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IDENTIFYING RESTRICTIONS FOR
FINITE PARAMETER CONTINUOUS
TIME MODELS WITH DISCRETE TIME

DATA

JASON R. BLEVINS
Ohio State University

This paper revisits the question of parameter identification when a linear continuous
time model is sampled only at equispaced points in time. Following the framework
and assumptions of Phillips (1973), we consider models characterized by first-order,
linear systems of stochastic differential equations and use a priori restrictions on the
model parameters as identifying restrictions. A practical rank condition is derived to
test whether any particular collection of at least �n/2� general linear restrictions on
the parameter matrix is sufficient for identification. We then consider extensions
to incorporate prior restrictions on the covariance matrix of the disturbances, to
identify the covariance matrix itself, and to address identification in models with
cointegration.

1. IDENTIFICATION AND ALIASING IN CONTINUOUS TIME MODELS

This paper develops identification results for first-order, linear systems of stochas-
tic differential equations of the form

dy(t) = Ay(t)dt + ζ(dt) (1)

in the case where observations of y(t) are only available at discrete, equispaced
points in time separated by intervals of length h. Here, y(t) is a stationary n × 1
random vector, A is a parameter matrix whose elements are real numbers, and
ζ(dt) is a vector of white noise innovations with covariance matrix � dt . The exact
discrete time process yt = y(th) corresponding to the continuous time system in
(1) is the vector autoregressive (VAR) process

yt = Byt−1 + εt , (2)

B = exp(h A) ≡
∞∑

j=0

(h A) j

j!
= I +h A + (h A)2

2!
+ (h A)3

3!
+ . . . , (3)
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where εt = ∫ h
0 exp(s A)ζ(th − ds) is a serially independent process with covari-

ance matrix � = ∫ h
0 exp(s A)� exp(s A�)ds. See McCrorie (2000) for a formal

derivation.
We approach the identification problem from the same viewpoint as Phillips

(1973), that economic models can provide natural identifying restrictions in
the form of restrictions on the parameter matrix A which can serve to rule
out otherwise observationally equivalent parameter matrices. He noted that in
the absence of such information there are a countably infinite number of other
matrices in Rn×n that are observationally equivalent to A in discrete time. Hansen
and Sargent (1983) showed that there was identifying information arising from
the positive definiteness of the covariance matrix �, but still A is unidentified in
general without restrictions.

The fundamental difficulty is that the matrix equation (3) does not, in general,
admit a unique solution (Coddington and Levinson, 1955, Ch. 3.1). In other
words, the matrix exponential is not necessarily injective. However, for iden-
tification purposes we do not need uniqueness per se—or even a unique real
solution—but only uniqueness within some set A ⊆ R

n×n of matrices that sat-
isfy our assumptions and prior restrictions (see, e.g., Koopmans, 1949; Hurwicz,
1950). Failing to rule out multiple observationally equivalent structural matrices
A results in an incompleteness which may yield uninterpretable estimates.
Hamerle, Nagl, and Singer (1991) accordingly described this identification prob-
lem as “essential” for dynamic models in the social sciences but concluded that it
had largely been ignored.

Our results build primarily on the work of Phillips (1973). He showed that
in an n × n system, as few as �n/2� linear restrictions on A could be sufficient
for identifying A and illustrated this in an example with n = 3, which was also
discussed in Phillips (1972), where he showed that a single zero restriction on an
element of A was sufficient to identify the entire matrix A.1 Then, in two theorems
he established formal rank conditions under which, for general n × n systems,
homogeneous linear restrictions on a particular row or column of A could be used
to identify that row or column of A.

This paper reinforces and extends the results of Phillips (1973) in several di-
rections. First, in Section 2, we revisit the problem under the same assumptions
and derive a practical rank condition involving only identified quantities that can
be used to determine whether any particular �n/2� linear restrictions on A of a
fully general form are sufficient for identification. We illustrate this result in an
example with n = 3 and then consider an extension to models with cointegration.
Then, in Section 3, we show that restrictions on the covariance matrix � can serve
as identifying conditions for A and we consider joint identification of A and �.

As a practical matter, we note that in applications the coefficient and covariance
matrices are typically functions of some underlying, lower-dimensional parame-
ters, say A(θ) and �(θ,μ). We focus on identification of A and � themselves, but
one could also consider identification of (θ,μ) directly, which may either simplify
or complicate the problem.
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FIGURE 1. The Aliasing Problem in the Frequency Domain.
Plots of f (t ; m) = sin(2πmt) for t ∈ [0,4] and m = 1/4 (solid), m = −3/4 (long dash), and m = 5/4 (short dash).

The identification problem we address is also known as the aliasing problem
and is perhaps most obvious in the frequency domain. Figure 1 depicts three sine
waves which have different frequencies but are observationally equivalent when
sampled at discrete intervals of length h = 1. A related phenomenon occurs in
models characterized by (1), where multiple matrices A may be observationally
equivalent when sampled at discrete intervals of length h. Whether this is the case
depends critically on the spectrum of the parameter matrix A.

