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Abstract We exhibit a real Banach space M such that C(K, M) is almost transitive if K is the Cantor
set, the growth of the integers in its Stone–Čech compactification or the maximal ideal space of L∞. For
finite K, the space C(K, M) = M |K| is even transitive.
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1. Introduction

A Banach space X is almost transitive when the orbits of the isometry group are dense
in the unit sphere: given x, y ∈ X with ‖x‖ = ‖y‖ = 1 and ε > 0, there is a (linear,
surjective) isometry T : X → X such that ‖y − Tx‖ � ε. When this can be achieved
even for ε = 0, the isometry group acts transitively on the unit sphere and X is said to
be transitive.

Transitivity problems have spurred a moderate interest in Banach space theory since
its inception. The most important open problem in the area is whether Hilbert space
is the sole transitive separable Banach space. This seemingly untractable problem was
posed by Mazur in the 1930s and then recorded by Banach in [3]. We refer the reader
to [23] and the survey papers [4,5] for information on the topic.

Transitivity in spaces of continuous functions also attracted attention. Recently, Ram-
bla [22] and, independently, Kawamura [16] found a locally compact space L with CC

0 (L)
almost transitive in its natural supremum norm; needless to say, L is not a singleton.
This solved in a somewhat unexpected way a question raised by Wood in [25].

In this paper we present examples of Banach spaces of vector-valued functions that
are transitive or almost transitive. More precisely, we exhibit a real Banach space M

such that C(K, M) is almost transitive if K is the Cantor set, the growth of the integers
in its Stone–Čech compactification or the maximal ideal space of L∞. For finite K, the
space C(K, M) = M |K| is even transitive. This settles a problem previously considered
in [13, § 5] and posed explicitly in [1, Question 6.5].
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At the end of the paper we will use a variation on Kawamura–Rambla example to
answer a question of Pestov on amenability of almost-transitive groups of isometries.

1.1. Notation

Given a locally compact (Hausdorff) space L and a Banach space X, we write C0(L, X)
for the Banach space of all continuous functions f : L → X vanishing at infinity, equipped
with the norm ‖f‖ = supt∈L ‖f(t)‖. If L is compact, the subscript will be omitted. We
use the identification of C0(L, X) with the injective tensor product C0(L) ⊗̌ε X (see [9]
for proper definitions) mainly for notational purposes; indeed, if g ∈ C0(L) and x ∈ X,
then g ⊗ x : L → X is given by t �→ g(t)x. The characteristic function of the set B is
denoted by 1B ; the identity on X is denoted by IX .

We write X × Y for the product of the Banach spaces X and Y with the maximum
norm ‖(x, y)‖ = ‖x‖ ∨ ‖y‖. The same linear space with the norm (‖x‖p + ‖y‖p)1/p is
denoted X ⊕p Y . If (Xn) is a sequence of Banach spaces, then �∞(Xn) = {(fn) : fn ∈
Xn for all n and ‖(fn)‖∞ = supn ‖fn‖ < ∞}, with the obvious norm. We write X ≈ Y

to indicate that X is linearly isometric to Y , and K ∼ L means that K and L are
homeomorphic. Finally, the group of homeomorphisms of L is denoted H(L).

2. Spaces of vector-valued functions

The following remark leads to the sought-after counter-examples.

Lemma 2.1. If X is an almost-transitive space isometric to X×X and K is a compact
space whose topology has a base B (necessarily of clopen sets) such that B ∼ K ∼ Bc

for every B ∈ B, then C(K, X) is almost transitive.

Proof. Let us say that f : K → X is very simple if there is a decomposition K =
B1 ⊕ · · · ⊕ Bm, with Bk ∼ K such that f =

∑m
k=1 1Bk

⊗ xk. The hypothesis on K and
the Stone–Weierstrass Theorem imply that very simple functions are dense in C(K).
Therefore, very simple functions are dense in C(K, X) = C(K) ⊗̌ε X.

