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We present a theoretical and experimental study of the dynamics of two-layer viscous fluid
flows on inclined surfaces, motivated by natural and industrial phenomena involving the
interactions between two fluid layers. A general model describing the evolution of two
fluids on an inclined substrate is developed and explored to reveal a rich variety of flow
regimes for different modes of release. The asymptotic reduction of this problem due to
the dominance of the along-slope component of gravity is shown to yield considerable
analytical inroads compared with previous studies of multi-layer flow configurations,
which have focused exclusively on the case of horizontal beds. For the canonical example
in which two fluids are introduced at a constant flux, the flow forms two regions: an
upstream region containing both fluids, and a downstream region comprised purely of
the lighter fluid, with a sharp intervening jump in thicknesses between the two. By
constructing similarity solutions, we establish a full regime diagram of the possible
configurations over all asymptotic limits of the viscosity, flux and density ratios. For the
release of two fixed volumes of fluid, the layers separate completely into two disjoint but
connected regions, contrasting in essential structure from the constant flux case. Even a
small volume of the heavier fluid is able to significantly accelerate the propagation of the
lighter fluid in front of it. Excellent agreement is found between our theoretical predictions
and the results of a series of laboratory experiments.
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1. Introduction

Fluid systems involving the interactions between two layers driven by gravity arise
widely in the natural world. Examples include the Iubrication of glaciers by a subglacial
hydrological system (Fowler 1982), the flow of stratified layers of glacial material
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with differing properties (Loewenherz, Lawrence & Weaver 1989), deformation of till
underlying glaciers (e.g. Clarke 1987; MacAyeal 1989; Kowal & Worster 2020), the flow
of lava where layers form due to differential heating (Griffiths 2000) and subsurface
hydrological flows involving two fluids (e.g. Woods & Mason 2000). Related industrial
and biological examples of two-layer systems include Leidenfrost droplets (e.g. Biance,
Clanet & Quéré 2003), viscous non-wetting droplets on lubricated inclines (e.g. Smith
et al. 2013), gravity-driven droplets impinging on a surface underlain by a thin layer
of ambient fluid (Hodges, Jensen & Rallison 2004) and bacterial motion at the base of
active matter drops driving flow over a substrate (Ramos, Cordero & Soto 2020). The
rich variety of behaviour possible in each of these examples arises from the two-way
dynamical coupling between the fluid layers. For example, Fowler (1982) applies equations
governing the flow of glaciers lubricated by a hydrological system that are based on the
coupling of two fluid flows: the viscous flow of the glacier and the hydrological flow
of underlying meltwater in the till. In common with two-layer fluid flows, the dynamics
produce a two-layer coupled system of kinematic wave equations. In order to understand
some general aspects of the control and structure of such systems, we present here the first
theoretical study of gravity-driven two-layer fluid systems on inclined substrates.

Thin-layer fluid systems over rigid surfaces are canonically studied as gravity currents,
or intrusions of one fluid into another of a different density. Early work on viscous gravity
currents at low Reynolds number used lubrication theory to develop a nonlinear diffusion
equation governing the evolution of the layer thickness (Mei 1966; Smith 1969). Smith
(1969) determined similarity solutions to this equation which describe the release of a
fixed volume of fluid on a horizontal substrate in both two-dimensional and axisymmetric
geometries, showing that the frontal positions grow as /3 and ¢!/8, respectively. The
solutions form broadly convex shapes with the maximum thickness at the input position
and large interfacial gradients at the front. Huppert (1982b) generalized these analyses to
other release conditions including the case of an input of constant flux, obtaining similarity
solutions that grow as #*/° and ¢'/? in two-dimensional and axisymmetric geometries,
respectively. For an inclined substrate, Huppert (1982a) determined a different similarity
solution describing the release of a fixed volume of fluid, showing that the front position
instead grows as 173, In this case, the layer thickens towards a finite thickness at its
front (forming a shock), differing qualitatively in essential form from a gravity current
on a horizontal substrate. By including also the effect of gravitational spreading due to
thickness gradients, Lister (1992) presented a smooth solution for this frontal zone that is
steady in the frame of the front.

Studies of two-layer gravity currents have focused to date on the configuration of a
horizontal substrate. In particular, Woods & Mason (2000) considered the case of a
two-layer gravity current in the context of a semi-infinite porous medium with a horizontal
substrate, motivated by subsurface flows. These authors generalized the governing
equations of the flow of a gravity current in a porous medium to allow for a second fluid
layer and calculated similarity solutions describing the coupled evolution of the two fluid
layers. Depending on the viscosity ratio, it was shown that a variety of forms of self-similar
solutions are possible for fixed volume releases and constant flux inputs. For example, it
is possible for either flow front to outpace the other, and for the lower layer to remain
attached to its source position or separate away from it.

For the situation where a two-layer viscous gravity current propagates through an
ambient fluid, Kowal & Worster (2015) considered the case of a horizontal substrate
where each layer is fed by an input of constant flux. An important distinction between
two-layer flows in a porous medium versus a free domain is that the latter introduces the
possibility for lubrication by the lower fluid. The study determined similarity solutions
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for both two-dimensional and axisymmetric configurations and compared the predictions
alongside experiments. It was found that the lubricating fluid separates the system into
a broad upstream region of relatively mild slope connected to a downstream region
comprised purely of the lighter fluid, with lubrication having the potential to increase
the overall propagation rate considerably.

Other related studies of gravity currents in two-layer systems have considered situations
where the upper fluid layer is confined between two horizontal boundaries (Gunn & Woods
2011; Guo, Zhang & Shi 2014; Pegler, Huppert & Neufeld 2014; Zheng et al. 2015a;
Zheng, Rongy & Stone 2015b), and the release of a gravity current into a moving fluid
layer (Eames, Gilbertson & Landeryou 2005; Pegler et al. 2017). These studies likewise
illustrate the coupling between gravity-driven fluid layers, and the mutual control of the
layers by the relative viscosity. Multi-layered and continuously stratified gravity currents
have also been shown to exhibit significant variations in the overall shapes of gravity
currents compared with the case of a single layer (Pegler, Huppert & Neufeld 2016). The
analysis of two-layer axisymmetric gravity currents with equal densities over horizontal
substrates has also been considered, with the finding that it is possible for such flows
to form interfacial shocks (Dauck et al. 2019). Another group of related studies have
analysed viscous instabilities of inclined two-layer films with a free surface (Loewenherz
& Lawrence 1989; Loewenherz et al. 1989; Balmforth, Craster & Toniolo 2003) and of
viscous stratified flows on slight inclines (Kliakhandler & Sivashinsky 1997). Loewenherz
& Lawrence (1989) and Loewenherz et al. (1989) specify the thickness of the two layers as
a basic state for their two-dimensional stability analysis, revealing transverse instabilities if
the upper layer is less viscous. The dependence of the thicknesses on input flux, viscosity
and density, remains an open question.