An early interest in continuous time regression models (Phillips, 1970, 1972;
Sims, 1971; Geweke, 1978) provided the initial motivation for studying this
identification problem (Phillips, 1973; Hansen and Sargent, 1983). The ques-
tion remains relevant due to continued interest in continuous time models in
economics, including recent theoretical and empirical work involving contin-
uous time games (Doraszelski and Judd, 2012; Arcidiacono, Bayer, Blevins,
and Ellickson, 2012; Schiraldi, Smith, and Takahashi, 2012). Our results are
also relevant to applications in many other fields such as macroeconomics
(Bergstrom, 1988; Bergstrom and Nowman, 2007), finance (Baxter and Rennie,
1996), and input-output analysis (Sinha and Lastman, 1982). See Yu (2014) for
a survey of work by Phillips involving continuous time models in a variety of
settings.

There are several other known sufficient conditions for identification in the gen-
eral model and in some special cases that take the form of identifying restrictions
on the matrix B (Culver, 1966; Cuthbert, 1972, 1973) and alternative or irreg-
ularly spaced sampling schemes (Cuthbert, 1973; Singer and Spilerman, 1976;
Hansen and Sargent, 1983). However, even in light of these existing results there
is significant scope for expanding the set of known identifying restrictions. We
briefly outline some other known sufficient conditions for identification below. In
the interest of brevity, we refer readers interested in estimation methods to recent
surveys by Sørensen (2004), Fan (2005), Aı̈t-Sahalia (2007), Bandi and Phillips
(2009), McCrorie (2009), and Phillips and Yu (2009).

Mathematical treatments of the aliasing problem have taken a “top down” ap-
proach and focused on finding conditions on B that are sufficient for identification
of A. For example, it follows from results of Culver (1966) that if all eigenval-
ues of B = (bi j ) are positive real numbers and no Jordan block belonging to any
eigenvalue is repeated, then A is identified. In the special case where B is a dis-
crete time Markov transition matrix corresponding to an infinitesimal generator
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matrix A, other sufficient conditions are mini bii > 1/2 (Cuthbert, 1972) and
det(B) > e−π (Cuthbert, 1973). However, in cases where an underlying economic
model is defined from the “bottom up”, it may be difficult to determine when such
conditions on the matrix B are consistent with the assumptions and implications
of the economic model.

There are also two important results that are useful when the researcher can
control the sampling interval h. It is well known that for every parameter matrix
A, there exists an interval h such that A is identified when h ≤ h (Cuthbert, 1973;
Singer and Spilerman, 1976; Hansen and Sargent, 1983). Furthermore, if the dis-
crete time process can be sampled at two intervals h1 and h2, where h2 �= h1k
for some integer k, then A is identified (Singer and Spilerman, 1976, 5.1). Unfor-
tunately, the applicability of these results is limited: the researcher may not have
sufficient a priori knowledge about the matrix A to determine the value of h and in
many studies the sampling frequency is pre-determined and fixed (e.g., quarterly
or annual) and cannot be chosen by the researcher.

The cases that remain are important and frequently encountered and they are
the focus of the remainder of this paper. Researchers routinely work with datasets
for which they have no control over how the observations are sampled. When n
is moderately large or when the known restrictions on A are inhomogeneous or
involve restrictions across rows or columns of A, existing conditions for identi-
fication may not be practical or even applicable. Establishing new conditions for
identification is therefore important for a large subset of empirical studies using
continuous time models. In the following, we derive conditions for identification
via restrictions on the entire matrix A and show how to apply them in the contexts
of a simple continuous time regression model.

2. IDENTIFICATION VIA LINEAR RESTRICTIONS ON THE MATRIX A

Let A ⊆ R
n×n denote the parameter space of admissible matrices A that satisfy

our maintained assumptions, stated below, as well as a collection of linear prior
restrictions on A, to be chosen by the researcher. Let A0 ∈A denote the parameter
matrix which generated the observable data. The starting point for our analysis is
the population matrix B0 = exp(h A0) from the discrete time model in (3), which
is identified from discrete time observations {yt }.

DEFINITION. A0 is identified in A if A0 is the unique solution to (3) in A for
B = B0.

To show that A0 is identified, we must establish that the assumptions and
prior restrictions that define A are such that the matrix exponential equation
B0 = exp(h A) has a unique solution A = A0 in A. We proceed using the same
framework and two main assumptions as Phillips (1973).

Assumption 1. The matrix A0 has distinct eigenvalues, all of which have neg-
ative real parts.
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Assumption 2. The eigenvalues of the matrix A0 do not differ by an integer
multiple of 2π i/h.

Assumption 1 is sufficient for A0 to be diagonalizable and we exploit this in our
proofs. The second part of the assumption, that the eigenvalues have negative real
parts, corresponds to a stationarity assumption. This assumption rules out models
with cointegration, where A0 has a repeated eigenvalue equal to zero, as well as
models where A0 is a scalar multiple of the identity matrix. Although stationary
models are the main focus of this section, we also consider cointegration briefly in
Section 2.2.

