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Abstract:
The impact of greenhouse gas (GHG) reduction on the efficiency of Alberta’s dairy industry is assessed
through a technical efficiency analysis over the period 1996–2016, with and without emissions included as
a “bad” output. Environmentally adjusted technical efficiency and technical efficiency estimates are highly
correlated; thus, reducing GHG emissions may not result in decreased efficiency. Increased milk per cow, a
southern Alberta location, and increased use of forage are associated with greater environmentally adjusted
technical efficiency. The opportunity cost of foregone milk revenue associated with reduced emissions is
Can$308.29 per metric ton of GHG. The results imply possible policy strategies to reduce emissions.
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1. Introduction
The dairy sector is a significant contributor to Canada’s agricultural economy and the Canadian
diet—more than 8 billion kg of milk are produced in Canada annually (Canadian Dairy
Information Centre, 2019). However, dairy production has a significant carbon footprint; at
the farm level, approximately 1 kg of carbon dioxide (CO2) equivalents is released per kilogram
of milk produced in Canada (Vergé et al., 2007). Anthropogenic greenhouse gas (GHG) emissions
are widely accepted as a key contributor to climate change, which in turn is predicted to have
negative ecological, social, and economic effects (Haines et al., 2006). In response to societal con-
cerns, government policy is increasingly emphasizing the reduction of environmental impacts
from agriculture. Under Alberta’s Agricultural Carbon Offset Program, for example, farmers
adopting GHGmitigation practices can receive carbon offset credits (Alberta Environment, 2010).

There is a large body of research showing that GHG mitigating practices in the dairy industry
can also increase production levels. Typically, these practices indirectly affect per unit emissions
through increasing/improving milk yield, feed efficiency, or animal health. For example, reduc-
tions in replacement rates, culling rates, or calving interval for dairy cows have been shown to
decrease GHG emissions (Weiske et al., 2006). In addition, production of enteric methane, which
comprises the majority of dairy farm–level GHG emissions, represents a loss of energy that could
have been used toward production. Strategies to inhibit methanogens include feeding lipids, more
digestible diets, and antimicrobials such as ionophores, nitrates, dicarboxylic acids, and bacterio-
cins (Cottle and Wiedemann, 2011).

Because of the complexity of the dairy system, many practices that reduce GHGs in one part of
the farming enterprise create higher emissions in another part. Feeding lipids, for example, can
decrease enteric methane from ruminants but may increase overall GHG emissions because of

© The Author(s) 2019. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Journal of Agricultural and Applied Economics (2020), 52, 177–193
doi:10.1017/aae.2019.41

https://doi.org/10.1017/aae.2019.41 Published online by Cambridge University Press

https://orcid.org/0000-0003-1759-790X
mailto:scott.jeffrey@ualberta.ca
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/aae.2019.41
https://doi.org/10.1017/aae.2019.41


resulting changes in cropping practices (Williams et al., 2014). In addition, although some GHG
mitigation practices can increase milk production, their cost can be prohibitive, and this is
especially true for the use of many feed additives (Eckard, Grainger, and de Klein, 2010). If
the dairy enterprise is thus considered within the larger context of the overall farm business, what
is the effect of reducing GHG emissions on total farm economic performance? A relevant avenue
of investigation to address this question is to assess the relationship between whole farm GHG
emissions and the technical efficiency of dairy producers.

Many previous studies have examined the technical or economic efficiency of dairy farms,
using both stochastic frontier analysis (SFA) and data envelopment analysis (DEA) frameworks
(e.g., Cloutier and Rowley, 1993; Hailu, Jeffrey, and Unterschultz, 2005; Johansson, 2005;
Weersink, Turvey, and Godah, 1990). When considering environmental externalities and effi-
ciency, earlier studies have mainly focused on nitrogen surpluses (e.g., Mamardashvili,
Emvalomatis, and Jan, 2016; Reinhard, Knox Lovell, and Thijssen, 1999). Only a small number
of technical efficiency studies have examined GHGs (e.g., Njuki and Bravo-Ureta, 2015; Shortall
and Barnes, 2013) and knowledge gaps still remain to be filled. For example, information is needed
to assess whether technically efficient producers are more or less “efficient” when considering
GHG emissions and what types of producer or management factors affect this relationship.
This knowledge would be relevant for policy makers in terms of informing debate about whether
incentives are required to move producers toward reduced emissions.

The primary objective of this study is to estimate the technical efficiency for a sample of Alberta
dairy farms, calculated with and without consideration of GHG emissions. In doing so, this study
contributes to the relatively sparse literature concerning the effects of GHG emissions on technical
efficiency. An additional contribution is the calculation of the opportunity cost of improved
“environmental performance,” measured as the shadow price of GHG emissions. As the relation-
ship between GHG emissions and farm-level efficiency is largely unexplored, these results can
assist in creating economically viable GHG mitigation policies, aid producer decision making
in response to policy initiatives, and provide methodological contributions for the inclusion of
a detrimental output in efficiency analysis.

2. Methodology
2.1. Theoretical framework

A production frontier describes the maximum amount of output that can be produced from a
specified amount of inputs, given production technology. A producer operating on the frontier
is said to be fully technically efficient (Coelli et al., 2005). Frontiers may be considered to be deter-
ministic or stochastic. In the case of a stochastic frontier, deviations from the frontier are assumed
to be because of a combination of random shocks and producer inefficiency. Given that variability
in milk production is because of a combination of management and environmental factors, it is
appropriate to model technical efficiency by estimating a stochastic frontier. A stochastic frontier
may be represented as follows:

lnyi � lnf xi;β� �e vi�ui� �; (1)

where yi is the output produced by the ith farm, xi is a vector of inputs, β is a vector of parameters
to be estimated, vi is the stochastic error term, and ui is the nonnegative inefficiency term.