In this study we investigate for the first time the dynamics of two-layer gravity currents
on inclined substrates. We conduct a complete theoretical exploration of the possible flow
regimes and structures assuming thin-film flow at low Reynolds number. In solving the
model system, we demonstrate the effectiveness of a finite-volume numerical scheme
to predict the evolution of a multi-layer fluid system. We focus first on the canonical
flow arising from the introduction of two fluids onto a flat slope of uniform inclination,
exploring the solutions to the governing equations using a combination of analytical and
numerical methods. Finally, we address the simultaneous release of two fluids with fixed
volumes. Owing to simplifications arising under the dominant effect of the along-slope
component of gravity, our study reveals considerable new analytical inroads for the
analysis of two-layer gravity currents compared with previous studies that assume a
horizontal substrate. In order to test our theoretical predictions and highlight physical
effects not included in our model, we also present a series of laboratory experiments,
comparing the observations against our theoretical predictions.

We begin in § 2 by developing from first principles our theoretical model for two-layer
gravity currents for general topography. In § 3 we explore the predictions of the model
in the case of a constant flux input. Section4 addresses the case of a fixed volume
release. In § 5 we present our laboratory study. We end in § 6 by summarising our key
conclusions.

2. Theoretical model development

Consider a two-dimensional flow formed of two fluid layers flowing on a rigid bed
z = b(x), where x and z are the horizontal and vertical coordinates (figure 1). We assume
the fluids are incompressible and Newtonian, and allow their viscosities and densities
to differ. We neglect surface tension and assume that no mixing between the fluid
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z=0

X

Figure 1. Schematic illustrating the general configuration of two fluid layers flowing along an inclined rigid
substrate b(x) with an upper fluid (red) of thickness A, (x, ), viscosity w, and density p, with a lower fluid
(blue) of thickness h;(x, 1), viscosity u; and density p;. The front positions for the upper and lower layers are
marked as x,(¢) and x;(¢), respectively.

layers occurs. We refer to variables representing the upper layer using the subscript u
and the lower layer using subscript /. For layer i, let u; = (u;, w;) denote the flow velocity,
hi(x, t) the thickness, p;(x, z, t) the pressure, p; the density and u; the dynamic viscosity,
where 7 is time. The layers are each assumed to terminate at a time-dependent front with
position x = x;(¢).
We consider vertical-shear-dominated flow. The x- and z-components of the lubrication

equations are

api O?u;  dp;

- ia—zza B_Z = —8&pi, (2.1a,b)

ax H
respectively. The free-stress condition on the upper surface is

auy,

5 =0 atz=h,+h + b, (2.2a)
Z

and the conditions of continuity on the stress and velocity at the interface read as

3 3

et = 2 Atz = hy+ b, (2.2b)
0z a7

u, =u; atz="h+D>b, (2.2¢)

respectively. The no-slip condition at the base is
uy=0 atz=>. (2.2d)

The model above is based on an approximation of thin layers. It should be noted that in
situations where the lower fluid is much less viscous than the upper layer, we also require
the viscosity ratio (i, / ;) to be sufficiently small that the extensional stresses in the upper
layer are negligible compared with the vertical shear stress.

Integrating (2.10) and applying the continuity of pressure, we determine the pressure
fields for the upper and lower fluids,

Pu=Pa+ pug(hy +hi+b—72) forhj+b<z<h,+h+b, (2.3a)
pr=pa+ pigthi+b—2)+ pyghy, forb <z <h+b, (2.3b)
917 A54-4
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where p, is a constant reference pressure. On substituting (2.3) into (2.1a) and integrating
the resulting differential equations subject to (2.2), the velocity profiles of each layer are

oug (Ohy Oh; db 22 — (b + b)?
1) = — J— - -
(% 2, 1) I <8x * dx +dx 2
Hu
—(hy + h;+ b)(z — hy — b)) — ;huhl]
1
ah oh db h; + b)? — b?
4 Pug (O pr O prdb (D) =BT (hi+ by ), (2.4a)
i 0x Py 0X oy dx 2
pug (Ohy  p1dh  pi db) <zz — b
u(x,z, 1) = < + -4 —— —(+b)(z—Db)
M1 ox Pu 0x Pu dx 2

Oug (Shu oh; db

— ) hu(z = D). 2.4b
wr \ 0x 0x + dx) @=5) (245)

Both layers are driven by the component of gravity resolved along the bed, represented by
the terms proportional to db/dx. The upper layer is also driven by the gradient in its surface
slope, as represented by the sum d(h, + h;)/dx in the first set of grouped terms, i.e. the
first two lines of (2.4a), and moderated by interfacial stresses exerted by the lower layer,
represented by the final line of (2.4a). The lower layer is likewise driven by the gradient
in the weight of the fluid columns above it, represented by the terms involving d/;/dx in
the first line of (2.4b), and couples to the upper layer through the terms involving 4, and

ohy /ox.
The depth-integrated continuity equations for the two layers are
oh;  0gq;
— 4+ — =0, 2.5
or " ox (23
where g; denote the volume fluxes per unit width of the upper and lower layers, namely,
hy~+hi+b hi+b
qu = / u,dz, g = / u dz, (2.5b)
h+b b

respectively. Substituting (2.4) into this integral, the flux expressions are

pug [ (hy  tu,n, \ (0ha | Ol db
=222 4+ Zheh 4 =
a Mu |:( 3 + 122, w't 0x + dx + dx

oh oh db
B (S LS PO 2.5¢)
21 ox  py 0x  p,dx

_pug |:/Lu h3 <8hu Pl a_hl ﬂ%)

= -
1 i 3\ ax T opy dx  pydx
o (O, R db
Py 2 (e S22 | 2.5d
+2mul(3x+8x+dx (2.5d)

Each term can be interpreted as the ratio of a driving stress due to hydrostatic pressure
gradients to a viscous resistance. The first line of (2.5¢) describes the balance between the
gradient in hydrostatic pressure caused by the gradient in the height of the upper interface,
multiplied by (i) the variation in shear rate (the term involving hg) and (ii) the ‘basal drag
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force’ due to the resistance to shear induced in the lower layer (involving hghl). The second
line represents the contribution to the flow of the upper layer induced by the gravity-driven
flow of the lower layer. Equation (2.5d) is similarly structured. The first line represents the
pressure gradient caused by the gradient in weight of the fluid columns arising from the
variations in both the upper surface and the interface and the resistance due to the shear
stress via the viscosity of the upper layer (represented by the term containing /Luh? /LD
In (2.5d) there is no analogue of the term representing a ‘drag force’ from the other
layer (represented by the term proportional to hﬁh[ in (2.5¢)). This is because, unlike at
the substrate, there is no stress exerted at the upper surface, and, hence, the upper layer
experiences no resistance to moving the lower layer. The second line of (2.5d) represents
the contribution to the flow of the lower layer induced by the gravity-driven flow of
the upper layer. The flux expressions (2.5¢,d) generalize those applying to the case of
a horizontal substrate to allow for a general substrate shape b(x) (note that we exactly
recover the equations of Kowal & Worster (2015) by setting » = 0 and by adopting their
definitions for layer thicknesses: the total thickness as H(x, t) = h,, + h; and the lower layer
thickness as h(x, 1)). The governing system of equations (2.5) allows for the existence of
both two-layer regions (in which both #; > 0 and 4, > 0) and single-layer regions in which
either iy = 0 and A, > 0 or h, = 0 and A; > 0. For example, if h; = 0, (2.5¢) reduces to

ah o [h [on, db
Tu L8 T (T T ] 2, (2.5¢)
ot Uy 0x [ 3 \ox  dx

which recovers the equation describing a single layer on a slope (Lister 1992).