Assumption 2 only rules out models where two or more eigenvalues are con-
gruent modulo 2π i/h. Our proofs make use of the particular structure of the
spectral decomposition of alternate solutions A �= A0 under this assumption. We
note that the set of matrices A0 in Rn×n which do not satisfy Assumptions 1 and
2 is negligible.2

Even under these assumptions, A0 is not identified in general without additional
restrictions. Phillips (1973) demonstrated that �n/2� linear restrictions on A could
be sufficient for identifying A. His Theorems 1 and 2 establish rank conditions
under which n − 1 linear, homogeneous restrictions on a single row or column
of A0 are sufficient to identify that row or column. Specifically, these restrictions
were of the form Ri a0

i = 0 where (a0
i )� is the i-th row of A0 and Ri is a k × n

matrix that imposes k restrictions on a0
i . Analogous restrictions can be imposed

on the columns of A0. He showed that if the matrix Ri (A0)� has rank n −1, then
a0

i is identified and that if n − 1 rows or columns of A0 are identified, then the
remaining row or column is also identified.

We derive a practical rank condition for establishing identification of the entire
matrix A0 ∈ A with �n/2� or more linear restrictions which can be inhomoge-
neous and can involve elements of A0 in arbitrary rows and columns. Formally,
we define A to be the set of n × n matrices A0 that satisfy Assumptions 1 and 2
and a collection of k linear restrictions of the form

R vec(A0) = r, (4)

where R is a k × n2 matrix, r is a k × 1 vector, and vec(A0) denotes the vector
obtained by stacking the columns of A0. This includes all possible linear, (poten-
tially) inhomogeneous restrictions on A0.3

Our approach is to restate the identification problem in terms of a complete
system of linear equations in n2 unknowns—based on the vectorization of A0—
which allows us to precisely characterize a rank condition that is sufficient for
identification. At least �n/2� equations are implications of the prior restrictions on
A0 in (4), provided by the researcher. The remaining equations are derived from
known properties of the inverse mapping from B0 to A, which we turn to now.

Phillips (1973) showed that under Assumptions 1 and 2 any real solution A is
related to A0 by

A = V (�+ D)V −1 = A0 + V DV −1, (5)

https://doi.org/10.1017/S0266466615000353 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466615000353


744 JASON R. BLEVINS

where � is a diagonal matrix containing the eigenvalues λ1, . . . ,λn of A0, V is a
nonsingular matrix whose columns are the eigenvectors of A0, and D is a diagonal
matrix of the form

D =
⎡
⎣0 0 0

0 M 0
0 0 −M

⎤
⎦ , (6)

with M = diag(m) = diag(m1, . . . ,mρ), mi = 2π i
h m̃i , and m̃i ∈ Z for i = 1, . . . ,ρ

where 2ρ is the number of complex eigenvalues4 of A0. Without additional
restrictions on A0, there may be multiple real solutions A with different com-
plex eigenvalues, corresponding to matrices M �= 0. Yet, it is apparent from the
representation in (5) and (6) that all possible real solutions A have the same eigen-
vectors and real eigenvalues, meaning that those features are identified.

LEMMA 1. If Assumptions 1 and 2 hold, then V , ρ, and all real eigenvalues
λ1, . . . ,λn−2ρ of A0 are identified, where V is the matrix of eigenvectors of A0

and 2ρ is the number of complex eigenvalues of A0. Furthermore, if ρ = 0, then
A0 is identified.

Any matrix A ∈A that satisfies exp(h A) = B0 must also satisfy the restrictions
in (4), which implies Rvec(V DV −1) = 0. Therefore, the restrictions on A0 imply

R(U ⊗ V )vec(D) = 0, (7)

where U = V −� denotes the transpose of V −1, U ⊗ V is a nonsingular n2 × n2

matrix, vec(D) is an n2 ×1 vector of unknowns, and hence 0 is the k ×1 vector of
zeros. This system is necessarily rank deficient unless there are k ≥ n2 restrictions.
However, we can also use the structure of D in (6) to complete the system in (7).
Many of the elements of D are zeros and the nonzero elements can be determined
from the ρ complex eigenvalues and their complex conjugates. The following
Lemma establishes that ρ restrictions can indeed be sufficient for identification of
A0. The proof, along with all subsequent proofs, appears in the Appendix.

The Lemma makes use of an n2 ×n2 permutation matrix P defined so that

P vec(D) = [−mρ . . . −m1 mρ . . . m1 0 . . . 0
]�

. (8)

In other words, the first n rows of P are the vectors e�
n2 ,e�

(n−1)n−1,e�
(n−2)n−2,

. . . ,e�
1 , where e�

i denotes row i of the n2 ×n2 identity matrix. Since the locations
of the complex eigenvalues in � and �+ D agree, this definition of P ensures that
the first 2ρ elements of Pvec(�) are the 2ρ complex eigenvalues of A0, which
are followed by the n − 2ρ real eigenvalues, which are in turn followed by the
remaining n(n −1) elements of �, which are all zeros, in any order.

LEMMA 2. Suppose Assumptions 1 and 2 are satisfied and define the parti-
tioned matrix5

� = [
�1:2ρ �2ρ+1:n2

] ≡
[

R(U ⊗ V )P�
Iρ Iρ 0n2−2ρ

]
,
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where P is a permutation matrix defined as in (8). If rank(�1:2ρ) = 2ρ, where 2ρ
is the number of complex eigenvalues of A0, then A0 is identified.

Remark. By Assumption 1, the matrix of eigenvectors V and the number of
complex eigenvalues 2ρ are identified and therefore all quantities needed to check
the rank condition in Lemma 2 are identified.