This study considers dairy production in terms of generating multiple outputs: two “good”
outputs and one “bad” output. Thus, a standard production function would be inadequate as
it typically allows for only one positive output. Instead, a distance function frontier is defined
and estimated. There are alternative types of distance functions that may be considered for this
type of analysis. Following Cuesta, Knox Lovell, and Zofío (2009), an enhanced hyperbolic
distance function is used. The hyperbolic distance function allows for the asymmetric treatment
of beneficial and detrimental outputs by considering equiproportional contraction (expansion)
of bad (good) outputs in a multiplicative manner. The enhanced model also considers the
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proportional contraction of inputs (Cuesta and Zofío, 2005). Given an underlying behavioral
assumption of profit maximization, the results from the enhanced hyperbolic distance function
are comprehensive economic performance measures that consider the ability of the producers
to simultaneously maximize beneficial outputs, minimize detrimental outputs, and minimize inputs.

To further examine the impact of considering GHG emissions on the economic performance of
farmers, results from two versions of the enhanced hyperbolic distance function are compared:
one including GHGs as a detrimental output and one without GHGs. The enhanced hyperbolic
distance function with a negative output is represented by

DH x; y; b
� � � inf θ > 0 : xθ;

y
θ
; bθ

� �
2 T

n o
; (2)

where T is the production possibility set that denotes the conversion of the input vector (x) into
the beneficial output vector (y) and the detrimental output scalar (b) by the production technol-
ogy. A representation of T is provided by equation (3):

T � x; y; b
� �

: x; y; b
� � 2 R�; x can produce y; b

� �� �
: (3)

Without the negative output, equation (2) can be written as follows:

DH x; y
� � � inf θ > 0 : xθ;

y
θ

� �
2 T

n o
: (4)

Interpreted in the context of efficiency, the value of the distance function (θ) represents the level of
technical efficiency. The distance function has a range of 0<DH(x, y, b)≤ 1, where 1 represents
complete technical efficiency. If the customary production function axioms are satisfied by the
technology, the hyperbolic distance function has the following properties (Cuesta, Knox
Lovell, and Zofío, 2009):

1. Almost homogeneity: DH(μ−1x, μy, μ−1b) = μDH(x, y, b), μ> 0
2. Nondecreasing in beneficial outputs: DH(x, αy, b)≤DH(x, y, b), α∈ [0,1]
3. Nonincreasing in detrimental outputs: DH(x, y, αb)≤DH(x, y, b), α≥ 1
4. Nonincreasing in inputs: DH(αx, y, b)≤DH(x, y, b), α≥ 1

2.2. Empirical model

With the almost homogeneity property, the hyperbolic distance function can be represented using a
translog functional form. Equation (5) represents the model consideringN producers (i= 1, 2, : : : ,N),
T time periods (t= 1, 2, : : : , T), K inputs (k= 1, 2, : : : , K),M beneficial outputs (m= 1, 2, : : : ,M),
and one bad output (b):

lnDHit � α0 �
XK
k�1

αklnxkit �
1
2

XK
k�1

XK
l�1

αkl lnxkit lnxlit �
XM
m�1

βmlnymit

� 1
2

XM
m�1

XM
n�1

βmnlnymit lnynit � δlnbit �
XK
k�1

XM
m�1

γkmlnxkit lnymit

�
XM
m�1

θmblnymit lnbit �
XK
k�1

θkblnxkit lnbit:

(5)

Returning to the almost homogeneity condition, μ is chosen to be the inverse of one of the good
outputs (yM):

DH xyM;
ym
yM

; byM

� 	
� DH x; y; b

� �
yM

: (6)
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The transformed function becomes
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(7)

where: x�kit � xkit yM; b�it � bit yM; y�mit � ymit
yMit

.

Moving lnDHit to the right-hand side of the equality allows it to be interpreted as the inefficiency
component of the error term (i.e., uit), and the function can be written as follows:

� lnyMit � Translog x�kit; y
�
mit; b

�
it

� �� vit � uit� �; (8)

where x�; y�; and b� are “adjusted” values for inputs, other beneficial output (i.e., livestock), and
detrimental output, respectively, as defined in equation (7). The distribution of vit is assumed to be
iid (independent and identically distributed) N 0; σ2

v

� �
. Following Battese and Coelli (1995), the

inefficiency term is assumed to follow a nonnegative truncated normal distribution:

uit � N zitϕ; σ2
u

� �
; (9)

where the mean zitϕ is a function of a vector of farm-specific variables (zit), and ϕ is a vector of
parameters to be estimated jointly with the production frontier. To obtain the technical efficiency
estimates, the following equation is estimated1 as follows:

TEit � E e �uit� �j vit � uit� �
 �
: (10)

The production frontier and efficiency results for the hyperbolic distance function that do not
consider GHGs are estimated and calculated (respectively) in the same manner, with the exception
being that terms with bit are not included. Maximum likelihood methods are used to estimate the
stochastic frontiers and joint inefficiency models.2 Specifically, “frontier” software, developed by
Coelli and Henningsen (2019) for R, is used for this analysis.