The governing equations (2.5) describe the evolution of a two-layer fluid system subject
to general variations in the height of the substrate, b(x), and any given initial condition.
The two-way coupling between the layers represented by the presence of both /4, and /; in
both flux expressions (2.5¢,d) produces a rich mathematical system to be explored.

The governing equations form a parabolic initial-value problem that can be solved
subject to suitable boundary conditions on the thicknesses and fluxes of the layers. At
the two flow fronts, we impose

hM('xll7 t) - 07 hl(xl9 t) - 0’ L]u(xu’ t) = 07 QI(XI, t) = Oa (2’5f)

representing the independent conditions of vanishing thickness and flux at the flow fronts.
Continuity conditions on flux and thickness at the transitions between single- and two-layer
regions are imposed automatically by our numerical solver. The other boundary conditions
will be specific to the configuration considered, e.g. an input condition on the flux or initial
volume conditions, to be introduced in the relevant sections. As we will demonstrate, for
flow down a slope, the system can be reduced further under the neglect of the gradients
in layer thicknesses (in analogy with corresponding simplifications made in the analysis
of single-layer gravity currents on inclined substrates; Mei 1966; Fowler & Larson 1978;
Huppert 1982a; Lister 1992). This will reduce (2.5) to a hyperbolic system formed of
coupled nonlinear kinematic wave equations (qualitatively similar to those proposed for
coupling a glacier and its hydrological system; Fowler 1982), which we will detail later in
§ 3.3. In the special situation where the two layers have equal density (R = 1), the order
of the flux expression (3.6¢) reduces because it does not independently depend on the
gradient in lower layer thickness. In our reduced asymptotic formulation our flow fronts
form shocks and the imposition of zero thickness at the flow fronts is likewise abandoned.
Therefore, our theory applies even in the R = 1 situation.
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3. Constant flux input of two layers

We begin by considering the situation where two fluids are introduced onto a slope at
constant rates. For this, we impose the flux conditions

q10,1) = qi0,  qu(0, 1) = quo, (3.1a,b)

where g0 and ¢, represent the fluxes into the lower and upper layer, respectively. As a
consequence of these conditions, the following integral constraints on the total volume are
satisfied:

X Xy
/ hidx = qpot, / hy dx = quot. (3.2a,b)
0 0

These expressions do not add additional constraints to this configuration (because we
already have an input flux condition) but will be utilized in our later analysis. As a simple
case to demonstrate the general dynamics, we assume a constant slope,

b(x) = —aux, 3.3)

where « is a positive constant.

3.1. Intrinsic scales and dimensionless model system

In order to reduce the number of parameters in the problem, we non-dimensionalise the
system using the intrinsic time, length and height scales,

w N\ quo '
T = (#) y L= ( Z Lt) y H = (XE, (3.4a—c)
&= 0,879u0 o puf
respectively. These represent the scales on which the slope of the substrate, « = —db/dx,

becomes important. We define non-dimensional (hatted) variables by
t=Ti, x=LX h=Hh (3.5a—c)
On dropping the hats, (2.5a) becomes

o, 9 o 9
“p %9u g g 2%, (3.64)
ot 0x ot 0x

for the upper and lower layers, respectively, and the flux expressions become

Gu= <? +Mh3hl> (1 - —’) + h i} <R - o —R—’> . (36b)

ox ox 2 ox 0x

M dhy o\ M dh,  Oh
g = ?h? (R - Ra—xl> + 3huhf (1 - —’) , (3.60)

where M = w,/u; and R = p;/p,. The boundary conditions (2.5 f) become
hy(xy, 1) =0, hi(x, 1) =0,  qulxy, 1) =0, qi(x, 1) =0. (3.6d)
The input conditions (3.1a,b) become

917 A54-7
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The integral constraints (3.2a,b) become

X7 Xu
/ hydx = Ot, / h,dx =1t. (3.6/)
0 0
The dimensionless model above depends on three dimensionless parameters,
M=t g=2 =0 (3.62)
i Pu qu0

representing the ratios of viscosity, density and input flux, respectively.

Cases of M > 1 represent configurations where the lighter fluid is more viscous than
the heavier fluid. In such cases, (3.6) is structurally similar to the coupled kinematic
wave equations that Fowler (1982) applies to describe the two-way interplay between a
glacier and its hydrological system; the main difference being that the flux expressions
that Fowler (1982) develop depends on interstitial water flux while ours depend on layer
thicknesses. Additionally, our study offers a preliminary framework for understanding
more complicated rheologies for the lower layer, such as a granular medium (like till)
beneath a power-law viscous glacier.

3.2. Illustration of phenomena

To illustrate the general dynamics, we begin by presenting a series of numerical solutions
to the dimensionless model (3.6). For this, we used a finite-volume numerical scheme
based on converting the conservative form of the partial differential equations to surface
integrals and solving them by evaluating the flux into and out of ‘cells’ (small volumes)
at each spatial node (e.g. LeVeque 1992). The details of the scheme are provided in
Appendix A. Note that the global volume constraint and continuity of flux and velocity
at the lower layer flow front are automatically satisfied by this numerical method. The
finite-volume method is particularly suited to the system (2.5) because it can resolve steep
gradients, is automatically mass conservative and remains stable during the development
of any shock fronts (such as configurations where R = 1). Despite these advantages, few
studies of thin-film dynamics use finite-volume schemes (one example is Griin, Lenz &
Rumpf 2002) and our application here demonstrates in particular its effectiveness for
multi-layer fluid flows.

Two illustrative examples are shown in figure 2. For example A, we set M = 10
(corresponding to the upper fluid being ten times more viscous than the lower fluid) and
for example B, we set M = 0.1 (corresponding to the lower fluid being ten times more
viscous than the upper fluid). In each, R = 2 and Q = 0.5. Time slices of each solution are
shown at a progression of times, t = 1 and 10, in figure 2(a,b,d,e). The evolutions of the
flow fronts are illustrated in figure 2(c, f).