The following theorem gives a sufficient rank condition in terms of δ = �n/2�
rather than ρ. The condition may be stronger than necessary, but is still relatively
mild; the main benefit is that the condition may be more useful in practice than
Lemma 2 because it does not require determining ρ in advance.

THEOREM 1. Suppose Assumptions 1 and 2 are satisfied and define the parti-
tioned matrix

 = [
1:2δ 2δ+1:n2

] ≡
[

R(U ⊗ V )P�
Iδ Iδ 0

]
,

where P is a permutation matrix defined as in (8). If rank(1:2δ) = 2δ, then A0 is
identified.

Remark. As noted in an example of Phillips (1973, p. 357), the necessary
conditions alone are enough to identify all structures except those in a set of
zero Lebesgue measure. This intuition extends directly to the general case. In
other words, role of the rank condition on the matrix  in Theorem 1 (and � in
Lemma 2) is to rule out a measure-zero subset ofA for which A0 is not identified.

Therefore, the model is generically identified (i.e., for almost every A0 ∈ A)
even without the rank condition provided that rank(R) ≥ δ.

2.1. Example: A Simple Continuous Time Regression Model

As an example, consider the system (1) in the n = 3 case:⎡
⎣dy1(t)

dy2(t)
dy3(t)

⎤
⎦ =

⎡
⎣a0

11 a0
12 a0

13
a0

21 a0
22 a0

23
a0

31 a0
32 a0

33

⎤
⎦

⎡
⎣y1(t)dt

y2(t)dt
y3(t)dt

⎤
⎦+

⎡
⎣ζ1(dt)

ζ2(dt)
ζ3(dt)

⎤
⎦ .

The matrix A0 = (a0
i j ) contains 9 parameters. In this three-equation case Phillips

(1972, 1973) showed that a single zero restriction on one of the elements A0 could
be sufficient to identify the remaining parameters. We revisit this example to illus-
trate how to apply the conditions of Theorem 1 to establish identification, leading
to a condition that is identical to the one derived by (Phillips, 1973, pp. 357–358).

First, we note that

vec(A0) = [
a0

11 a0
21 a0

31 a0
12 a0

22 a0
32 a0

13 a0
23 a0

33

]�
.

We consider the single homogeneous restriction characterized by

R = [
0 0 0 0 0 0 1 0 0

]
and r = [

0
]
,
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which restricts a0
13 to be zero (i.e., it excludes y3(t) from the equation for dy1(t)).

Recall for any observationally equivalent matrix A �= A0, A = A0 + V DV −1

with

D =
⎡
⎣0 0 0

0 m1 0
0 0 −m1

⎤
⎦ .

For the example restriction matrix R given above, we have

R(U ⊗ V ) = [
u31v11 u31v12 u31v13 u32v11 u32v12 u32v13 u33v11 u33v12 u33v13

]
,

where U = (ui j ) and V = (vi j ). The permutation matrix P places the (3,3), (2,2),
and (1,1) elements of D first. These correspond to elements 9, 5, and 1 of vec(D),
so the permutation matrix is of the form P� = [

e9 e5 e1 . . .
]
.

To verify the rank condition of Theorem 1, we can check the determinant of

1:2 =
[

u33v13 u32v12
1 1

]
,

which is det(1:2) = u33v13 −u32v12. Therefore, the 3×3 matrix A0 is identified
with only a single zero restriction arising from the exclusion of the third variable
from the first equation as long as u33v13 �= u32v12.

Since the second and third columns of V are complex conjugate pairs of eigen-
vectors, we have det(1:2) = u32v12 −u32v12 = −2Im(u32v12), where Im denotes
the imaginary part. It follows that identification fails only for matrices A0 for
which Im(u32v12) = 0, which is equivalent to the condition obtained by Phillips
(1973) on p. 385.6 He explored the implications of this condition for the matrix A0

and showed that identification fails only for a set of matrices in A with Lebesgue
measure zero. Hence, in this 3 × 3 example a single zero restriction is sufficient
to identify almost all structural matrices A0.

2.2. A Remark on Cointegration

We now briefly turn to models with cointegration, where A0 has a zero eigenvalue
with multiplicity n − p and so A0 = FG�, where F and G are n × p matrices of
full column rank and where G�y(t) are the p linear cointegrating relations. In
previous work, Phillips (1991) showed that there is no aliasing problem for the
long run equilibrium submatrix H in triangular systems of the form

y1(t) = H y2(t)+υ1(t),

dy2(t) = υ2(dt).

Such systems are special cases of (1) where A0 = FG� with F = [ I 0 ]� and
G = [−I H ]. Kessler and Rahbek (2004) showed that if all eigenvalues of A0

are real and no elementary divisors of A0 are repeated, then the cointegration
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spaces spanned by the columns of F and G� are identified (even if F and G
are not themselves identified). Here, we consider the following alternative to
Assumption 1 for models with p cointegrating relations. We note that p is identi-
fied since the eigenvalues of B0 are μj = exp(hλj ), where λj are the eigenvalues
of A0 (Gantmacher, 1959, p. 240).

