A FREE BOUNDARY PROBLEM IN AN ANNULUS

DAVID E. TEPPER

(Received 12 May 1981)

Communicated by E. Strzelecki

Abstract

If Ω is a ring region with starlike boundary components α and β , then we show for each $\lambda > 0$ there exists a ring region $\omega \subset \Omega$ with $\partial \omega = \alpha \cup \gamma$, $\alpha \cap \gamma = \emptyset$ such that there is a harmonic function V in ω satisfying (a) V(z) = 0 for $z \in \alpha$, (b) V(z) = 1 for $z \in \gamma$, (c) $| \operatorname{grad} V(z) | = \lambda$ for $z \in \gamma \cap \Omega$. Furthermore, we show when ω is not equal to Ω ; that is, there is a non-trivial solution.

1980 Mathematics subject classification (Amer. Math. Soc.): 31 A 05.

1. Introduction

Let \mathfrak{N} be an unbounded doubly connected region which has for a boundary a connected and compact set α that is not equal to single point. Suppose \mathcal{C} is the collection of all doubly connected regions $\omega \subset \mathfrak{N}$ which have α as one boundary component. This paper concerns a type of free boundary problem. Let us fix $\Omega \in \mathcal{C}$. Given $\lambda > 0$, do there exist bounded $\omega \in \mathcal{C}$ and a harmonic function V_{ω} such that $\omega \subset \Omega$ and V_{ω} satisfies

(a)
$$V_{\omega}(z) = 0$$
 for $z \in \alpha$,

(b)
$$V_{\omega}(z) = 1$$
 for $z \in \partial \omega - \alpha$,

(c) $|\operatorname{grad} V_{\omega}(z)| = \lambda$ for $z \in (\partial \omega - \alpha) \cap \Omega$.

For each $\omega \in \mathcal{C}$, the harmonic function V_{ω} satisfying (a) and (b) which exists by the Riemann-Dirichlet principle will be called the stream function of ω . Also, for $\omega \in \mathcal{C}$, $\partial \omega - \alpha$ will be called the free boundary of ω . In [4], Beurling studied the more general problem where (c) is replaced by:

(c') $|\operatorname{grad} V_{\omega}(z)| = Q(z)$ for $z \in (\partial \omega - \alpha) \cap \Omega$

[©] Copyright Australian Mathematical Society 1983

where Q is a positive and continuous function in Ω . Such a region $\omega \in \mathcal{C}$ whose stream function V_{ω} satisfies (a), (b) and (c) or (a), (b) and (c') will be called a solution (for the value λ or the function Q respectively). In particular, for a fairly general class of functions Q, Beurling proved the following theorem in [4].

THEOREM A. If $\Omega = \mathfrak{N}$ and there exists a bounded $\omega_1 \in \mathcal{C}$ with stream function V_1 such that for ζ on the free boundary of ω_1 we have

(1)
$$\limsup_{\substack{z \to \xi \\ z \in \omega}} \frac{|\operatorname{grad} V_1(z)|}{Q(z)} < 1.$$

then there exists a solution $\omega_0 \subset \omega_1$. If, in addition, there exists $\omega_2 \in \mathcal{C}$ with stream function V_2 such that $\omega_2 \subset \omega_1$ and for ζ on the free boundary of ω_2 we have

(2)
$$\liminf_{\substack{z \to \xi \\ z \in \omega}} \frac{|\operatorname{grad} V_2(z)|}{Q(z)} > 1,$$

then $\omega_2 \subset \omega_0 \subset \omega_1$.

We say α is starlike if for each $z \in \alpha$ we have $\mathfrak{N} \cap \{\rho z: 0 \le \rho \le 1\} = \emptyset$. For $\omega \in \mathcal{C}$, we say the free boundary of ω is starlike if for each $z \in \beta$, we have $\omega \cap \{\rho z: \rho \ge 1\} = \emptyset$. In [6] it is shown that if α is starlike and $\Omega = \mathfrak{N}$, then for each $\lambda > 0$, there exists a unique solution which has a starlike free boundary. Acker [1] generalized this result:

THEOREM B. If $\Omega = \mathfrak{D}$, α is starlike and $\rho Q(\rho z)$ is a non-decreasing function of ρ for each $z \in \mathfrak{D}$, then there exists a unique solution which has a starlike free boundary.