The solution for example A illustrates the development of two distinct flow regions.
Upstream, the flow forms a region containing both fluid layers. Beyond a critical position,
the lower layer terminates and the flow forms a downstream region comprised purely of the
lighter fluid. In this example, the thickness of the downstream single-layer region is larger
than that of the two-layer region, with a shock-like transition between the two. The plot of
the frontal evolutions in figure 2(c) indicate that the fronts propagate at a constant speed
at late times, such that the length of the two-layer region approaches a fixed proportion
of the length of the total flow. For example B, the upper layer is instead ten times less
viscous than the lower layer. The flow likewise forms two regions comprising a region
of lighter fluid extending ahead. A key difference compared with example A is that the
thickness of the downstream single-layer region is now thinner than the total thickness of
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Figure 2. Illustrative numerical solutions to the full dimensionless model (3.6) for the situation where two
fluids are injected continuously. In example A (panels a—c) the viscosity ratio is M = 10, corresponding to
the upper layer being ten times more viscous than the lower layer (forming a lubricating film). In example B
(panels d—f) M = 0.1, corresponding to the upper layer being ten times less viscous than the lower layer. In
both, the flux ratio is Q = 0.5 and the density ratio is R = 2. Profiles show the solutions at t = 1 (a,d), t = 10
(b,e). Panels (c,f) show the evolution of the two flow fronts, x,,(¢) and x;(¢), towards linear growth. The inset in
(c) shows the convergence of the numerical solutions to the asymptotic theory 900 < t < 1000.

the upstream two-layer region. The front positions in case B again transition towards linear
growth (figure 2 f), showing that the distance between the fronts continues to grow to late
times.

The solutions have illustrated a number of universal features. One is that a two-layer
release always forms a two-region structure in which the lighter fluid extends ahead of
the heavier fluid. Another is that the flow fronts approach linear growth at long times.
The solutions also illustrate that it is possible for the frontal thickness to be either greater
than or less than the total thickness of the two-layer region. Our analysis will determine
solutions describing the long-term asymptotic flow. To this end, we split the analysis into
two components. First, we investigate the independent question of how the thickness of
the layers in the two-layer region are controlled. With this analysis in hand, we consider
the full system comprising both the two-layer region and the frontal region.

3.3. Two-layer region

Our numerical solutions of (3.6) indicated that the solutions approach steady-state
thicknesses over time. To confirm this, in figure 3 we plot the thicknesses of both fluid
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Figure 3. Thicknesses of the individual fluid layers at the fixed position x = 10, showing the convergence
of the numerical solutions in the upstream two-layer region towards steady values. Thicknesses plotted here
are from our full numerical simulations shown in figure 2 for the following dimensionless parameters: R = 2,
Q0 =0.5and (a) M =10, (b) M = 0.1. The numerical lower layer thickness is represented by the thin blue
line and the numerical upper layer thickness by the thin red line. The steady-state thicknesses predicted by the
theory in (3.7) are overlaid in thick black lines.

layers as a function of time at the position x = 10. The lighter fluid front passes first
through this point, followed by the two-layer region. By # = 10 in figure 3(a) and by r = 50
in figure 3(b), the layer thicknesses in the two-layer region converge to steady-state values.
We compare the time-dependent layer thicknesses from the numerical solutions in figure 2
at x = 10 to the theoretical thickness values (obtained under a steady-state approximation
of (3.6), whose calculation we describe in this section) and find agreement. This confirms
the approach of the upstream two-layer region to a steady state, whilst also corroborating
the validity of our numerical solver and the validity of the steady-state approximation.
Integrating the steady-state forms of (3.6a—c) subject to (3.6¢), we obtain

3

hu 5 MR2
U= 2 MR+ =i, (3.7a)
Ry 1. 5
0 =M (30 +shii). (3.7b)

Since these equations are independent of x, it follows that the thicknesses of the layers,
hy, and hy, are spatially uniform, confirming the form indicated by our numerical solutions
(figures 2 and 3). It should be noted that, in deriving the algebraic equations above, we did
not impose the condition that the layers are uniform, only the weaker assumption that
the gradient in thicknesses of the layers tends to zero. Since the equations are purely
algebraic on neglect of these gradients, it follows that the long-term asymptotic state
of the layers is spatially uniform. To solve the equations above, we could use (3.7b) to
eliminate /4, in (3.7a) to obtain a cubic equation for h?. Since the order of the equation
is odd, it is guaranteed to have at least one real root. In order to conduct a complete
parameter sweep over values of M and Q using parameter continuation, we opt to solve
for h, and Ay in (3.7) numerically using a Newton—Raphson iterative solver. In doing this,
the closest real, positive solution found previously by the solver is used as an initial guess
for the next value. There is only one root for which both 4, and /; are real and positive
(and, therefore, physically relevant). As a general point of contrast, we note that previous
studies of multi-layered gravity currents have required considerably more detailed analysis
of differential systems with unknown free-parameters (cf. Woods & Mason 2000; Kowal
& Worster 2015; Pegler et al. 2016). The reduction of our governing equations (3.6) to a
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Figure 4. Thicknesses of the two layers, &, and h;, with fixed R = 2 for the case of varying (a) viscosity ratio
M =,/ and (b) input flux ratio Q = gio/quo- Here, h; denotes the steady-state thicknesses for layer i. The
fixed parameters are: (a) Q = 0.5; (b) M = 1. The numerical solutions of (3.7) are represented by the thin blue
(lower layer) and red (upper layer) solid lines. The asymptotes are overlaid in thick black dashed lines. Layer
thicknesses are equal when M = 1 in panel (a) and when Q = 1/2 in panel (b).

simple coupled algebraic system demonstrates both the analytical tractability of the present
problem and, as we will show below, will establish a new basis for regime classification of
such flows based on the dynamics of the two-layer region alone.

We begin by considering the effect of the viscosity ratio M. In our dimensionless model
M represents the dimensionless viscosity of the upper layer, whilst the viscosity of the
lower layer is fixed at unity. Figure 4(a) shows the thicknesses of the two layers, /; and
h,, as functions of M, with Q = 0.5 and R = 2 each held fixed. At small values of M (for
which the upper layer has a very small viscosity), both layer thicknesses asymptote to the
thicknesses that would apply if the layers were considered in isolation, namely,

30 1/3
h1~<m) , hy ~ 313, (3.8a,b)

for M — 0. The approach of the upper layer towards its single-layer thickness (3.8b) can
be understood by noting that, in view of its small viscosity, the upper layer is much thinner
than the lower layer and, therefore, exerts a negligible stress on it. The upper layer therefore
has no effect on the lower layer. Conversely, the small viscosity of the upper layer means
that the lower layer is effectively static relative to the speed of the upper layer, and, thus,
acts as a rigid surface for the upper layer. In this limit, the lighter fluid therefore flows
effectively as a single layer over the top of the more viscous heavier fluid. We refer to this
situation as regime C.