Assumption 3. The matrix A0 has p distinct nonzero eigenvalues and an eigen-
value equal to zero with algebraic and geometric multiplicity n − p.

THEOREM 2. Suppose Assumptions 2 and 3 are satisfied and define δp ≡
�p/2�. If rank(1:2δp ) = 2δp, then A0 is identified.

Although the aliasing problem is potentially worse under Assumption 3, it pro-
vides new information about A0 in the form of the value and multiplicity of n − p
eigenvalues. The net result is that we can reduce the minimum number of required
restrictions to δp < δ = �n/2�.

3. IDENTIFICATION VIA LINEAR RESTRICTIONS ON THE MATRICES
A AND �

In the previous section, we focused on identification of the coefficient matrix A0

using only information about the discrete time coefficient matrix B0. However,
Hansen and Sargent (1983) considered the problem of joint identification of both
the coefficient and covariance matrices (A0,�0) using information contained in
both the discrete time coefficient and covariance matrices (B0,�0). They showed
that �0 contains identifying information about A0 over and above that contained
in B0.

McCrorie (2003) also studied joint identification of (A0,�0) by defining an
augmented matrix �0 and exploiting a result of Van Loan (1978, Theorem 1) on
the matrix exponential:

�0 ≡
[

A0 �0

0 (−A0)�
]

and exp(h�0) =
[

B0 B0�0

0 (B0)−�
]
.

If the eigenvalues of �0 are real and no elementary divisors are repeated (a nec-
essary and sufficient condition for a unique matrix logarithm), then (A0,�0) is
identified (McCrorie, 2003, Theorem 1).

We now extend Theorem 1 by considering general linear restrictions on A0 and
�0 of the form

R vec
(

A0 �0
) = r, (9)

where R is a restriction matrix of dimension k × 2n2. We show that despite hav-
ing a second n × n matrix to identify, it can be sufficient for R to contain only
δ = �n/2� restrictions as before. This is possible for two reasons. First, under our
assumptions it follows from Lemma 3 of Kessler and Rahbek (2004) that iden-
tification of A0 is sufficient for identification of �0. Second, since �0 contains
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identifying information about A0 it seems likely that restrictions on �0 could
provide identifying restrictions on A0. As in Theorem 1, provided that a similar
rank condition holds we can use the same number of restrictions—now potentially
involving A0, �0, or both—to identify both matrices.

THEOREM 3. Suppose Assumptions 1 and 2 are satisfied and for δ = �n/2�
and L = [

In 0n×n
]

define the partitioned matrix

 = [
1:2δ 2δ+1:4n2

] ≡
[

R(U ⊗ LV )P�
Iδ Iδ 0δ×(4n2−2δ)

]
.

If rank(1:2δ) = 2δ, then both A0 and �0 are identified.

3.1. Numerical Examples

To give some numerical examples, we revisit a model used by Phillips (1972) for
a series of Monte Carlo experiments. The particular coefficient and covariance
matrices he used were

A0 =
⎡
⎣−0.6 0.45 0

4 −0.8 −1.6
0 0.8 −0.4

⎤
⎦ and �0 =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ .

Therefore, the �0 matrix in this case is

�0 =
[

A0 �0

0 (−A0)�
]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.6 0.45 0 1 0 0
4 −0.8 −1.6 0 1 0
0 0.8 −0.4 0 0 1
0 0 0 0.6 −4 0
0 0 0 −0.45 0.8 −0.8
0 0 0 0 1.6 0.4

⎤
⎥⎥⎥⎥⎥⎥⎦

.

We will show how A0 and �0 can be identified using a single prior restriction on
an element of �0, corresponding to a single element of either A0 or �0.

Given the form of �0, its eigenvalues are those of A0 and −A0. Hence, the six
eigenvalues of �0 are λ1 = −1.57, λ2 = −0.12+0.37i , λ3 = −0.12−0.37i , λ4 =
1.57, λ5 = 0.12+0.37i , and λ6 = 0.12−0.37i . These are the diagonal entries of
the 6×6 matrix �. The corresponding 6×6 eigenvector matrix is

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.36 −0.34+0.09i −0.34−0.09i −0.42 0.35+0.13i 0.35−0.13i
0.77 −0.29+0.38i −0.29−0.38i −0.56 0.45+0.37i 0.45−0.37i

−0.53 −0.81 −0.81 −0.12 0.72 0.72
0 0 0 −0.65 0.06i −0.06i
0 0 0 0.16 0.01+0.01i 0.01−0.01i
0 0 0 0.22 0.01−0.03i 0.01+0.03i

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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Again, given the form of �0 the first three columns of V are the eigenvectors
of A0 stacked above n zeros. Since the eigenvectors of �0 and exp(h�0) are the
same, the matrices V and U = V −� here are identified. The  matrix in this case,
which is also identified, is

 =
[

R(U ⊗ LV )P�
1 1 01×34

]
with P� = [

e9 e5 e1 e2 . . . e36
]
.

First, recall the restriction a0
13 = 0 considered previously. This homogeneous

restriction is now characterized by the 1 ×18 vector R = [e�
7 ] rather than a 1×9

vector (although the leading nine elements are the same). In this case we have

1:2 =
[

0.45+0.46i 0.45−0.46i
1 1

]

and det(1:2) = 0.92i �= 0. Similarly, the restriction a0
31 = 0 would be sufficient.

