7 M) H]%djbg*dlfl 7a7d71(X7 MD)*
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But, by Proposition 3.1., H]%djb'if_ —a—g1(X,MP) = 0for2d +3—i >

s a
b+d+1+d+1 orfori < —b+ 1. Thelast statement of the corollary follows
from Proposition 3.2. i

Remark 5. The aboveresult for L (M) = Z/p"(b), 0 < b < p — 2, was obtained
earlier by Kurihara[11] as a consequence of his study of the relation between the
syntomic sheaves and the sheaves of p-adic vanishing cycles.
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