Suppose now we are given a decomposition K = B1 ⊕· · ·⊕Bm, with Bk ∼ K. Writing
K ⊕ m· · · ⊕ K = K × {1, . . . , m} and X × m· · · × X = Xm we have a homeomorphism
ϕ : K × {1, . . . , m} → K and an isometry

Tϕ : C(K, X) → C(K × {1, . . . , m}, X) = C(K, Xm)

taking f ∈ C(K, X) into the function x �→ (f(ϕ(x, k)))m
k=1. Notice that for f =∑m

k=1 1Bk
⊗ xk one has Tϕ(f) = 1K ⊗ (x1, . . . , xm).

We complete the proof by showing that the orbit of every (normalized) constant
function is dense in the unit sphere of C(K, X). Indeed, let g = 1K ⊗ y be any con-
stant function with ‖y‖ = 1 and let f =

∑m
k=1 1Bk

⊗ xk be a very simple function of
norm 1: ‖x1‖ ∨ · · · ∨ ‖xm‖ = 1. Take ϕ as before, so that Tϕf = 1K ⊗ (x1, . . . , xm)
and Tϕg = 1K ⊗ (y, . . . , y). As Xm is almost transitive (it is isometric to X), given
ε > 0, there is an isometry S of Xm such that ‖(x1, . . . , xm) − S(y, . . . , y)‖ < ε.
Now, if IC(K) denotes the identity on C(K), we can ‘extend’ S to an isometry on
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C(K, Xm) = C(K) ⊗̌ε Xm just by taking IC(K) ⊗ S, and it is pretty obvious that
‖f − Tg‖ < ε, where T = T−1

ϕ ◦ (IC(K) ⊗ S) ◦ Tϕ. �

The following are some compact spaces fulfilling the hypothesis of the lemma.

• The Cantor set ∆ = {0, 1}N.

• The growth of the integers in its Stone–Čech compactification: N
∗ = βN\N. Recall

that C(N∗) = �∞/c0.

• The maximal ideal space M of L∞(0, 1), so that C(M) = L∞(0, 1).

Some explanations are in order. That these compacta have the required property fol-
lows from the fact that they are totally disconnected (hence they have bases of clopen
sets) and, moreover, every non-empty clopen set is homeomorphic to the whole space.
For the Cantor set this follows from Hausdorff’s [15] characterization of ∆ as the only
totally disconnected, perfect, compact metric space. For N

∗ just follow the indications
given in [10, Problem 6S, p. 98]. As for the maximal ideal space of L∞(0, 1), suppose
that N is a non-empty clopen set of M. Then 1N is an idempotent of C(M) that cor-
responds to a unique idempotent in L∞(0, 1). Each (non-zero) idempotent in the latter
algebra has the form 1A, where A is a Borel subset of positive measure of (0, 1). We have
C(N) = 1N · C(M) � 1A · L∞(0, 1) = L∞(A) � L∞(0, 1) � C(M), where ‘�’ means that
the corresponding Banach algebras are isometrically isomorphic, and so N ∼ M.

It is perhaps worth noting that the relevant property of K is trivially stable by prod-
ucts; thus, we can combine the above examples to get new ones.

The following example provides the target space we need.

Example 2.2. A transitive Banach space M isometric to M × M .

Proof. The following construction was introduced in [6, Lemma 3.2] with a different
purpose. Let p(n) be a sequence of real numbers tending to ∞ and consider the spaces
Lp(n) = Lp(n)(0, 1). Let U be a non-trivial ultrafilter on the integers. Then M is the
ultraproduct of the family (Lp(n)) along U , that is,

M = [Lp(n)]U = �∞(Lp(n))/NU ,

where NU is the subspace of those (fn) ∈ �∞(Lp(n)) such that

lim
U(n)

‖fn‖p(n) = 0.