2.3. Data

Data from Alberta Agriculture and Forestry’s Dairy Cost Study over the period 1996–2016 are
used for this study. The Dairy Cost Study is an annual survey of a sample of Alberta dairy pro-
ducers (Van Biert, 2017). The data generated from the surveys provide benchmarks for provincial
milk pricing policy and cost and return information for use by individuals and organizations in
the dairy sector. Study administrators strive to obtain a representative sample of the dairy pro-
ducer population. Participation in the survey varies from year to year, so the data represent an
unbalanced panel of producers.3

The survey includes information on farm expenses, milk output, livestock numbers, feed com-
ponents, and farm-specific characteristics such as years farming and farm location. For this study,
beneficial outputs are milk and livestock. Milk production is standardized to 4% butterfat using a
method from the International Dairy Federation (2015). Livestock output is composed of the

1Given the structure of the inefficiency term, technical efficiency is assumed to be time varying in nature.
2In estimating the production frontier, symmetry was imposed on the model parameters. No other properties were imposed

a priori.
3Although there is a panel dimension to the data set, it is sufficiently unbalanced (i.e., over two-thirds of the firms have five

or fewer observations) that a panel modeling approach is not used.
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value of sales of different types of dairy stock (i.e., cows, heifers, calves, etc.) aggregated using the
Fisher price index, with the base year being 1996 (Diewert, 1992). Observations from the year 2008
are removed for this study as the Canadian dairy industry shifted to a total production quota
system from a two-tiered quota system that year, which changed the data coding system such
that recorded production levels may not be accurate for that year. The resulting data set used
in the analysis consisted of 1,075 observations for 210 farms.

The detrimental output is GHG emissions in kilograms of CO2 equivalents. GHG emissions for
the sample producers are not directly observable and instead are calculated using algorithms
adapted from Agriculture and Agri-Food Canada’s Holos model. Holos is an emissions simulation
model based on the Intergovernmental Panel for Climate Change Tier 2 and 3 methodologies,
which are the country-specific guidelines, and tailors the algorithms for regions within Canada
(Little et al., 2008). Holos calculates whole farm GHG emissions, which include soil nitrous oxide
(N2O) emissions from cropping practices, manure N2O, manure methane (CH4), enteric CH4,
and CO2 from farm energy use. For parameters required by Holos that are not directly available
from the Dairy Cost Study, values were obtained through expert opinion4 and a review of relevant
literature. The use of this type of approach is consistent with previous literature examining GHG
emissions as a detrimental output (e.g., Njuki and Bravo-Ureta, 2015; Shortall and Barnes, 2013;
Wettemann and Latacz-Lohmann, 2017).

The inputs used in the production frontier are forage, concentrate, capital, labor, and “other.”
With the exception of labor and capital, input expenditures are used to quantify inputs. This is
done in part to reflect differences in input quality as well as for input aggregation purposes (e.g.,
forage, concentrate). Fisher price indices are used to aggregate the separate expenses into an
implicit quantity by dividing total expenses by the price index, with the base year being 1996.
The forage input variable consists of hay, silage, greenfeed, straw, and alfalfa pellets.
Concentrate consists of feeds with higher energy content such as grains, supplements, minerals,
molasses, and brewer’s grains. The “other” input variable includes expenditures for inputs such as
insurance, bedding, veterinary expenses, utilities, milk hauling, and miscellaneous expenses.

Because of potential measurement error from assuming a price for family and operator labor,
total hours of paid, family, and operator labor are used as the labor input variable. Capital input is
derived following equation (11):

Capital � Value of total assets�User cost � Repairs� Rent; (11)

where the value of total assets includes machinery, dairy equipment, dairy buildings, land, dairy
animals, and supplies. User cost is calculated following Slade and Hailu (2016). The implicit interest
rate from the Dairy Cost Survey is used as the price of debt, and the 5- to 10-year marketable
Government of Canada bond rate as the price of equity (Statistics Canada, 2019a). Linear and qua-
dratic time trend variables are also included in the production frontier to capture technical change.

Variables included in the inefficiency model (i.e., zit as defined in equation 9) are selected based
on a combination of evidence from the empirical literature (i.e., previous dairy efficiency studies)
as well as data availability. Typical variables hypothesized to influence efficiency include farming
intensity, livestock quality, age and education of farmer, and access to technology (e.g., Jiang and
Sharp, 2014; Mosheim and Lovell, 2009; Weersink et al., 1990). For this study, the variables
included in the model are herd size, milk yield, butterfat, years farming, proportion of paid labor,
proportion of purchased feed, debt-to-asset ratio, a regional dummy for a farm located in North or
South Alberta, linear and quadratic time trends, and proportion of forage in the diet.

Herd size is measured as the number of lactating and dry cows and is hypothesized to have a
positive effect on efficiency because of scale effects. Milk yield (liters of fat-corrected milk per cow
per day) directly reflects the productivity of the cow and is included as a proxy for underlying

4Expert opinion refers to information received through consultations with individuals who are familiar with Alberta dairy pro-
duction and production practices. These include Alberta Agriculture and Forestry staff, dairy nutritionists, and dairy researchers.
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genetic quality. It is expected to be positively related to farm efficiency. Butterfat percentage is also
expected to have a positive effect, as it can reflect management ability, especially as dairy quota is
calculated in kilograms of butterfat (Alberta Milk, 2019).

Years farming and the time trend are hypothesized to have a positive effect on efficiency
because of benefits of increased experience and technological improvements, respectively. The
proportion of total hours of labor that is from paid labor, the proportion of total feed that is pur-
chased, and the debt-to-asset ratio all impose additional costs or constraints to the producers and
thus may negatively affect efficiency. A regional dummy is also included, as farming practices and
environmental factors differ between northern and southern producers.5 For example, southern
Alberta producers feed more corn silage compared with producers in northern Alberta (Statistics
Canada, 2017). Finally, the proportion of the forage in the diet is predicted to have a negative effect
on efficiency as forage is a lower-energy feed that increases GHG emissions relative to concentrate
(Beauchemin et al., 2008) and so is included in the inefficiency model.