As M is increased, the thicknesses of the two layers approach comparable values for
M = O(1). For large M, both layers thin together as M~!/3 (figure 4a). For the lower layer,
this decrease follows the trend established from the small M limit (albeit with a different
prefactor) and is consistent with the layer flowing faster as its viscosity is reduced. The
concurrent decrease in the thickness of the upper layer as M~!/3 instead differs from its
small-M trend. The decrease is an effect of the lubrication provided by the lower layer: the
reduction in underlying shear stress caused by lubrication increases the flow rate of the
upper layer and, to maintain the same flux, results in a thinner layer. For M — oo, we can
neglect all terms in (3.7) except those multiplied by M. Solving the resulting simplified
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Figure 5. The functions ¥ (§) and ¢ (£) defined by (3.9¢,d) arising in the large-M asymptotic theory for the
thicknesses of two fluid layers on a slope, &, and &;. Asymptotes are overlaid as black dashed lines.

system, we obtain the asymptotic predictions

voer) o, ¢(OR)

Ry Gy e (3900
for M — oo, where the functions
3 12 1/3
V() = [E (sg - [(35 152 16] + 3)] : (3.9¢)
2& 2
dE) =v (&) (W—§> (3.9d)

The results of (3.9) are shown as dashed black lines in figure 4(a) and confirm the mutual
M3 thinning trends. Via the functions of ¢ (QR) and ¥ (QR), the large-M limit retains a
relatively complex dependence of the layer thicknesses on the flux ratio Q. The parameter
Q can be interpreted as the dimensionless flux inputted into the lower layer, whilst the
dimensionless flux inputted into the upper layer is fixed at unity. As shown in figure 5, v
and ¢ are increasing and decreasing functions, respectively. The former is consistent with
the anticipated thickening of the lower layer as the flux Q introduced into it is increased.
The latter implies that the thickness of the upper layer decreases as the flux inputted into
the lower layer is increased. This applies because increasing Q results in more lubrication,
reducing the stress on the upper layer and causing it to flow faster. Since the input flux is
fixed, the faster flow rate results in a thinner upper layer.

We note that the M — oo limit in (3.9) encompasses limits of small and large input flux
ratio Q. In the limit QR — 0, (3.9) reduces to

402\ ' 1
me~(2=) L o~ — 3.10a,b
: (M ) “7 oM’ (G10.0)

confirming that the upper layer thickens as Q*/3 and the lower layer thins as Q~!/3 as Q
is increased, both of which are indicated by the increasing and decreasing functions of ¥
and ¢, respectively (figure 5). We name this situation regime A. We can likewise reduce
(3.9) in the limit QR — oo which asymptotes to

m~ 32\, 2 (3.11a,b)
"U\Mr) T 9MQ2R) B e

In this limit the lower layer grows in proportion to Q'/3 whilst the upper decreases in
proportion to Q~%/3. As Q — oo, the upper fluid layer is very thin and has negligible
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impact on the lower layer. The lower layer therefore approaches the thickness it would
have in isolation, which is consistent with (3.11a). The upper layer simply translates with
the top of the lower layer at the velocity u, = MRhl2 /2, where h; is given by (3.11a). The
combination of this expression with the flux constraint, /,u, = 1, indeed produces (3.110).
We refer to this situation as regime D.

To illustrate the effect of the flux ratio Q, we plot h, and h; as functions of
Q in figure 4(b) for M =1 and R=2. For Q — 0, (3.7) yields the asymptotic

predictions
) 1/2
hy ~ (3]/—3QM> , hy~ 33, (3.12a,b)
which we have plotted as dashed lines in figure 4(b). The thickness of the upper layer
asymptotes to the value that would apply if it were in isolation (3.12b), implying a
negligible effect of the lower layer on the upper in this limit. Equation (3.12a) shows
that the lower layer assumes a small thickness proportional to Q'/?. To understand this,
we note that, for Q — 0, the lower layer forms a thin Couette flow with a shear rate
controlled by the stress applied at the base of the upper layer. More specifically, the stress
continuity condition (2.2b) implies that the shear rate is Mdu, /dz, where du, /07 = 313 is
the shear rate of the upper layer near the base, resulting in a leading-order velocity profile
of u; = 3'/3Mz in the lower layer. Integrating this shear profile over the depth of the lower
layer and applying the flux constraint ¢; = [ u;dz = Q, we obtain (3.12a). This situation
is referred to as regime B.

As Q is increased to values of order unity, the two layers approach comparable
thicknesses. For Q — oo, we recover the asymptotes (3.11) in regime D which are
shown to agree with our numerical predictions in figure 4(b). That there are two
routes to deriving (3.11), one involving the reduction of (3.7) and one involving the
general expression for the M — oo limit, indicates that (3.11) describes a limit that
encompasses all values of M for sufficiently large Q, and this will be illustrated
in § 3.5.

To visualise all the configurations of a two-layer gravity current on a single
parameter-regime diagram, we present in figure 6 a map of the (M, Q) parameter space
divided into four regions by four curves. These regimes are determined by evaluating when
the Newton—Raphson numerical solutions for the layer thicknesses in (3.7) fall within 10 %
of the theoretical predictions in table 1. The unshaded regions in the (M, Q) parameter
space represent parameters over which the system transitions between these regimes.
The asymptotes describing the partitioning curves between these regimes are annotated.
Regime A (in red) falls within the curves M > 1/6Q and Q <« 3/4R and represents the
region in which the numerical solutions fall within 10 % of the asymptotic prediction for
the simultaneous limits M — oo and Q — 0 (3.10). In regime A the layer thicknesses
in the two-layer region thin as M~!/3. Regime B is represented by the purple region
8OR?/27 « M < 1/6Q, describing the ‘rigid-lid regime’ in which Q — 0. In this regime
the upper layer thickness asymptotes to the value that would apply if it were in isolation
and the lower layer forms a thin Couette flow at the base of the upper layer. Regime C
(in green) falls within 80QR?/27 < M <« 8/27Q°R and describes the region in which the
numerical solutions lie within 10 % of the asymptotic prediction for the M — 0 limit (3.8).
In this regime both layer thicknesses in the two-layer region asymptote to the value that
would apply if the layers were released in isolation. Regime D falls in the remaining blue
region Q > 3/4R and M >> 8/270Q*R where the numerical solutions fall within 10 % of
the asymptotic predictions for the Q — oo limit (3.11). In this regime the lower layer
acts as a ‘conveyor belt’ on top of which the upper layer translates. This regime covers a
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Figure 6. Universal regime diagram illustrating the configurations of a two-layer fluid flow introduced at
a constant flux onto an inclined plane for R = 2. The diagram is constructed by determining where the
Newton—Raphson numerical solutions for the layer thicknesses from (3.7) fall within 10 % of the asymptotic
thickness predictions in table 1. The parameter space of (M, Q) is partitioned into four regimes. Regime A
(red region) describes the region in which layer thicknesses mutually thin as M~!/3. Regime B (purple region)
describes the limit in which the upper layer thickness asymptotes to the value that would apply if the layer
was released in isolation. Regime C (green region) describes the region in which the thicknesses of both fluid
layers asymptote to the values that would apply if the layers were released in isolation. Regime D (blue region)
describes a region that encompasses a wide range of M and Q. The blue line marks the demarcating boundary
hy = hy.

