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Abstract

If Q is a ring region with starlike boundary components a and /?, then we show for each X > 0 there
exists a ring region u C SI with 3u = « U y , i i n y = 0 such that there is a harmonic function Kin u
satisfying (a) V(z) = 0 for z G a, (b) V(z) = 1 for z G y, (c) | grad V(z) | = X for z G y n Q.
Furthermore, we show when w is not equal to £2; that is, there is a non-trivial solution.

1980 Mathematics subject classification (Amer. Math. Soc): 31 A 05.

1. Introduction

Let D̂ be an unbounded doubly connected region which has for a boundary a
connected and compact set a that is not equal to single point. Suppose Q is the
collection of all doubly connected regions u C D̂ which have a as one boundary
component. This paper concerns a type of free boundary problem. Let us fix
S2 G (2. Given \ > 0, do there exist bounded u G f i and a harmonic function VM

such that w C S2 and Vu satisfies

(b) VJz)= 1 forz G du -a,
(c) | grad VJz) \ = X for z G (9w - a) D to.
For each co G (2, the harmonic function Vu satisfying (a) and (b) which exists

by the Riemann-Dirichlet principle will be called the stream function of w. Also,
for to G Q, 8w — a will be called the free boundary of to. In [4], Beurling studied
the more general problem where (c) is replaced by:

(c') | grad Vu(z)\= Q(z) for z£(9w - a) D ft
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where Q is a positive and continuous function in fi. Such a region to G Q whose
stream function Va satisfies (a), (b) and (c) or (a), (b) and (c') will be called a
solution (for the value X or the function Q respectively). In particular, for a fairly
general class of functions Q, Beurling proved the following theorem in [4].

THEOREM A. / / £2 = D̂ and there exists a bounded w, G Q with stream function Vx

such that for f on the free boundary of u{ we have

0)

then there exists a solution coo C to,. / / , in addition. there exists u2 G Q with stream
function V2 such that u2 C ux and for f on the free boundary ofu2 we have

grad V-,(z) I
(2) l i m i n f 6 .2\ n > l .

then u2 C « 0 C «, .

We say a is starlike if for each z G a we have LD D {pz: 0 < p < 1} = 0 . For
to G 6, we say the free boundary of u is starlike if for each z G /?, we have
w n {pz: p s= 1} = 0 . In [6] it is shown that if a is starlike and £1 = 6D, then for
each X > 0, there exists a unique solution which has a starlike free boundary.
Acker [1] generalized this result:

THEOREM B. 7/12 = <5D, a is starlike and pQ(pz) is a non-decreasing function of p
for each z G 6D, then there exists a unique solution which has a starlike free
boundary.

In Section 2, we prove that if both boundary components of £2 are starlike, then
for each X > 0 there exists a solution which has a starlike free boundary. We
prove this by taking limits of solutions for a sequence of functions {(?„}*=, where
each Qn satisfies Acker's monotonicity property. A similar idea is used in [3] to
solve a different problem. We will require the following result whose proof is a
simple consequence of Theorem A.

THEOREM C. / / Qx and Q2 are continuous and positive functions in P̂ with
Q\ ** Qi and if for ^ = ^ there are unique solutions for both 2 , and Q2 which we
respectively denote u t and w2, then oil C to2.
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For the rest of this paper we let /? be the free boundary of Q and suppose both
a and /? are starlike. We observe that for any w G 6 , one of the following must
hold:

( i ) ( 3 « - a) n fi = 0 ,
(ii) (3w — a) fl fl is a proper subset of the free boundary of co,
(iii)(3co - a) Cfi.
If u Gfi and satisfies (i), then co = fl and (c) is vacuously true; hence, S2 is a

trivial solution. It follows from Theorem A that if X is sufficiently large, there will
be a solution satisfying (iii). In Section 3, we show when there are non-trivial
solutions which satisfy (ii).

2. Existence

THEOREM 1. For each A > 0, there exists a solution co which has a starlike free
boundary.

PROOF. We first suppose a and /? are analytic curves and remove this condition

at the end of the proof. For the case where fi = <$, see [6]. If B ^ <$, then we let

w = f(z) be a schlicht mapping of fi onto [w: 1 <\w\<R) such that a

corresponds to {w: \ w \— 1} and ft corresponds to {w: \w\= R). We note that if

g(w) — z is the inverse of/, then

(3) 9 ^ g l M 2 ^ 1
3argw g(w)

for 1 < | w | < R. This implies that

Let FB be the stream function of ft and

(5) fx= sup\$TadVQ(z)\ .
ze/3

U H <\, then the result follows from Theorem A. If n = \, then replace \ by
X — e, apply Theorem A and then let e -> 0. Therefore we must consider the case
where /J > X. For integers n > \/{R — 1), we define:

?„ (* )= 1, i f l < | / ( z ) | < / ? - l / « ,

(6) qH(z)=\/n(R-\f(z)\), if R - \/n < | / ( z ) |< R -
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We then define

From (4) it follows that Qn satisfies the monotonicity property of Theorem B.
Therefore, for n > \/R — 1, there exists a unique solution for the function Qn

which we denote by u". By (6), we have | grad Va(z) | < ju *£ Qn(z) which implies
by Theorem A tht a" C B for all n > \/R - 1. Furthermore, since Qn+l < Qa,
by Theorem C we see that w = U B <o" is a solution.

In the general case where a and /? are not analytic curves, we solve the free
boundary problem for the sequence of regions

fim = {z G Q: \/m < VQ(z) < 1 - \/m)

and take the limit of the sequence of solutions as m -> oo.

COROLLARY. Suppose that w is the solution found in Theorem 1 and Vu is the

stream function of u. If 'f belongs to the free boundary of w, then

(8) (

PROOF. In the proof of Theorem 1, if Vn is the stream function of to" and z
belongs to the free boundary of co", then | grad Vn(z) \> Q(z) 3= X. The result
follows by taking limits.

3. Properties of the free boundary

If X > 0, the solution found in Theorem 1 wiill be denoted wx. For the case
where £2 — 6il, we denote the solution by wx. We have the following theorem.

THEOREM 2. ux c wA D £2.

Before proving this theorem we make the following remark. If fi ¥= «M where /i
is defined by (5), then there are non-trivial solutions which satisfy (ii). Further-
more, if 12 is unbounded, there will be non-trivial solutions for all values of A and
there exists Xo such that wx satisfies (i) for all X < Ao.

PROOF OF THEOREM 2. Let aR G Qhave for its free boundary the circle \z\= R.
If VR is the stream function of aR, then it is easy to show that for R sufficiently
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large, VR will satisfy (1). By (8), if Vx is the stream function of wx, we see that Vx

satisfies (2). Hence by Theorem A, for large R we have ux C wx C aR.

We shall omit the proof of the next theorem since it is essentially the same as
for the case where Q = <>D which is given in [5].

THEOREM 3. If a and fi are convex, then for each X > 0, the free boundary of ux is
convex. Furthermore, if Vx is the stream function of ux and z 6 ux, then

(9)
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