As noted earlier, the final data set used in the production frontier and inefficiency model
estimation consisted of 1,075 observations for 210 farms. Over the sample period, average herd
size more than doubled, from approximately 71 cows in 1996 to more than 159 cows in 2016. This
trend, combined with increasing milk per cow,6 resulted in positive trends for all three outputs:
total milk, livestock output, and GHG emissions. Sample farms located in southern Alberta had,
on average, larger herd sizes (121.5 vs. 103.1 cows, respectively) and slightly more productive cows
(18.7 liters/day vs. 17.7 liters/day, respectively) than farms located in northern Alberta, resulting in
greater levels of total milk, GHG emissions, and livestock output. Descriptive statistics for the
production frontier and inefficiency model variables are provided in Table 1.

3. Results and discussion
3.1. Efficiency estimates

To prevent problems with model convergence, the production frontier variables are normalized by
their geometric mean. To deal with any potential econometric issues (i.e., autocorrelation and
heteroscedasticity), bootstrapped standard errors generated with 2,000 replications are used.7

The parameter estimates for both models are reported in Table 2. For clarity in discussion, effi-
ciency estimates from the model that includes GHGs are denoted as environmentally adjusted
technical efficiency, whereas efficiency estimates from the model without GHGs are referred
to as technical efficiency.

The efficiency estimates are summarized in Table 3. Overall, the models with and without
GHGs are very similar, as seen in the scatter plot (Figure 1), with a mean environmentally adjusted
technical efficiency of 0.9367 and a mean technical efficiency of 0.9252. The distributions are also
highly similar, with most producers having very high efficiency (Figure 2). In addition, technical
and environmentally adjusted technical efficiency are highly correlated with each other; the
Pearson’s correlation coefficient is 0.8638, and the Spearman’s rank correlation coefficient is
0.8367. This suggests that minimizing GHG emissions may not be inconsistent with the objective
of maximizing output for given levels of inputs. One possible explanation for the high correlation
is that GHG emissions are in part attributable to inefficient use of energy by the animal. Enteric
methane, for example, makes up the largest proportion of the GHG emissions (Table 4) and rep-
resents a significant loss in feed energy that could have been converted to productive outputs
(Beauchemin et al., 2008). This contribution to GHG emissions could therefore be reduced with

5For the purposes of the Dairy Cost Study, northern Alberta producers are those located north of Ponoka County
(Van Biert, 2017).

6Average milk per cow increased at a slower rate than did herd size; average daily production per cow increased from
16.9 liters in 1996 to 21.4 liters in 2016.

7The “boot” package in R was used to perform ordinary nonparametric bootstrapping for the standard errors.
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more efficient energy use by the cow. Previous studies have also found high correlation between
environmental and technical efficiencies, with Spearman rank correlations ranging from 0.418 to
0.920 (Dayananda, 2016; Reinhard, Knox Lovell, and Thijssen, 1999; Shortall and Barnes, 2013).

Given the nature of the “environmental efficiency” measure (i.e., environmentally adjusted
technical efficiency), it represents a mix of environmental efficiency and regular technical effi-
ciency. However, higher levels of environmentally adjusted technical efficiency are associated with
lower GHG emission intensity, defined as GHG emissions per hectoliter of milk (Figure 3). The
Pearson’s correlation coefficient is −0.761.

The high average efficiency level for the sampled Alberta dairy farms is an indication that in
this sample most producers are very similar in terms of their efficiency. Because efficiency is mea-
sured relative to the most efficient producer(s), this results in a high average. Other dairy technical
efficiency studies also reveal fairly high average technical efficiency scores. For example,
Mamardashvili, Emvalomatis, and Jan (2016) estimated an average technical efficiency level of
0.966 for Swiss dairy farms, and Cabrera, Solis, and Del Corral (2010) found an average technical
efficiency score of 0.88 for Wisconsin dairy farmers. In a Canadian context, Mbaga et al.’s (2003)
study of Quebec dairy farmers estimated a variety of SFA models and found average efficiency
scores to be approximately 0.95. Singbo and Larue (2016) decomposed total factor productivity
into scale and efficiency effects for a sample of Quebec dairy farmers and estimated the average

Table 1. Descriptive statistics for model variables (n= 1,075)

Name Mean
Standard
Deviation Minimum Maximum

Positive outputs Milk output (hL FPCMa) 7,559.49 5,663.86 1,416.88 41,335.22

Livestock outputb 54,029.25 47,096.09 1,054.78 474,394.20

Detrimental output Greenhouse gas emissions
(kg CO2 eq)

972,236.90 737,320.40 206,722.50 6,525,698.00

Inputs Forageb 108,143.90 99,067.56 14,145.00 979,632.20

Concentrateb 187,287.80 150,277.80 21,160.65 1,173,868.00

Labor (hours) 6,168.15 3,673.52 1,369.88 35,542.00

Capitalc 1,294,967.00 2,694,390.00 63,576.98 30,380,290.07

Otherb 78,160.84 58,851.92 16,239.74 583,759.80

Inefficiency model
variables

Milking herd size (number of
cows)

112.92 88.36 26.58 834.25

Milk yield per cow (L/day) 18.23 2.78 9.43 26.83

Butterfat (%) 3.76 0.27 2.68 5.30

Years farming 19.94 11.77 0.00 57.00

Paid labor (proportion of total) 0.2413 0.26 0.00 0.92

Purchased feed (proportion of
total)