In Section 2, we prove that if both boundary components of Ω are starlike, then for each $\lambda > 0$ there exists a solution which has a starlike free boundary. We prove this by taking limits of solutions for a sequence of functions $\{Q_n\}_{n=1}^{\infty}$ where each Q_n satisfies Acker's monotonicity property. A similar idea is used in [3] to solve a different problem. We will require the following result whose proof is a simple consequence of Theorem A.

THEOREM C. If Q_1 and Q_2 are continuous and positive functions in \mathfrak{P} with $Q_1 \ge Q_2$ and if for $\mathfrak{Q} = \mathfrak{P}$ there are unique solutions for both Q_1 and Q_2 which we respectively denote ω_1 and ω_2 , then $\omega_1 \subset \omega_2$.

For the rest of this paper we let β be the free boundary of Ω and suppose both α and β are starlike. We observe that for any $\omega \in \mathcal{C}$, one of the following must hold:

(i) $(\partial \omega - \alpha) \cap \Omega = \emptyset$,

(ii) $(\partial \omega - \alpha) \cap \Omega$ is a proper subset of the free boundary of ω ,

(iii) $(\partial \omega - \alpha) \subset \Omega$.

If $\omega \in \mathcal{C}$ and satisfies (i), then $\omega = \Omega$ and (c) is vacuously true; hence, Ω is a trivial solution. It follows from Theorem A that if λ is sufficiently large, there will be a solution satisfying (iii). In Section 3, we show when there are non-trivial solutions which satisfy (ii).

2. Existence

THEOREM 1. For each $\lambda > 0$, there exists a solution ω which has a starlike free boundary.

PROOF. We first suppose α and β are analytic curves and remove this condition at the end of the proof. For the case where $\Omega = \mathfrak{N}$, see [6]. If $\Omega \neq \mathfrak{N}$, then we let w = f(z) be a schlicht mapping of Ω onto $\{w: |w| < R\}$ such that α corresponds to $\{w: |w| = 1\}$ and β corresponds to $\{w: |w| = R\}$. We note that if g(w) = z is the inverse of f, then

(3)
$$\frac{\partial \arg g(w)}{\partial \arg w} = \operatorname{Re} \frac{wg'(w)}{g(w)} > 0$$

for 1 < |w| < R. This implies that

(4)
$$\frac{\partial |f(z)|}{\partial |z|} > 0.$$

Let V_{Ω} be the stream function of Ω and

(5)
$$\mu = \sup_{z \in \beta} |\operatorname{grad} V_{\Omega}(z)|.$$

If $\mu < \lambda$, then the result follows from Theorem A. If $\mu = \lambda$, then replace λ by $\lambda - \varepsilon$, apply Theorem A and then let $\varepsilon \to 0$. Therefore we must consider the case where $\mu > \lambda$. For integers n > 1/(R - 1), we define:

(6)
$$q_n(z) = 1$$
, if $1 < |f(z)| \le R - 1/n$,
 $q_n(z) = 1/n(R - |f(z)|)$, if $R - 1/n \le |f(z)| \le R - \lambda/n\mu$,
 $q_n(z) = \mu/\lambda$, if $R - \lambda/n\mu \le |f(z)| < R$.

We then define

(7)
$$Q_n(z) = \lambda q_n(z), \quad \text{if } z \in \Omega, \\ Q_n(z) = \mu, \qquad \text{if } z \in \mathfrak{D} - \Omega.$$

From (4) it follows that Q_n satisfies the monotonicity property of Theorem B. Therefore, for n > 1/R - 1, there exists a unique solution for the function Q_n which we denote by ω^n . By (6), we have $|\operatorname{grad} V_{\Omega}(z)| < \mu \leq Q_n(z)$ which implies by Theorem A tht $\omega^n \subset \Omega$ for all n > 1/R - 1. Furthermore, since $Q_{n+1} \leq Q_n$, by Theorem C we see that $\omega = \bigcup_n \omega^n$ is a solution.