We refer the reader to [24] for information on ultraproducts. Here we only recall that
the norm in an ultraproduct (which is defined as a quotient norm) can be computed as

‖[(fn)]‖U = lim
U(n)

‖fn‖,

where [(fn)] denotes the class of (fn).
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Of course M could depend on U and p(n) but we do not need to be so specific.
The transitivity of M follows from the almost transitivity of the spaces Lp for p < ∞
(see [13, Theorem 1.2] or [23] and [6, Lemma 1.4]). Let us show that M = M ×M . Write
(0, 1) = A⊕B, where A and B are Borel sets of positive measure, or just take A = (0, 1

2 )
and B = [12 , 1). One has

M = [Lp(n)]U

= [Lp(n)(A) ⊕p(n) Lp(n)(B)]U

= [Lp(n)(A)]U × [Lp(n)(B)]U
≈ M × M.

Here, the only non-trivial equality is the third one. But for [(fn)] in M one has

‖[(fn)]‖U = lim
U(n)

‖fn‖p(n)

= lim
U(n)

‖1Afn + 1Bfn‖p(n)

= lim
U(n)

(‖1Afn‖p(n)
p(n) + ‖1Bfn‖p(n)

p(n))
1/p(n)

=
(

lim
U(n)

‖1Afn‖p(n)

) ∨ (
lim
U(n)

‖1Bfn‖p(n)

)
,

as desired. �

Example 2.3. Let K be one of the spaces ∆, N
∗ or M. Then C(K, M) is almost

transitive and so is c0(N, M). �

I strongly suspect C(N∗, M) is actually transitive but I have been unable to find a
proof. Of course, if K is finite, then C(K, M) = M |K| ≈ M is transitive, so M ‘itself’ is a
counter-example for the questions addressed in this note. The space M could be isomor-
phic to a C0(L), but not to any C0(L, X) unless L is finite or X is finite dimensional. And
this is so because every operator from M to a separable Banach space is weakly compact
(by the results in [2]), while C0(L, X) contains a complemented isomorph of c0 as long
as L is infinite and X is infinite dimensional: a well-known result by Cembranos [8].
In particular, M is not isomorphic to c0(M). I do not know whether it is isometric to
�∞(N, M) nor whether �∞ ⊗̌ε M = C(βN, M) is almost transitive. Notice that the former
space is much bigger than the latter.

Moving to smaller spaces, we have the following.

Example 2.4. A separable Banach space S such that C(∆, S) is almost transitive.

Proof. We construct S as a subspace of M using an adaptation of the method in [6].
Let M0 be any separable subspace of M . Then C(∆, M0) is a separable subspace of
C(∆, M) and we can find a countable group G0 of isometries of C(∆, M) such that for
every f, g ∈ C(∆, M0) and each ε > 0 there is T ∈ G0 such that ‖g − Tf‖ < ε. Now, let
X0 be the least G0-invariant subspace of C(∆, M) containing C(∆, M0).
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Let M1 be the least subspace of M containing the range of all functions in X0. Replac-
ing M0 by M1 and continuing in this way, we get an increasing system (Mn, Gn, Xn)
such that

• Mn is a separable subspace of M ,

• Gn is a countable subgroup of the isometry group of C(∆, M),

• given f, g ∈ C(∆, Mn) and ε > 0 there is T ∈ Gn such that ‖g − Tf‖ < ε,

• Xn is a separable Gn-invariant subspace of C(∆, M),

• Mn+1 contains the range of every f ∈ Xn, that is, Xn is a subspace of C(∆, Mn+1).

Finally, we set S =
⋃

n Mn. Clearly, C(∆, S) is almost transitive. In fact, the restriction
of the members in

⋃
n Gn acts almost transitively on the unit sphere of C(∆, S). �

Notice that S will be a sublattice of M if we enlarge Mn+1 to be the least sublattice of
M containing the range of every function in Xn. Proceeding in this way, one guarantees
that S is isomorphic to C(∆), by [6, Theorem 3.4]. In any case, C(∆, S) is a separable
almost-transitive space isometric to its square and having a good supply of M -projections.