We also consider restrictions on �0 = (σ 0
i j ). �0 was assumed to be the 3 × 3

identity matrix, which yields nine possible prior restrictions on individual ele-
ments of �0. First, consider the zero restriction σ 0

21 = 0 represented by R = [e�
11]

and r = [0]. In this case,

1:2 =
[−0.08+11.23i −0.08−11.23i

1 1

]

and det(1:2) = 22.46i �= 0, so the rank condition is again satisfied. Second, con-
sider the restriction σ 0

11 = 1 represented by R = [e�
10] and r = [1]. This yields

1:2 =
[−5.11+6.51i −5.11−6.51i

1 1

]

with det(1:2) = 13.02i �= 0. In fact, in this example the rank condition holds for
all nine of the possible single-element restrictions on �0.

4. CONCLUSION

We have established a new rank condition for identification of the parameter ma-
trix A0 in a linear, first-order system of continuous time stochastic differential
equations when only equispaced observations are available. The condition can be
used to determine whether any particular set of �n/2� general linear restrictions
on the n × n parameter matrix A0 are sufficient for identification of A0. We also
considered two extensions. The first shows that we can identify both A0 and �0

using prior restrictions on A0 or �0 (or both). The second shows that in models
with p cointegrating relations, as few as �p/2� restrictions can be sufficient to
identify A0.
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This paper only considered linear restrictions on the parameter matrices. We
also focused on models where the nonzero eigenvalues are distinct. Considering
nonlinear restrictions implied by a structural model and allowing for repeated
nonzero eigenvalues are natural directions for future work in this area.

NOTES

1. Here �x� is the largest integer smaller than or equal to x .
2. An alternative assumption used by McCrorie (2003) and Kessler and Rahbek (2004) is that

the eigenvalues of A0 are real and that no Jordan block occurs more than once. Due to the mono-
tonic relationship between the eigenvalues of A0 and B0 (with B0 being the matrix exponential
of A0), it is also sufficient for A0 to have distinct, real eigenvalues. In contrast, Assumptions 1
and 2 allow for complex eigenvalues provided that they are neither repeated nor congruent modulo
2π i/h.

3. Phillips (1973) also discussed restrictions of the form f �
r A0gr = hr with hr ∈ R for r =

1, . . . ,k, which are more general than restrictions on individual rows or columns of A0 but less general
than those we consider. As an example, consider the single restriction on a 2 × 2 matrix A0 = (ai j ),
represented by R = [1,0,0,1] and r = [0], which requires the sum of the diagonal elements to be zero:
Rvec(A0) = a11 + a22 = 0. On the other hand, it is not possible to choose vectors f1 and g1 such
that f �

1 A0g1 = a11 +a22. To see this, note that f �
1 A0g1 = f11g11a11 + f12g11a21 + f11g12a12 +

f12g12a22 and we cannot simultaneously satisfy both the requirements that f11g11 = f12g12 = 1 and
f12g11 = f11g12 = 0.

4. Note that there must be an even number of complex eigenvalues because they appear in complex
conjugate pairs: if λ is a complex eigenvalue of A with eigenvector v , then Av = λv implies that
Av = λv .

5. Here �i : j denotes the matrix formed by columns i, i +1, i +2, . . . , j of �.

6. Mapping our notation to that of Phillips (1973), we have u33 = s3, u32 = s3, v13 = k1, and
v12 = k1 and so the condition becomes Im(k1s3) = 0. I thank an anonymous referee for pointing out
this equivalence.

REFERENCES

Aı̈t-Sahalia, Y. (2007) Estimating continuous-time models using discretely sampled data. In T.P.R.
Blundell and W.K. Newey (Eds.), Advances in Economics and Econometrics: Theory and
Applications, Ninth World Congress. Cambridge University Press.

Arcidiacono, P., P. Bayer, J.R. Blevins, & P.B. Ellickson (2012) Estimation of dynamic dis-
crete choice models in continuous time. Working Paper 18449, National Bureau of Economic
Research.

Bandi, F.M. & P.C.B. Phillips (2009) Nonstationary continuous-time processes. In Y. Aı̈t-Sahalia and
L.P. Hansen (Eds.), Handbook of Financial Econometrics, Volume 1, Chapter 3. Amsterdam: North
Holland.

Baxter, M. & A. Rennie (1996) Financial Calculus: An Introduction to Derivative Pricing. Cambridge
University Press.

Bergstrom, A.R. (1988) The history of continuous-time econometric models. Econometric Theory 4,
365–383.

Bergstrom, A.R. & K.B. Nowman (2007) A Continuous Time Econometric Model of the United
Kingdom with Stochastic Trends. Cambridge: Cambridge University Press.

Coddington, E.A. & N. Levinson (1955) Theory of Ordinary Differential Equations. McGraw-Hill.
Culver, W.J. (1966) On the existence and uniqueness of the real logarithm of a matrix. Proceedings

of the American Mathematical Society 17, 1146–1146.

https://doi.org/10.1017/S0266466615000353 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466615000353


IDENTIFYING RESTRICTIONS FOR CONTINUOUS TIME MODELS 751

Cuthbert, J.R. (1972) On uniqueness of the logarithm for Markov semi-groups. Journal of the London
Mathematical Society s2-4, 623–630.