0.6407 0.21 0.03 1.00

Debt-to-asset ratio 0.0201 0.02 0.00 0.12

Proportion of forage in the diet 0.3783 0.10 0.12 0.75

North/south dummy (north= 1) North= 501 observations South= 574
observations

aFat- and protein-corrected milk, where milk is standardized to 4% fat and 3.3% milk protein (International Dairy Federation, 2015).
bThe quantity is the implicit quantity obtained by dividing the value of sales (or expenses) by the implicit price (Fisher price index with 1996 as
the base year).
cThe quantity of capital is proxied by the annual cost of capital.
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Table 2. Maximum likelihood parameter estimates: hyperbolic distance function with and without
greenhouse gas (GHG) emissions (n= 1,075)

GHGs Without GHGs

Estimatea Standard Errorb Estimatea Standard Errorb

Intercept −0.0090 0.0152 0.0822*** 0.0159

Foragec 0.0116 0.0088 −0.0376*** 0.0118

Conc −0.0241*** 0.0089 −0.0706*** 0.0108

Capital −0.0483*** 0.0119 −0.1916*** 0.0106

Labor −0.0251*** 0.0069 −0.0514*** 0.0091

Other −0.0350*** 0.0075 −0.0834*** 0.0097

LvstkSales 0.0174*** 0.0057 0.0244*** 0.0073

Time trend −0.0062** 0.0025 −0.0117*** 0.0027

(Time trend)2 −0.0002 0.0001 −0.0006*** 0.0001

LvstkSales*LvstkSales 0.0024 0.0160 0.0046 0.0143

LvstkSales*Forage −0.0782*** 0.0192 −0.0145 0.0220

LvstkSales*Conc 0.0057 0.0235 −0.0112 0.0263

LvstkSales*Labor −0.0100 0.0156 −0.0079 0.0169

LvstkSales*Capital 0.0413 0.0267 0.0060 0.0285

LvstkSales*Other 0.0268*** 0.0100 −0.0100 0.0117

Forage*Forage −0.0330 0.0222 0.0310 0.0252

Forage*Conc −0.0360*** 0.0108 −0.0207 0.0134

Forage*Labor 0.0248 0.0206 0.0392* 0.0233

Forage*Capital 0.0045 0.0179 −0.0247 0.0234

Forage*Other 0.0503*** 0.0133 0.0606*** 0.0173

Conc*Conc −0.0024 0.0273 −0.0412 0.0333

Conc*Labor 0.0167* 0.0097 0.0207** 0.0096

Conc*Capital −0.0451*** 0.0172 −0.0741*** 0.0239

Conc*Other 0.0586*** 0.0163 0.0433* 0.0231

Labor*Labor 0.0078 0.0056 0.0078 0.0071

Labor*Capital −0.0030 0.0142 0.0142 0.0166

Labor*Other −0.0137 0.0130 0.0004 0.0146

Capital*Capital −0.0750*** 0.0250 −0.0700** 0.0299

Capital*Other 0.0137 0.0122 0.0224 0.0185

Other*Other −0.0129 0.0163 0.0189 0.0200

GHG −0.3642*** 0.0201

GHG*GHG 0.0214 0.0533

GHG*LvstkSales 0.0754*** 0.0291

GHG*Forage 0.0306 0.0456

GHG*Conc 0.0809** 0.0315

(Continued)
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level of technical efficiency to be approximately 0.88. Another contributing factor to the high aver-
age efficiency values in the case of Canadian studies is likely the supply management system and
its influence on producer incentives.

The flexibility inherent in the enhanced hyperbolic function may also contribute to higher
efficiency scores through the potential scaling from decreasing inputs or the negative output,
or by increasing the positive outputs (Cuesta, Knox Lovell, and Zofío, 2009; Mamardashvili,
Emvalomatis, and Jan, 2016). Although average technical efficiency and environmentally
adjusted technical efficiency values are numerically similar, a t-test of the two estimated
efficiency scores reveals them to be significantly different (P < 0.001) in statistical terms.
Overall, Alberta dairy farms have the potential to increase milk and livestock outputs by

Table 2. (Continued )

GHGs Without GHGs

Estimatea Standard Errorb Estimatea Standard Errorb

GHG*Labor −0.0312 0.0435

GHG*Capital 0.0009 0.0296

GHG*Other −0.1279*** 0.0456

Joint inefficiency model

Intercept 0.5416*** 0.0676 0.6803*** 0.1015

Herd size 0.0001 0.0001 0.0001 0.0001

Milk yield −0.0281*** 0.0020 −0.0333*** 0.0038

Time trend 0.0063 0.0040 0.0013 0.0041

(Time trend)2 0.0000 0.0002 0.0005** 0.0002

Butterfat −0.0063 0.0149 −0.0429* 0.0242

Years farming 0.0005 0.0004 0.0010** 0.0005

Prop. paid labor 0.0060 0.0134 0.0182 0.0173

Prop. purchased feed 0.0072 0.0150 0.0698** 0.0283

D/A ratio 0.0588 0.2097 0.5159 0.3202

N/S dummy (north= 1) 0.0153** 0.0063 0.0010 0.0095

Prop. forage in diet −0.1703*** 0.0577 −0.0857 0.0837

σu
2 0.0023*** 0.0007 0.0038*** 0.0012

σv
2 0.0005*** 0.0001 0.0013*** 0.0002

γ 0.7993*** 0.0582 0.7417*** 0.0645

Log likelihood ratio 1,961.982 1,619.716

aAsterisks (*, **, and ***) denote statistical significance at 10%, 5%, and 1% levels, respectively.
bStandard errors derived from bootstrapping with 2,000 replications.
cWith the exception of the intercept, inefficiency model variables, and time trends, all variables are natural logarithms.
Notes: Conc, concentrates; D/A, debt-to-asset ratio; LvstkSales, livestock sales; N/S, north/south; Prop, proportion.