Regimes

AM > 5.0 < g%

Thickness predictions in the two-layer region

o173
e~ ()7 e~ o,

2 1/2
B: —ng <MK é hy ~ (7312/3QM> . by~ 313
> 13
C:%E <M< 5o h;~(%> , hy ~ 3173,
1/3
3 3
D: 0> %,M>>ﬁ hl"’(ﬁ%) ) huNW’

Table 1. Predictions for layer thicknesses in the two-layer region (§ 3.3) in each of the four regimes A, B, C
and D that are identified in figure 6.

significant region of the parameter space, encompassing asymptotic limits involving both
large and small M. The structure produces a thick region of heavier fluid in the two-layer
region.
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To visualise the control of the relative thicknesses of the two layers in this
parameter-regime diagram, we also plot in blue the curve along which the thicknesses in
the two-layer region are equal to each other and by setting 4, = h; in (3.7), we determine
the exact seperatrix between these two configurations to be M = 20Q/(3 + 2R — 6Q —
30R). The diagram shows that for M 2 1, the ratio of thicknesses is controlled almost
independently by the flux and density ratios alone. An interesting feature is that if the flux
ratio is sufficiently large, QO > (3 + 2R)/(6 + 2R), the lower layer is certain to be thicker
than the upper layer, irrespective of the value of the viscosity ratio M. Regimes A and B
have a thicker upper layer and regimes C and D have a thicker lower layer. We establish a
simple demarcation between these pairs of regimes based on layer thicknesses.

Remarkably, the results above show that the dynamics of inclined two-layer gravity
currents can be classified entirely from the thicknesses in the two-layer region (3.7). These
regimes are not necessarily associated with finite fluid layers. Notably, we emphasise
the equivalence of the M, Q scalings that define the demarcations of the regimes in
figure 6 and the regimes in Kowal & Worster (2015). Unlike previous work, we have
derived full asymptotic conditions, including prefactors and dependence on the density
ratio R. The second crucial distinctions between the regimes in these two studies arises
from the scalings in the evolution equations for layer thicknesses and front positions:
the horizontal substrate thicknesses scale as 1/5-powers in M and Q, while the inclined
substrate thicknesses scale as 1/3-powers. That said, their regime I (describing situations
in which the upper layer has a higher viscosity and a higher input flux than the lower layer
and spreads under its own weight) shares similarities with our regime B, in which the
lower layer forms a Couette flow due to the stress applied at the base of the upper layer.
The theoretical predictions we obtain for regime B (table 1) are identical to the scalings
for thickness in regime I of their study. We note that despite the similarities between their
regime I and our regime B, the analytical reductions differ. In view of the fundamental
difference between the two problems, we show that our coupled cubic algebraic equations
(3.7) likely underlie the regimes of all two-layer flows.

3.4. Initiation of two-layer fluids into an empty domain

Having understood the independent dynamics of the two-layer region, we are in a position
to construct solutions to the problem in which two finite layers are released and form
independently propagating flow fronts.

At long times, the flow becomes increasingly slender as it extends down-slope.
Therefore, the thickness gradients d/;/0x become progressively smaller relative to db/dx
in the governing flux expressions (3.6b,c) as t increases. Thus, at long times, we assume
that the along-slope component of gravity (represented by db/dx) provides the dominant
contribution. In dimensionless forms, these expressions reduce to

ohy, 0 h MR
Sh aqx“ =0, qu= "+ Migh + == hi. (3.13a)
dhy g MR M

St =0 a= Th? + 3huh%. (3.13b)

Equation (3.13a) describes the flux of the upper layer where each term represents
contributions from shear variations of the upper layer itself, from the basal stress acting on
the upper layer and from the drive induced by the motion by the lower layer, respectively.
Equation (3.13b) represents the flux of the lower layer with contributions from flow
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induced by the motion of the upper layer and from the shear variations in the lower layer,
respectively.

By conducting a scaling analysis of the system, we obtain the scalings of &/t ~
W /x from (3.13) and hx ~ ¢ from (3.6¢) which are consistent with previous studies of
single-layer flows on slopes (e.g. Huppert 1982a; Lister 1992). Combining these, we obtain
x ~t and h ~ 1. These scalings differ from those arising for constant flux inputs over
horizontal substrates, where the propagation rates go as r!/> (Huppert 1982b; Kowal &
Worster 2015).

The scaling analysis above indicates the existence of similarity solutions of the form
h = h(n), where

n=rtlx (3.14)

with front positions x,, = n,t and x; = n;t, where n, and n; are constants. The similarity
scaling implies that the flow becomes increasingly slender at long times, dh/dx ~ 1/t, thus
confirming that the approximation of neglecting d//dx is self-consistent. Recasting (3.6)
in terms of the similarity coordinate (3.14), the equations reduce simply to dg;/dn = 0,
where ¢; are given by (3.13). Thus, the fluxes through both layers are uniform through the
length of the similarity solutions. Integration of dg;/dn = 0 subject to the input conditions
(3.6¢) yields

h3 MR

5 + Mh2hy + Th,zhu =1, (3.15a)
R 1
M (gh? + Ehuh,z> =Q. (3.15b)

These expressions are equivalent to those arising in our analysis of steady two-layer flows
in § 3.3. The equivalence reflects a property of the similarity solutions considered here,
namely, that the height profiles that conform to the similarity scalings are steady (inherent
in the scaling i ~ 1). The time dependence of the flow therefore arises entirely from the
evolution of the moving flow fronts, x;(¢) and x,,(¢).

Within the upstream region comprising both fluid layers, 0 < n < n;, we apply (3.15)
to calculate the thicknesses of the two layers. This forms a component of the similarity
solution that is equivalent to the problem explored in § 3.3. To determine the thickness in
the downstream region comprising the lighter fluid alone, 17; < n < n,, we set iy = 0 in
(3.15a) to obtain

hy, =33, (3.15¢)

The heights in the two regions can thus be determined from (3.15) before the extents of
these regions 1; and n, are known.
The integral constraints (3.6 f) yield

ni n Nu
/ hydn = 0, / hy dn + / 313dn =1, (3.16a,b)
0 0 uli

where we have substituted for the thickness in the single-layer region using (3.15c¢). Since
h; and h,, are uniform, these expressions reduce to

h
e me=m+373 (1 - Oy (3.17a,b)
hl h[

giving explicit formulae for the positions of the flow fronts 1; and n,, in terms of the known
thicknesses /; and &, given by (3.15). It is evident from the similarity solutions (3.17) that
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Figure 7. Similarity solutions constructed using (3.15) and (3.17) for two examples (a) M = 10 and (b)
M = 0.1 for fixed Q = 0.5and R = 2.

the upper fluid always extends ahead of the lower layer to form a single-layer region in
front of a two-layer region, confirming our observation from the numerical solutions in
figure 2. This essential structure can be understood by noting that, in the two-layer region,
the lighter fluid must always flow at least as fast as the heavier fluid below it (its speed
is given by the speed of the top surface of the lower layer plus an additional contribution
due to the slope of its upper surface). Therefore, the lighter upper fluid must eventually
flow ahead of the heavier lower fluid to form a secondary, independent single-layer
region.

The similarity solutions can be constructed systematically as follows. First, we
determine the thicknesses in the two-layer region, /; and h,, by solving (3.15a,b) using
the Newton—Raphson solver applied in § 3.3. The length of the upstream region n; can
then be evaluated using (3.17a). The volume of the lighter fluid in the two-layer region can
be determined as n;h,, leaving a residual volume of 1 — 7;h, to extend ahead and form the
single-layer region. Equating the cross-sectional area of the downstream region with this
residual, 3!/ 3(77u —n7) = 1 — nih, and rearranging, we obtain (3.170).