In the general case where α and β are not analytic curves, we solve the free boundary problem for the sequence of regions

$$\Omega_m = \{ z \in \Omega \colon 1/m < V_{\Omega}(z) < 1 - 1/m \}$$

and take the limit of the sequence of solutions as $m \to \infty$.

COROLLARY. Suppose that ω is the solution found in Theorem 1 and V_{ω} is the stream function of ω . If ζ belongs to the free boundary of ω , then

(8)
$$\liminf_{\substack{z \to \zeta \\ z \in \omega}} \left(\frac{|\operatorname{grad} V_{\omega}(z)|}{\lambda} \right) \ge 1.$$

PROOF. In the proof of Theorem 1, if V_n is the stream function of ω^n and z belongs to the free boundary of ω^n , then $|\operatorname{grad} V_n(z)| \ge Q(z) \ge \lambda$. The result follows by taking limits.

3. Properties of the free boundary

If $\lambda > 0$, the solution found in Theorem 1 will be denoted ω_{λ} . For the case where $\Omega = \mathfrak{N}$, we denote the solution by $\hat{\omega}_{\lambda}$. We have the following theorem.

Theorem 2. $\omega_{\lambda} \subset \hat{\omega}_{\lambda} \cap \Omega$.

Before proving this theorem we make the following remark. If $\Omega \neq \omega_{\mu}$ where μ is defined by (5), then there are non-trivial solutions which satisfy (ii). Furthermore, if Ω is unbounded, there will be non-trivial solutions for all values of λ and there exists λ_0 such that ω_{λ} satisfies (i) for all $\lambda \leq \lambda_0$.

PROOF OF THEOREM 2. Let $\sigma_R \in \mathcal{C}$ have for its free boundary the circle |z| = R. If V_R is the stream function of σ_R , then it is easy to show that for R sufficiently

180

181

large, V_R will satisfy (1). By (8), if V_{λ} is the stream function of ω_{λ} , we see that V_{λ} satisfies (2). Hence by Theorem A, for large R we have $\omega_{\lambda} \subset \hat{\omega}_{\lambda} \subset \sigma_R$.

We shall omit the proof of the next theorem since it is essentially the same as for the case where $\Omega = \mathfrak{D}$ which is given in [5].

THEOREM 3. If α and β are convex, then for each $\lambda > 0$, the free boundary of ω_{λ} is convex. Furthermore, if V_{λ} is the stream function of ω_{λ} and $z \in \omega_{\lambda}$, then

(9) $|\operatorname{grad} V_{\lambda}(z)| \ge \lambda.$

References

- A. Acker, 'Heat flow inequalities with applications to heat flow optimization problems', SIAM J. Math. Anal. 8 (1977), 504-618.
- 2. A. Acker, 'An isoperimetric inequality involving conformal mapping', *Proc. Amer. Math. Soc.* **25** (1977), 230-234.
- A. Acker, 'Some free boundary optimization problems and their solutions', Numerische Behandlung von Differential-gleichungen mit besonderer Berücksichtigung freier Randwertaufgaben, Hg. von J. Albrecht, L. Collatz, G. Hämmerlin, pp. 9–22 (Birkhäuser Verlag, Basel, 1978).
- 4. A. Beurling, 'Free boundary problems for the Laplace equation', *Institute for Advanced Study Seminar*, pp. 248-263 (Princeton, N.J., 1957).
- 5. D. E. Tepper, 'Free boundary problem', SIAM J. Math. Anal. 5 (1974), 841-846.
- 6. D. E. Tepper, 'On a free boundary problem, the starlike case', SIAM J. Math. Anal. 6 (1975), 503-505.
- 7. D. E. Tepper and G. Wildenberg, 'Some infinite free boundary problems', *Trans. Amer. Math. Soc.* 248 (1979), 135-144.

Department of Mathematics Baruch College City University of New York New York, New York 10010 U.S.A.

[5]