Table 3. Efficiency results: descriptive statistics

Model Mean Standard Deviation Minimum Maximum

Environmentally adjusted technical efficiency 0.9367 0.0453 0.7599 0.9948

Technical efficiency 0.9252 0.0545 0.6922 0.9925
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6.76% 1
0:9367 � 1 � 0:0676
� �

, while simultaneously reducing input use and GHG emissions by
6.33% (1 − 0.9367 = 0.0633).

3.2. Inefficiency model

The inefficiency model parameter estimates for both versions of the distance function (i.e., with
and without GHG emissions) are also presented in Table 2. Given the structure of the inefficiency

Table 4. Contribution of different sources of greenhouse gas emissions to total emissions (average
across data set)

Emission Type (kg CO2 equivalent/year) Mean Value Proportion of Total

Cropping N2O 86,516.90 0.0912

Enteric CH4 469,585.69 0.4950

Manure CH4 109,590.14 0.1155

Manure N2O 69,617.63 0.0734

Energy CO2 213,298.61 0.2249

Total emissions 948,608.96
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Figure 1. Scatter plot of technical and environmentally adjusted technical efficiency estimates by observation.
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Figure 2. Frequency distributions for technical (without greenhouse gases [GHGs]) and environmentally adjusted technical
(with GHGs) efficiency estimates.
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model, positive coefficients indicate that the variable contributes positively to inefficiency (ui); that
is, variables with positive coefficients are negatively related to technical or environmentally
adjusted technical efficiency. From Table 2, it can be seen that the signs on coefficients are
the same for both versions of the inefficiency model. However, there are differences between
the two inefficiency models in terms of statistical significance. The only variable that is statistically
significant for both environmentally adjusted technical efficiency and technical efficiency is milk
yield per cow (i.e., the proxy for genetic quality). Consistent with previous studies (e.g., Weersink,
Turvey, and Godah, 1990), increased milk yield per cow is positively related to efficiency. There
are also differences in the inefficiency model results when compared with other studies (e.g.,
Mosheim and Lovell, 2009; Weersink, Turvey, and Godah, 1990) in that there is no statistically
significant relationship between efficiency and herd size, proportion of paid labor, or debt-to-asset
values.

Variables significant for technical efficiency but not environmentally adjusted technical effi-
ciency include butterfat, years farming, and proportion of purchased feed. As expected, increased
butterfat percentage is positively related to technical efficiency; however, it does not have a sig-
nificant effect on environmentally adjusted technical efficiency. The nonsignificance for environ-
mentally adjusted technical efficiency may be at least in part because of the lack of availability of
detailed nutrition management information in the data set (e.g., forage quality, use of mixed
rations) and the potential importance of these factors in explaining methane emissions (e.g.,
Cameron et al., 2018; Eckard, Grainger, and de Klein, 2010). Years of farming (i.e., experience)
is negatively related to technical efficiency. A possible explanation is that younger farmers may be
more aware of new innovations and technology that facilitate improved technical efficiency, but
that these may not necessarily result in a smaller carbon footprint. Greater use of purchased feed is
negatively related to technical efficiency, which could be a result of homegrown feed being of
higher quality in terms of nutrient content.

Conversely, the regional dummy and proportion of forage in the diet were significantly related
(in statistical terms) to environmentally adjusted technical efficiency but not to technical effi-
ciency. The result for the regional dummy suggests that farms in northern Alberta are less
environmentally efficient than those in southern Alberta, although there is no statistically
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Figure 3. Scatter plot of environmentally adjusted technical efficiency estimates and greenhouse gas (GHG) emission inten-
sity (CO2 equivalent/hL milk) by observation.
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significant difference in their technical efficiency. Southern farms may have a smaller environ-
mental impact because of differences in soil, feeding practices (e.g., producers in southern
Alberta feed more corn silage), and/or temperatures. For example, temperature differences can
affect factors such as crop yields, milk yields, and cattle maintenance energy requirements.

The proportion of forage has the opposite sign than expected; increased forage in the diet
increases environmentally adjusted technical efficiency with no statistically significant effect on
technical efficiency. This is unexpected as high forage diets are associated with greater enteric
methane emissions (Boadi et al., 2004). However, the use of proportionally more forage in the
diet for a given level of milk production is likely accomplished through feeding higher-quality
forages. There is evidence that increased forage quality (and specifically digestibility) results in
reduced GHG emission intensity in ruminants (e.g., Beauchemin et al., 2011; Guyader et al.,
2017; Knapp et al., 2014), and this is a plausible explanation for the inefficiency model result.

3.3. Elasticities

As the data are normalized by the mean, the first-order coefficients may be interpreted as pro-
duction elasticities evaluated at the mean (Mosheim and Lovell, 2009). As noted earlier, the mean
efficiencies suggest that most farmers in the sample are quite close to the frontier, so any differ-
ences between the values of elasticities at the frontier and evaluated at the mean should be very
small. A summary of the production elasticities is provided in Table 5. Production elasticities
between milk and livestock outputs have the same signs and significances. However, the livestock
production elasticities are much higher (numerically) than the milk production elasticities for
both models (with and without GHG). This is likely because of production decisions focusing
on dairy revenue rather than on the value of livestock production. As such, the remainder of
the discussion on production elasticities focuses on the milk output.