Cuthbert, J.R. (1973) The logarithm function for finite-state Markov semi-groups. Journal of the
London Mathematical Society s2-6, 524–532.

Doraszelski, U. & K.L. Judd (2012) Avoiding the curse of dimensionality in dynamic stochastic
games. Quantitative Economics 3, 53–93.

Fan, J. (2005) A selective overview of nonparametric methods in financial econometrics. Statistical
Science 20, 317–357.

Gantmacher, F.R. (1959) The Theory of Matrices, Volume 1. New York: Chelsea.
Geweke, J. (1978) Temporal aggregation in the multiple regression model. Econometrica 46,

643–661.
Hamerle, A., W. Nagl, & H. Singer (1991) Problems with the estimation of stochastic differential

equations using structural equations models. Journal of Mathematical Sociology 16, 201–220.
Hansen, L.P. & T.J. Sargent (1983) The dimensionality of the aliasing problem in models with rational

spectral densities. Econometrica 51, 377–387.
Hurwicz, L. (1950) Generalization of the concept of identification. In T.C. Koopmans (Ed.), Statistical

Inference in Dynamic Models. New York: John Wiley & Sons.
Kessler, M. & A. Rahbek (2004) Identification and inference for multivariate cointegrated and ergodic

Gaussian diffusions. Statistical Inference for Stochastic Processes 7, 137–151.
Koopmans, T.C. (1949) Identification problems in economic model construction. Econometrica 17,

125–144.
McCrorie, J.R. (2000) Deriving the exact discrete analog of a continuous time system. Econometric

Theory 16, 998–1015.
McCrorie, J.R. (2003) The problem of aliasing in identifying finite parameter continuous time stochas-

tic models. Acta Applicandae Mathematicae 79, 9–16.
McCrorie, J.R. (2009) Estimating continuous-time models on the basis of discrete data via an exact

discrete analog. Econometric Theory 25, 1120–1137.
Phillips, P.C.B. (1970) The structural estimation of stochastic differential equation systems. Master’s

thesis, University of Auckland.
Phillips, P.C.B. (1972) The structural estimation of a stochastic differential equation system. Econo-

metrica 40, 1021–1041.
Phillips, P.C.B. (1973) The problem of identification in finite parameter continuous time models.

Journal of Econometrics 1, 351–362.
Phillips, P.C.B. (1991) Error correction and long-run equilibrium in continuous time. Economet-

rica 59, 967–980.
Phillips, P.C.B. & J. Yu (2009) Maximum likelihood and Gaussian estimation of continuous time

models in finance. In T. Mikosch, J.-P. Kreiß, R.A. Davis, and T.G. Andersen (Eds.), Handbook of
Financial Time Series, pp. 497–530. Springer.

Schiraldi, P., H. Smith, & Y. Takahashi (2012) Estimating a dynamic game of spatial competition:
The case of the U.K. supermarket industry. Working paper, London School of Economics.

Sims, C.A. (1971) Discrete approximations to continuous time distributed lags in econometrics.
Econometrica 39, 545–563.

Singer, B. & S. Spilerman (1976) The representation of social processes by Markov models. The
American Journal of Sociology 82(1), 1–54.

Sinha, N.K. & G.J. Lastman (1982) Identification of continuous-time multivariable systems from
sampled data. International Journal of Control 35, 117–126.

Sørensen, H. (2004) Parametric inference for diffusion processes observed at discrete points in time:
A survey. International Statistical Review 72, 337–354.

Van Loan, C.F. (1978) Computing integrals involving the matrix exponential. IEEE Transactions on
Automatic Control 23, 395–404.

Yu, J. (2014) Econometric analysis of continuous time models: A survey of Peter Phillips’ work and
some new results. Econometric Theory 30, 737–774.

https://doi.org/10.1017/S0266466615000353 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466615000353


752 JASON R. BLEVINS

APPENDIX

A. Proofs

A.1. Proof of Lemma 2

P , as defined in (8), is a permutation matrix, so P� P = I and the restrictions in (7) can be
restated as

R(U ⊗ V )P�d = 0 (A.1)

where d = Pvec(D) = [−mρ . . . −m1 mρ . . . m1 0 . . . 0
]� denotes the corresponding

n2 ×1 permuted vector of elements of D. The system of k linear equations in (A.1) corre-
sponds to the restrictions on A0 the elements of d being the n2 unknowns. We can complete
the system of equations for d = [−m�,m�,0]� as

�d =
⎡
⎣ R(U ⊗ V )P�

Iρ Iρ 0n2−2ρ
0 0 In2−2ρ

⎤
⎦

⎡
⎣−m

m
0

⎤
⎦ = 0,

where m = [mρ, . . . ,m1]� is a vector of ρ unknowns—differences between the complex
eigenvalues of an arbitrary solution A and those of A0. The first block row imposes the k
restrictions on A in (A.1). The second block, of dimension ρ ×n, imposes the restrictions
on the diagonal elements of −M and M . The third block, of dimension (n2 − 2ρ) × n,
restricts the remaining elements of d to be zero.