Two illustrative solutions are shown in figure 7. For these, we apply the same parameter
settings used for our two numerical examples shown earlier in figure 2. We note that while
the similarity solutions predict a discontinuity in thickness at the lower layer flow front,
in the full unsimplified model (3.6), the higher-order diffusive contributions intervene to
smooth the discontinuities (cf. a single-layer flow on a slope Lister 1992). The solutions
exhibit differences in the thicknesses and lengths of the two regions. While the thickness
of the single-layer region is universal, the total thickness of the two-layer region can either
be greater than or less than the thickness of the single-layer region. The predictions for
the frontal positions, x, = n,t and x; = n;t, are shown as dashed lines in figure 2(c,f),
where they are shown to successfully match our numerically determined predictions at
long times.

3.5. The control of the propagation rate

In order to understand the general parametric control of the flow structure predicted by the
system of (3.15) and (3.17), we have plotted the positions of the layer fronts, 1, and n;, as
functions of the viscosity ratio M for fixed values of Q = 0.5 and R = 2 in figure 8(a). The
corresponding length of the single-layer region, 1; — n,, is shown in figure 9(a). As M is
increased, 1, and 7; both increase, which is consistent with both layers propagating faster
as the viscosity of the lower layer is reduced. For small M, we substitute the asymptotic
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Figure 8. Numerical solutions of the front positions in (3.17) (thin unbroken lines) overlaid by their asymptotes
(thick dashed lines) for fixed R =2 over a wide range of the (a) viscosity ratio M and (b) the flux ratio
Q. The fixed parameters are (a) Q@ = 0.5 and (b)) M = 1. In panel (a) the function ¢(QR) = 31311 —
OR¢(OR) /v (QOR)], as defined by (3.19¢).
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Figure 9. The length of the frontal (single-layer) region n, — n; overlaid with its asymptotes for fixed R = 2
over a wide range of (a) the viscosity ratio M (fixed Q = 0.5) and () the flux ratio Q (fixed M = 1). The plots
illustrate the approach of the length towards constants in each limit. In panel (a) the grey rectangle indicates the
range of possible values spanned by ¢ (QR). The inset in panel (@) plots the function ¢ (QR) defined by (3.19¢),
representing the dimensionless length in the limit M — oo.

results of the two-layer region given by (3.8) into (3.17) to give the frontal positions

1/3
MRO?
m~< 3Q) . e~ 373, (3.18a,b)

as M — 0. In this limit, the two-layer region is considerably thicker and shorter than the
single-layer region. In effect, the heavier fluid acts as a near-rigid, narrow topographic
obstruction for the lighter fluid between 1 = 0 and 7;. Once the lighter fluid flows over this,
its extent is then effectively equivalent to that which would apply if it were in isolation,
forming a dimensionless length of 37173,

For M — oo, the length of the two-layer region becomes comparable to the length of
the full system. Substituting (3.9) into (3.17), we obtain

N Q(MR2)1/3

> u " R), 3.19a,b
7(OR) Nu ~ N1+ §(OR) (3.19a,b)
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for M — oo, where

(3.19¢)

¢ (QR) )
¥ (OR)

is a function of QR alone, representing the length of the single-layer region. The front
position of the two-layer region thus grows as M!/3, representing the acceleration of
the rate of propagation by lubrication. By contrast, the length of the single-layer region
approaches a constant ¢(QR) that is independent of M. The value of ¢(QR) across the
entire range of QR is strictly bounded within the narrow range 2 < 3'/3¢ < 3. The extent
of this band of values is indicated by the grey shaded rectangle in figure 9(a). Since n,, — 1;
must also asymptote to the universal value 37!/3 as M — 0, the dimensionless length of
the frontal region is an almost universal function of the viscosity ratio M alone.

As shown in figure 9(b), both layers grow as the flux ratio Q is increased. For Q — 0,
we substitute (3.12) into (3.17) to give

C(QR) =371/ (1 — OR

1/3 1/2
n1~'<—5ﬂwg) . one~ 3718 (3.20a,b)

The two-layer region thus occupies a short region of length Q!/? in front of the source,
while the flow is primarily comprised of the lighter fluid. As Q increases, the two-layer
region develops and eventually dominates the flow domain. The upper layer front position
is asymptotically described only by the propagation of this lower layer frontal region. For
Q — oo, we substitute (3.11) into (3.17) to give

1/3
MRO?
m~(3Q), M~ i+ 3743, (3.21a,b)

showing that the extent of the two-layer region (and, thus, of the entire flow) grows as

0?3, As illustrated in figure 9(b), the length of the single-layer region approaches the
universal asymptotic value 1, — 1; ~ 37%/3, equal to one third of the length predicted by
single-layer theory, e.g. (3.20b). Remarkably, for large input flux of the heavier fluid, the
lighter fluid will always partition its volume such that 2/3 of it lies in the two-layer region
while the remaining 1/3 lies in the frontal region. This property applies universally for all
M and R, assuming large Q. As a result, the thickness and length of the single-layer region
is almost entirely insensitive to the specific value of all the dimensionless parameters.

We compare the convergence of the front positions of the numerical solutions towards
the asymptotic predictions determined here (figure 2¢,f). In both cases, the numerical
solutions converge to the theoretical prediction. There is exact agreement between the
prediction for both layers’ front position in the case of M = 0.1 and between the prediction
for the lower layer front position in the case of M = 10. The result for M = 10 shows that
the front of the upper layer takes relatively longer to approach the asymptotic prediction
of the reduced theory, as compared with the lower layer front (as indicated by the inset
of figure 2¢). This is likely because of the considerably larger viscosity of the upper
layer, which acts to increase the time it takes for the layer to adjust to its corresponding
asymptotic prediction. Conversely, when the lighter fluid is much less viscous than the
heavier fluid (M = 0.1), the convergence of the front position of the lighter fluid is
relatively faster.

Our description of the four regimes in figure 6 is now enriched with information
gained from our finite layer analysis. A summary of the front position predictions in
each regime are presented in table 2, building on the summary of partitioning curves
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Table 2. Predictions for layer thicknesses (§ 3.3) and front positions (§ 3.5) in each of the four regimes A, B,
C and D identified in figure 6.

and layer thickness predictions in table 1. In regime A the structure involves a region
of lubrication connected to a thick region of lighter fluid forming the nose. In this case,
the lubricating region acts as a ‘bulldozer’, pushing the relatively larger quantity of more
viscous fluid considerably further than it would spread in isolation. (In this instance, a
horizontal pressure gradient drives the system forward, transferring the lubricating lower
layer velocity to the single-layer region.) Regime B describes a configuration in which
the lighter fluid layer occupies a considerable proportion of the length of the two-layer
system. In contrast to the configuration in regime A, the structure in regime C produces a
thin region of lighter fluid that extends downstream of the heavier fluid front. In regime D
the structure produces a thick region of heavier fluid upstream of a thin single-layer region.
Single-layer frontal regions that are thicker and thinner than the upstream two-layer region
fall within this region.

