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1. Introduction

Triple factorisations of groups G of the form G = ABA, for proper subgroups A and B,
are fundamental in the study of Lie type groups, as well as in geometry. This thesis [1]
is devoted to investigating such factorisations in the context of (permutation) group
theory and geometry. The main results of this thesis appear in three papers (one is
published [2] and others are under review). Some results in this thesis regarding triple
factorisations of general linear groups, in particular the results in algebraic groups, are
unpublished.

2. Group theoretic approach

A major part of this thesis introduces and develops a general framework for studying
triple factorisations G = ABA for finite groups G, especially nondegenerate ones where
G , AB. We identify two necessary and sufficient conditions, called the geometric and
restricted movement criteria, for subgroups A, B to satisfy G = ABA, in terms of the
G-actions on the set ΩA of right cosets of A and on the set ΩB of right cosets of B.

T 2.1 [2, Theorem 1.1]. The following are equivalent.

(a) T = (G, A, B) is a triple factorisation.
(b) (Geometric criterion) The set {Ab | b ∈ B} intersects nontrivially each A-orbit

in ΩA.
(c) (Restricted movement criterion) The set {Ba | a ∈ A} has restricted movement in

the G-action on ΩB.
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The geometric criterion seems to be better known and it is the major tool used by
M. Guidici and J. P. James (in a paper in preparation) to analyse triple factorisations
S n = ABA of finite symmetric groups with A and B conjugate maximal subgroups.
It is also the central tool in studying triple factorisations in this thesis and current
studies. To my knowledge the second criterion is new, and we use it to analyse
triple factorisations GL(V) = BAB with A (maximal) parabolic and B the stabiliser
of a certain decomposition of V (see [1, Ch. 8]). Moreover, the restricted movement
criterion leads to an order (upper) bound for |G| in terms of |A| and |B| which is sharp
precisely for the point–line incidence geometries of flag-transitive projective planes
(see [2, Theorem 1.2]).

There are many ways to construct new triple factorisations from an original triple
factorisation T = (G, A, B). For example, for a normal subgroup N of G, the quotient
of T is T /N = (G/N, AN/N, BN/N); for overgroups A ≤C ≤G and B ≤ D ≤G, T ′ =
(G,C, D) is called a lift of T ; for H ≤G, sometimes T restricts to a triple factorisation
T |H = (H, A ∩ H, B ∩ H), but not always. Although each quotient and lift of T is a
triple factorisation, the same is not true for restrictions. Note that even for quotients
and lifts, the properties of nondegeneracy or nontriviality need not be preserved (see [2,
Sections 4–6]). We gave several conditions under which T /N inherits nondegeneracy.
These lead us in particular to faithful G-actions on ΩA and/or ΩB, which is useful as we
may then express problems about triple factorisations in the language of permutation
groups. Faithfulness allows us to apply results in [4, 5] on subsets with restricted
movement to get a nontrivial improvement to the trivially obtained upper bound
|G| ≤ |A|2|B|/|A ∩ B| (see [2, Theorem 1.4]).

We study, in particular, imprimitive triple factorisations T = (G, A, B) where G
acts imprimitively on ΩA. Then A < H <G, for some H. If there is a maximal such
subgroup H for which the lift (G, H, B) remains nondegenerate, then much can be
learned from the lift. On the other hand, if the lift is degenerate, then G = HB, and H
determines a block ∆ for G in ΩA containing A, and a block system Σ, together with
induced permutation groups G0 := H∆ and G1 := GΣ on ∆ and Σ, respectively. We
prove the following theorem.

T 2.2 [2, Theorem 1.5]. There exist triple factorisations T0, T1 and T0 o T1 of
G0, G1 and G0 oG1, respectively, such that T0 o T1 is nondegenerate and either T1 is
nondegenerate, or T0 is nondegenerate and (T0 o T1)|G is a nondegenerate lift of T .
Moreover, if B is maximal in G, then (T0 o T1)|G = T .

This suggests that for understanding triple factorisations of finite groups (and
their associated geometrical structures) a fundamental problem is to study/understand
primitive triple factorisations T = (G, A, B) in which A is maximal and core-free in G
(see [2, Section 7.2]).