If � has full column rank, then −m = m = 0 is the unique solution. Note that we can
write � as

� =
[
�1:2ρ �2ρ+1:n2

0 In2−2ρ

]

and hence a sufficient condition for � to have full column rank is rank(�1:2ρ) = 2ρ.

A.2. Proof of Theorem 1

The proof follows from Lemma 2 after noting that ρ ≤ δ and redefining the permutation
matrix P and the dimensions of the unknowns accordingly.

A.3. Proof of Theorem 2

We first show that (5) also holds when we replace Assumption 1 with Assumption 3. We
appeal to the more general form of the theorem of Gantmacher (1959, VIII.8), as restated
by Singer and Spilerman (1976, Proposition 2): All solutions A of the equation exp(h A) =
B0 are given by A = 1

h ln B0 = 1
h H Q ln J Q−1 H−1, where H is any nonsingular matrix

which reduces B0 to Jordan form, B0 = H J H−1, Q is an arbitrary nonsingular matrix
that commutes with J , with Q J = J Q, and J is the Jordan normal form, a block-diagonal
matrix consisting of the Jordan blocks of B0.

Under Assumption 3, the Jordan normal form of A0 is a diagonal matrix J with n Jordan
blocks of order 1 along the diagonal. The p blocks J1 = [λ1], . . . , Jp = [λp] correspond to
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the p distinct nonzero eigenvalues and the n − p blocks Jp+1 = ·· · = Jn = [0] correspond
to the repeated eigenvalue λ0 = 0, which has geometric multiplicity n − p by assumption.
Given this structure, the matrix J and all commuting matrices Q have the form

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 . . . 0

0
. . .

. . .
...

. . . λp 0

0 λ0
. . .

...
. . .

. . . 0
0 . . . 0 λ0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q11 0 . . . 0

0
. . .

. . .
...

. . . qpp 0
0 qp+1,p+1 · · · qp+1,n

...
...

. . .
...

0 . . . qn,p+1 · · · qn,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Q has at most p nonzero diagonal elements in the upper left block and at most (n − p)2

nonzero elements in the lower right block. However, since λ0 = 0, the product Q J = J Q
is independent of the lower right block (i.e., the values qj,k for j,k = p +1, . . . ,n). Since

Q ln J Q−1 is diagonal for any admissible Q, ln B0 is independent of H . In other words, for
any H , Q is determined so we may choose Q = I and H = V as a normalization. Hence,
we can indeed still appeal to (5) and the result follows from the proofs of Lemma 2 and
Theorem 1, noting that there are at least n − p known real eigenvalues and so the number
of complex eigenvalues is ρ ≤ �p/2�.

A.4. Proof of Theorem 3

The proof of identification of A0 is similar to the proofs of Lemma 2 and Theorem 1. We
replace V with LV and add additional restrictions to account for the additional known re-
lationships among the 2n eigenvalues of �0. We discuss these new details first to establish
identification of A0 and then show that �0 is identified whenever A0 is identified.

Let λ1, . . . ,λn denote the n eigenvalues of A0 and let η1, . . . ,η2n denote the 2n eigen-
values of �0. Given the structure of �0, we have η1 = λ1, . . . ,ηn = λn and ηn+1 =
−λ1, . . . ,η2n = −λn . Therefore, the 2n eigenvalues of �0 are determined by the n
unknowns λ1, . . . ,λn . As before, we can appeal to a theorem of Gantmacher (1959,
VIII.8) to show that any alternative real solution � is related to �0 as � = V (� +
D)V −1 = �0 + V DV −1 where D is now a 2n × 2n diagonal matrix of the form D =
diag(01×(n−2δ),m�,−m�,01×(n−2δ),m�,−m�) for m = [

m1 . . . mδ
]�, mi = 2π i

h m̃i ,

and m̃i ∈ Z for i = 1, . . . ,δ. Hence, D has 4n2 elements with at least 4n2 −4δ zeros.
Note that vec(L�0) = vec

(
A0 �0

)
so the prior restrictions in (9) can be restated as

Rvec(L�0) = r . Since L� = LV (�+ D)V −1 = L�0 + LV DV −1 and since any other
admissible � matrix must also satisfy the restrictions, Rvec(L�) = r , it follows that
R(U ⊗ LV )vec(D) = 0. This leads to the full system of equations for a suitably permuted
vector of unknowns d = Pvec(D):

�d =

⎡
⎢⎢⎢⎢⎣

R(U ⊗ LV )P�
Iδ Iδ 0 0 0
0 Iδ Iδ 0 0
0 0 Iδ Iδ 0
0 0 0 0 I4n2−4δ

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

−m
m

−m
m
0

⎤
⎥⎥⎥⎥⎦ = 0.
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The stated rank condition guarantees that � has full column rank, so −m = m = 0 and A0

is identified.
Recalling the definition of �0, we have vec(�0) =

[∫ h
0 exp(s A0) ⊗ exp(s(A0)�)ds

]
vec(�0). Under Assumptions 1 and 2, by Lemma 3 of Kessler and Rahbek (2004), the
matrix

∫ h
0 exp(s A0) ⊗ exp(s(A0)�)ds is nonsingular. If A0 is identified then � �= �0

implies � �= �0 and so �0 is identified.
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