One might consider Gurarĭı space [14] as the natural candidate for the target space in
the lemma. Gurarĭı space G was the first almost-transitive Lindenstrauss space appearing
in nature and it has been widely studied. However, there is no non-trivial decomposition
G = E × F . Indeed, it is known [18] that the extreme points are weakly∗ dense in the
unit ball of G∗. This cannot occur if G∗ = E∗ ⊕1 F ∗, with E∗ and F ∗ non-trivial, as they
are weakly∗ closed.

3. Almost-transitive groups of isometries

We take the opportunity here of answering a question in [19]. A topological group G is
said to be amenable if every continuous affine action of G on a compact convex set of
a locally convex space has a fixed point. By deleting all the italic words one obtains the
notion of an extremely amenable group. It is proved in [11] that the isometry groups
of the spaces Lp are extremely amenable in the strong operator topology (SOT) for
1 � p < ∞; the SOT in the space of operators L(X, Y ) is just the restriction of the
product topology of Y X . These results were generalized further in [12] and can be seen
in [20,21].

This motivates the question of whether the isometry group of an almost-transitive
Banach space must be extremely amenable in the SOT. Unfortunately, the answer is
negative, as we shall see now. In fact, we shall show that such a group is not necessarily
amenable.

Lemma 3.1. Let K be a homogeneous compact space and let K∗ be the locally com-
pact space obtained by deleting one point in K. If C0(K∗) is almost-positive transitive,
then C(K)/R is almost transitive under the quotient norm.
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Proof. Homogeneity means that, given p, q ∈ K, there is a homeomorphism φ of
K such that q = φ(p). This clearly implies that K∗ does not depend on the point
removed and also that K∗ is a non-compact, locally compact space whose one-point
compactification is K. Almost-positive transitivity means that, given f, g � 0 in the unit
sphere of C0(K∗) and ε > 0, there is an isometry T such that ‖g − Tf‖ � ε.

Next, observe that if [f ] denotes the class of f ∈ C(K) in the quotient C(K)/R, then

2‖[f ]‖ = sup
s,t∈P

|f(s) − f(t)| = max f − min f,

since the nearest constant to f is 1
2 (max f − min f). The isometries of C(K)/R were

computed in [7]: they have the form T [f ] = [±f ◦ ϕ], where ϕ ∈ H(K) and ± is either 1
or −1.

Let us see that C(K)/R is almost transitive. Take f, g ∈ C(K) such that ‖[f ]‖ =
‖[g]‖ = 1 and ε > 0. Replacing f and g by f − 1K min f and g − 1K min g, we may (and
do) assume that min f = min g = 0 and max f = max g = 2. Pick p such that f(p) = 0
and q such that g(q) = 0. Let σ ∈ H(K) such that σ(p) = q and put g′ = g ◦ σ. Taking
K∗ = K \ {p}, we have f, g′ ∈ C0(K∗), and since ‖f‖ = ‖g′‖ = 2 in C0(K∗) there is an
isometry T of C0(K∗) such that ‖g′ − Tf‖ � ε. By the Banach–Stone Theorem we have
‖g′ − f ◦ ϕ‖ � ε, where ϕ ∈ H(K∗) is the homeomorphism associated to T . Extending
ϕ to a homeomorphism of P (which we still call ϕ), it is now clear that the self-map of
C(K)/R given by S[h] = [h ◦ ϕ ◦ σ−1] is an isometry and also that ‖[g] − S[f ]‖ � ε in
the norm of C(K)/R. �

Example 3.2. An almost-transitive Banach space whose isometry group is not
amenable in the SOT.