Between the GHG and no GHGmodels, the milk production elasticities follow a similar pattern
with respect to sign and significance, with the exception of the elasticity for forage. Specifically, the
production elasticities for inputs other than forage are positive and statistically significant at the
1% level. However, the elasticities are consistently larger for the non-GHG model (i.e., when
GHGs are not held constant). This suggests that the marginal productivity of inputs would be
constrained if a certain level of GHGs were to be maintained. The largest difference is for capital,

Table 5. Production elasticities for estimated models (with and without greenhouse gas [GHG] emissions)abc

Model Forage Concentrate Labor Capital Other

Milk With GHGs −0.012 0.024*** 0.025*** 0.048*** 0.035***

(0.0088) (0.0089) (0.0069) (0.012) (0.0075)

Without GHGs 0.0376*** 0.071*** 0.051*** 0.192*** 0.083***

(0.012) (0.011) (0.0091) (0.011) (0.0097)

Livestock With GHGs −0.666 1.384*** 1.441*** 2.769*** 2.005***

(0.42) (0.505) (0.500) (0.752) (0.621)

Without GHGs 1.541*** 2.894*** 2.107*** 7.847*** 3.415***

(0.504) (0.698) (0.579) (1.645) (0.806)

GHGs With GHGs 0.0319* −0.0663*** −0.0690*** −0.133** −0.0960**

(0.0182) (0.0204) (0.0176) (0.0267) (0.207)

aAsterisks (*, **, and ***) denote statistical significance at 10%, 5%, and 1% levels, respectively.
bThe elasticities presented here represent the percent increase in output from a 1% increase in a specific input.
cStandard errors are presented in parentheses.
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suggesting that this input is a relatively larger contributor to GHG emissions. This may be because
of the aggregation of livestock input into the capital input, given that enteric methane comprises
the bulk of GHG emissions (Table 4).

For the forage input, both the sign and significance of the production elasticity differ between
the two models (Table 5). If GHG emissions are not considered, a 1% increase in forage will
increase milk output by 0.038% (evaluated at the mean). However, when GHGs are included
in the model a 1% increase in forage input, for a given level of emissions, does not have a statisti-
cally significant effect on milk production. This difference (i.e., shifting from significantly positive
to insignificantly negative) is likely because of the contribution of forage to higher enteric methane
emissions (Beauchemin et al., 2008).

In the case of the production elasticities for the detrimental output (GHG), a 1% increase in
forage will increase GHG emissions by 0.032%. This is not surprising given the relationship (noted
earlier) between forage consumption and enteric methane emissions. The GHG production elas-
ticities for the other inputs are all negative; an increase in any of these inputs decreases GHG
emissions. The decrease in GHGs is expected for nonmaterial inputs such as labor and “other,”
because use of these inputs is not typically associated with production of emissions. In addition,
increased labor and “other” inputs can be used toward animal care, and improved animal health is
a large contributor to increased milk yield and reduced overall environmental impact (Weiske
et al., 2006). For capital, which has the largest marginal effect on GHG reduction, it may be
the case that investing in machinery and equipment can contribute to more efficient feeding, milk-
ing, and general farm operations. Similarly, an increase in concentrate, keeping all other inputs
and outputs constant, is predicted to decrease GHG emissions. Although concentrate is a material
input, it has been found that increasing concentrate in the diet can reduce the feed energy that is
converted to methane because of the resulting decrease in ruminal pH (Beauchemin et al., 2008).

3.4. Shadow prices

As there is no market for GHGs, the duality between distance functions and revenue and profit
functions is exploited to derive the shadow price of GHGs. The shadow price can be interpreted as
the opportunity cost of reducing GHGs where the marginal rate of transformation between the
good outputs and GHGs is valued in economic terms. Following Vardanyan and Noh (2006) and
Mamardashvili, Emvalomatis, and Jan (2016), the shadow price for themth beneficial output (sm)
can be calculated as follows:

sm � �pm
@DH
@b

@DH
@ym

;
(12)

where pm is the price of the beneficial output. As the data used in this study are normalized, the
resulting shadow prices are representative of the mean of the data rather than at the frontier.
However, given that mean efficiency is very high, the marginal rate of transformation at the mean
should be similar to that for the frontier.

Table 6 reports the output prices and shadow prices. The price of the beneficial output (milk)
is calculated as the average price of milk received by the sampled Alberta dairy farmers over the
1996–2016 period, expressed in 2015 Canadian dollars. Using this value, it is estimated
that the opportunity cost of reducing GHG emissions in terms of foregone milk revenue is
Can$308.29 per metric ton of emissions.

Previous studies have estimated the shadow price of GHGs from dairy farms. For example,
Wettemann and Latacz-Lohmann (2017) estimated the abatement cost (using DEA) to be
€165 per metric ton, equivalent to approximately $234 in 2015 Canadian dollars (Bank of
Canada, 2017). Using a parametric directional distance function approach Njuki and Bravo-
Ureta (2015) found a range of shadow prices from US$43 to US$950 per metric ton for different

Journal of Agricultural and Applied Economics 189

https://doi.org/10.1017/aae.2019.41 Published online by Cambridge University Press

https://doi.org/10.1017/aae.2019.41


counties across the United States. From these results, it can be seen that there is no consensus on
the opportunity cost of reducing emissions. The shadow value from this study is within the range
found by Njuki and Bravo-Ureta (2015), although toward the higher end. This may be attributable
to slightly higher dairy prices in Canada. Alternatively, it may be that dairy producers are already
very efficient with and without consideration of GHGs, and as a result, reducing GHGs is equivalent
to deviating from efficient behavior, thus leading to a significant associated cost. As such, pollution
reduction can be a costly endeavor for dairy farmers, especially for those close to the frontier.