3. Geometric approach

Each triple factorisation G = ABA gives rise to a collinearly complete coset
geometry Cos(G; A, B) (with A the stabiliser of a point p and B the stabiliser of a
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line ` incident with p) in which ‘each pair of points lies on at least one line’, and vice
versa (see [3, Lemma 3]). Interchanging the roles of points and lines leads us to a
dual completeness concept: a geometry is concurrently complete if ‘each pair of lines
is incident with at least one point’. In addition to the well-known examples (linear
spaces, symmetric designs and projective spaces), we construct infinitely many new
collinearly and/or concurrently complete spaces (see [1, Ch. 6–8]).

3.1. Parabolic triple factorisations and associated geometries. Let V be a vector
space of dimension n over a field F, and let m and k be positive integers less than n.
Suppose that j is an integer such that max{0, m + k − n} ≤ j ≤min{m, k}. An (m, k, j)-
projective space or subspace–subspace geometry, denoted by Proj j

(m,k)(V), is a point–
line incidence structure whose point (respectively, line) set P (respectively, L) is the set
of m-subspaces (respectively, k-subspaces) of V , and a point U ∈ P is incident with a
line W ∈ L if and only if dim(U ∩W) = j. These new rank-two geometries are related
to projective spaces and Grassmannian geometries (see [1, Section 6.2]). We obtained
a necessary and sufficient condition for which Proj j

(m,k)(V) is collinearly complete.

T 3.1 [1, Theorem 1.2.1]. The projective space Proj j
(m,k)(V) is collinearly

complete if and only if j ≤ k/2 + max{0, m − (n/2)}.

It is of importance to know if an incidence structure and its dual share the same
(geometric) property. We then investigated the conditions under which Proj j

(m,k)(V) has
both, one, or neither of the completeness properties (see [1, Theorems 1.2.2 and 6.8
and Corollary 6.7]).

Since a collinearly (respectively, concurrently) complete Proj j
(m,k)(V) gives rise to a

parabolic triple factorisation GL(V) = ABA (respectively, GL(V) = BAB) in which A
and B are (maximal) parabolic subgroups of GL(V), we may translate our geometric
results into group theoretic results about parabolic triple factorisations of GL(V)
(see [1, Theorem 6.2 and Section 6.5]).

3.2. Subspace-bisection triple factorisations and associated geometries. This
thesis is also devoted to studying the subspace-bisection triple factorisation GL(V) =

ABA and its dual GL(V) = BAB where A is (maximal) parabolic and B = GL(V){V1,V2}

is the (setwise) stabiliser of a decomposition V = V1 ⊕ V2 with dim(V1) = dim(V2)
(see [1, Theorems 7.2 and 8.1]).

The associated rank-two geometry of a subspace-bisection triple factorisation is
called a subspace-bisection geometry or an (m, k, J)-projective space, where J is the
pair (k1, k2) of dimensions k j = dim(U ∩ V j) for an m-subspace U, and k1 ≤ k2. For
this geometry, denoted by Proj J

(m,k)(V), the point set P is the set of all m-subspaces
of V , the line set L is the set of all bisections {V1, V2} of V such that V = V1 ⊕ V2 and
dim(V1) = dim(V2) = k, and the incidence between U ∈ P and {V1, V2} ∈ L is given by
(dim(U ∩ V1), dim(U ∩ V2)) = (k1, k2) or (k2, k1). Theorem 3.2 gives in geometrical
language the existence of subspace-bisection geometries with specified collinear and
concurrent completeness (see [1, Theorem 8.2]).
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T 1. Completeness properties of Proj J
(m,k)(V) for k ≥ 2.

Conditions on m, k, and q Collinearly Concurrently
complete complete

q ≥ 5, or |m − k| > 1, or Yes Yes
q = 2, (m, k) = (1, 1), (1, 2), (3, 2), or
q = 3, |m − k| = 1, or
q = 4, |m − k| = 1, m = k ≤ 2

m <
n + 4

4
or m >

3n − 4
4

Yes No

n + 4
4
≤ m ≤

3n − 4
4

No No

T 3.2. Let m and k be positive integers, and let V be a vector space of
dimension n = 2k over a finite field F of size q with m < n. If n ≥ 4 and (m, k, q) satisfies
the conditions of one of the lines of Table 1, then there exists a J such that Proj J

(m,k)(V)
has the completeness properties of the last two entries in that line of Table 1.
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