Proof. Kawamura and Rambla proved that if P∗ is obtained by deleting one point
of the pseudo-arc P , then CC

0 (P∗) is almost transitive and so C0(P∗) is almost-positive
transitive: actually, this is the crux, in both [16] and [22]. The pseudo-arc plays a major
role in continuum theory; an account is given in [17]. As P is homogeneous, we get from
Lemma 3.1 that C(P )/R is almost transitive. But the isometry group G of C(P )/R is
algebraically isomorphic to H(P ) × {1,−1}, by the result in [7] we mentioned above.
(The presence of the factor {±1} already prevents G from being extremely amenable but
we want to see that it is not amenable.) Let us represent the isometries of C(P )/R as
pairs T = (u, ϕ), where u = ±1 and ϕ is a homeomorphism of P , so that T [f ] = [uf ◦ϕ].
Then a net Tα = (uα, ϕα) converges to IC(P )/R = (1, IP ) in the SOT if and only if, for
every f ∈ C(P ), one has

[f − uαf ◦ ϕα] → 0

in the norm of C(P )/R. It is easily seen that uα = 1 for α sufficiently large, so we in
fact have [f − f ◦ ϕα] → 0. On the other hand, G = ±H(P ) acts by isometries both
on C(P )/R and on C(P ), and so it carries two topologies, namely the (C(P )/R)-SOT
and the C(P )-SOT. For reasons that will become clear later, we must show that these
topologies agree on H(P ). This obviously implies that they also agree on G.
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So let (ϕα) be a net converging to the identity in the (C(P )/R)-SOT; that is, for every
f ∈ C(P ), one has

‖[f − f ◦ ϕα]‖ → 0.

We must show that, in fact, ‖f − f ◦ ϕα‖ → 0. Fix f ∈ C(P ) and let cα be the nearest
constant to f − f ◦ ϕα. We have

‖f − f ◦ ϕα − cα‖ = ‖[f − f ◦ ϕα]‖.

Let us see that f − f ◦ ϕα is pointwise null. This forces (cα) to be null and

‖f − f ◦ ϕα‖ � |cα| + ‖[f − f ◦ ϕα]‖ → 0.

It clearly suffices to check that ϕα converges pointwise to IP . To see this, take two
different points s, t ∈ P and consider the function (recall that P is metrizable)

g(x) =
d(x, t)

d(x, t) + d(x, s)
, x ∈ P.

Then 0 � g � 1, and g takes the value 0 only at t and takes the value 1 only at s. As
‖[g − g ◦ ϕα]‖ → 0 in C(P )/R, we have, in particular, that

g(s) − g(ϕα(s)) + g(ϕα(t)) − g(t) → 0

as α increases. Hence,
g(ϕα(s)) − g(ϕα(t)) → 1,

which implies that ϕα(s) → s and ϕα(t) → t.
This shows that the action of G on C(P ) is continuous in the SOT. Now, we identify

the dual of C(P ) as M(P ), the space of regular (signed) Borel measures on P through
the pairing 〈µ, f〉 =

∫
P

f dµ and we put the corresponding weak∗ topology on M(P ).
The ‘dual action’

(G, SOT) × (M(P ), w∗) → (M(P ), w∗)

given by 〈(u, ϕ)µ, f〉 = 〈µ, f◦ϕ〉 is continuous. Let Π be the set of all probability measures
in M(P ). This is a weak∗ compact set invariant under the given action. We are about
to see that G has no fixed point in Π. Indeed, suppose that µ ∈ M(P ) is a fixed point,
so that 〈µ, f〉 = 〈µ, f ◦ ϕ〉 for every f ∈ C(P ) and every ϕ ∈ H(P ). It is easily seen that
there is a constant c � 0 such that 〈µ, g〉 = c whenever 0 � g � 1 attains the values 0
and 1 on P . This implies that c = 0 and so µ = 0, which does not belong to Π. �

With a little more effort one can see that, for every countably incomplete ultrafilter
U , the space (C(P )/R)U is transitive, yet its isometry group fails to be SOT-amenable,
let alone extremely amenable.
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