The estimated shadow price for milk production cannot be interpreted to represent the mini-
mum cost of reducing GHG emissions by producers. It may well be the case that changes in other
production practices (i.e., changing rations, culling practices, etc.) may be less costly in terms of
managing emissions. However, the shadow price can inform policy in the sense that it provides an
indication of the magnitude of cost that would be borne by producers if they were required to
reduce output in order to meet GHG emission regulations.

A shadow price of GHGs is also derived for livestock production (Table 6); that is, the value of
sale of livestock by the dairy producer. Using the 1996–2016 average selling price of livestock for
the sampled producers, expressed in 2015 Canadian dollars, the opportunity cost of GHG emis-
sion reductions is Can$895.84 per metric ton of foregone livestock revenue. The large discrepancy
in shadow values between the two beneficial outputs (milk and livestock) suggests that Alberta
dairy farmers are not allocatively efficient. It would be expected that producers who are alloca-
tively efficient would have equal shadow prices associated with both outputs (Mamardashvili,
Emvalomatis, and Jan, 2016). The discrepancy between the two shadow prices may be because
of the focus of management efforts being on the dairy enterprise instead of livestock production,
because livestock revenue would likely be considered a “by-product” for many commercial dairy
operations. It is also possible that more inputs associated with livestock production are less
substitutable, creating constraints that make it costlier to reduce GHG emissions. This would
be similar to findings by Arandia and Aldanondo-Ochoa (2011) for organic farms; specifically,
they found higher shadow prices for organic farms than for conventional operations, which they
attribute to the effect of additional regulatory restrictions.

4. Conclusion
This study examines the impact on productive efficiency of incorporating GHG emissions as a
detrimental output in a multiproduct analysis. Using a sample of Alberta dairy producers from
1996–2016, stochastic production frontiers using a translog functional form are jointly estimated
with inefficiency models using maximum likelihood techniques. Environmentally adjusted tech-
nical efficiency estimates are highly correlated with technical efficiency, suggesting the goal of
emission reduction aligns with reaching full technical efficiency. Given that striving for technical
efficiency (i.e., maximizing output from a given level of inputs) is consistent with an objective of
profit maximization, this suggests that stringent government interventions (e.g., emission quotas)
may not be needed. Instead, policies such as education and outreach for topics such as improving
farm profitability can be implemented.

Table 6. Shadow pricesa for livestock and greenhouse gas (GHG) emission outputs

Output Model Market Priceb
Shadow Price for

GHGs (Can$/metric ton)

Milk GHGs $111.95/hL $308.29

Livestock GHGs $603.41/head $895.84

aThe shadow price is the value of the output in the leftmost column given up for a one unit reduction of the
outputs in the right-hand columns.
bPrices are expressed in 2015 Canadian dollars (Statistics Canada, 2019b).
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The results from the distance function estimation indicate that mean efficiency levels for
Alberta dairy farms (at least for those producers in the sample) are very high; that is, many farms
are already close to the frontier. Thus, there are limited opportunities for reducing GHG emissions
through further improvements in efficiency. Given this result, further reductions in GHG emis-
sions would likely necessitate reducing total milk output, imposing a significant private cost on
producers in return for generating a social benefit. Based on shadow price estimates, this study
estimates the cost at more than Can$300 per metric ton of reduced emissions, in terms of reduced
milk revenue. Given these results, it may be the case that policy instruments that involve cost
sharing between government and dairy producers may need to be considered (e.g., incentives
for clean technology adoption and subsidies) to achieve further reductions in emissions.

The elasticity analysis revealed that increasing use of inputs may reduce GHG emissions, with
the exception of forage where its increased use will raise total GHG emissions, holding all other
inputs and outputs constant. However, reduced use of forage may have detrimental effects on
output because of negative animal health effects, such as ruminal acidosis, that can result
from insufficient forage levels in the diet (Gozho, Krause, and Plaizier, 2007). In addition, the
inefficiency model suggests that increasing the ratio of forage in the diet can actually improve
environmentally adjusted technical efficiency. Thus, more effective strategies may lie in increasing
the efficiency of forage utilization such as through use of feed supplements or genetic improve-
ments to increase the digestibility of feed or through the use of higher-quality forages.

The inefficiency model results also indicate that increased milk yield per cow can improve
environmentally adjusted technical efficiency; that is, reduce GHG emissions while maintaining
economic viability. However, management strategies to achieve increased milk yield indepen-
dently of changes to factors modeled in the analysis (i.e., input levels) would likely require
longer-term investments in genetics.

This study makes methodological contributions, including the combination of Battese and
Coelli’s (1995) inefficiency model with an enhanced hyperbolic distance function. In addition,
the analysis separates feed into forage and concentrate variables. Previous studies typically com-
bine the feed variables, but, as seen in this study, there are significant differences in their effect on
GHG production. The analysis in the study also serves to identify areas of further research. For
example, the GHG emissions used in the econometric estimation are imputed rather than
observed, and so measurement error is an issue. Furthermore, there may be efficiency effects
attributable to differences in production environment that are not captured by the regional
dummy. This could be addressed through use of a stochastic metafrontier approach (Battese,
Prasada Rao, and O’Donnell, 2004; Jiang and Sharp, 2015). It would also be useful to examine
the question of emissions from dairy production within a pure environmental efficiency frame-
work. Overall, however, this study extends the limited literature that uses SFA to study farm-level
efficiency and GHGs and identifies policy-relevant implications.
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