4. Fixed volume release of two layers

We consider now the situation where two fluid volumes are released together onto an
inclined surface. In this case, we assume the layers are initialised with profiles 4, (x, 0)
and hy(x, 0), with volumes prescribed by the integral constraints,

X7 Xu
/ hydx = vy, / hy, dx = vy, 4.1a,b)
0 0

where v,0 and vjy are the volumes of the upper and lower layers, respectively. We also
assume that no fluid enters the domain at x = 0 by imposing

qu(0,1) =0, (0,1 =0, (4.2a,b)

which can be interpreted as a no-penetration condition or symmetry condition at x = 0.
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4.1. Intrinsic scales and dimensionless model system

We non-dimensionalise the system using the intrinsic time, length and height scales,

5 1/2 2\ 173

ap g7 v

o) e () i e
o> PL87V,0 Hu

We define dimensionless (hatted) variables according to
t=Ti, x=ALk h=Hh, (4.4a—c)

The dimensionless governing equations are identical to (3.6a—d). The only difference is
that we now impose the volume constraints (4.1) and the flux conditions (4.2), the former
taking the dimensionless forms

Xu x|
/ hydx =1, / hydx =V, (4.5a,b)
0 0

where V = vyp/v,0. The dimensionless system above depends on three dimensionless
parameters

M=t g=P y_0 (4.6a—c)

i Pu Va0
the ratios of viscosity, density and fluid volumes, respectively.

4.2. Illustration of phenomena

We illustrate the general behaviour using our numerical solver in figure 10. To initialise the
layers, we introduce them into an initially empty domain at constant dimensionless fluxes
(gu = 1 and g¢; = V) over the short interval —1 < ¢ < 0. The input was terminated at t = 0,
producing fixed volumes for all subsequent times, ¢ > 0, in accordance with (4.5). We
show two example viscosity ratios given by (A) M = 10 and (B) M = 0.1, with R = 2 and
V = 0.5. Each evolution is shown as a progression of time slices at t = 1 (figure 10a,d) and
t = 10 (figure 10b,e). In both examples, the thickness of the lighter fluid above the heavier
fluid thins progressively, to the extent that the two fluids largely occupy independent layers
at long times. This can be understood by noting that the fluid on top of the lower layer
always flows faster than the lower layer and, hence, without a resupply of lighter fluid, the
upper layer progressively ‘spills’ ahead the heavier fluid. The lighter fluid always advances
ahead of the heavier fluid because its speed is at least as fast as the top surface of the
heavier fluid below it. In contrast with example A, in case B the lighter fluid front is
consistently thinner than the heavier fluid upstream of it. There is a drop, rather than a
jump, in thickness at the front of the heavier fluid at large times. A second key difference
between the examples is the extent of each fluid. The heavier fluid is longer in case A than
it is in case B and the lighter fluid is longer in case B than in case A. This suggests that,
despite the separation of the flows, the less viscous layer plays a key role in propagating
the frontal region of lighter fluid. In contrast to the constant flux case, the front positions
both grow with a sublinear trend, but likewise move progressively further apart in time.

4.3. Similarity solutions

We note that (3.6a—c) and (4.5) yield the scalings i/t ~ h*/x and hx ~ 1, respectively.
Eliminating s, we obtain x ~ 173 and, hence, h ~ t—!/3, which are consistent with the
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Figure 10. Numerical solutions of the dimensionless model (3.6a—d), (4.5) and (3.6) from an initial injection
of a fixed volume release of both layers, with V = 0.5, R = 2 and (a,b) M = 10, (d,e) M = 0.1. Both fluids are
injected into an initially empty domain at —1 < ¢ < 0. Profiles at t = 1 (a,d) and t = 10 (b,e) are illustrated.
(c,f) The evolution of the front positions from the numerical output are overlaid with their theoretical
predictions.

scalings arising in the case of a single layer (Huppert 1982a). Thus, we define the relevant
similarity variables as

n=r1"3x, h=r""3H®). (4.7a,b)

The front positions of the two layers therefore evolve as x; = mtl/ 3 and x, = nutl/ 3

confirming the trends indicated earlier by our numerical solution of figure 10(c,f).
Recasting (3.6a—c) in terms of the similarity variables (4.7), we obtain

ld(H _d (H) ) MR _, \ _ dqu

5& un) = @ (? + MH H; + THI Hu) = (4.8a)
li(Hm) . (M—RH3 My HZ) _ da (4.8b)
3d dp \ 3 0T 2 dn’

where ¢, and g; are the flux expressions (3.13) in the limit where the along-slope
contribution to the flow dominates.
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Integrating (4.8) subject to the flux conditions (4.2), and simplifying, we obtain

n  H? MR

3= + MH,H, + - Hj, (4.9q)
n MR , M

3= 3 Hi + S HeHi. (4.9b)

Since these equations depend on 7, it follows that the thickness profiles of the fluid
layers both vary along the flow, differing qualitatively from the asymptotic form of layers
produced by a constant flux (§ 3). In principle, these equations could be solved by using
(4.9b) to eliminate H; in (4.9a) and attempting to solve the resulting polynomial equation
for H,(n). As noted in § 4.2, however, the lighter fluid spills progressively ahead of the
heavier fluid. This indicates that the fluids should partition at long times into two distinct
single-layer regions. In other words, we can anticipate that there is no part of the final
similarity solution in which both H; and H,, are positive simultaneously.

In order to prove this mathematically, we proceed by contradiction and assume that both
H; and H,, are positive. Using (4.9b) to eliminate H, in (4.9a) and applying the quadratic
formula on the resulting quadratic, we obtain

MRH? 8R\ /2
=1%(1- 5 : (4.10)
n

Since the second term on the right-hand side is greater than unity, we must take the positive
root in order for H; to be real (we also require 8R < 9M; if this inequality is not satisfied
then H; has a complex solution which is unphysical). Using the resulting expression to
eliminate Hl2 in (4.90) and simplifying, we obtain

M n 8R\ "1/

Since H, > 0 and the right-hand side is positive, it follows that H; is negative, leading to
a contradiction of the requirement that the layer thicknesses are positive. Therefore, the
initial assumption that H; and H, can be simultaneously positive is false. Consequently,
there is no location along the similarity solution in which the two layers exist together.

Thus, we can proceed under the assumption that the upper layer thickness is zero in
the region where the lower layer flows, i.e. H, = 0 for 0 < n < n;, and that the lower
thickness is zero after it terminates, i.e. H; = 0 for n; < n < n,. The volume constraints
(4.5) become

n Nu
Hidn =V, H,dn=1. (4.12a,b)
0 m

In order to apply continuity conditions across the shock front at 1, it is required that
the velocity of the shock at the front of the heavier fluid moves at the same velocity as
the back of the lighter fluid. In accordance with mass conservation, the fronts move at
velocities ¢, /h, and ¢q;/h;. Hence, we impose the continuity condition g, /h, = q;/h;.

Integrating (4.8) subject to (4.2) and the continuity condition above, we obtain

H, n_\'? 0
l—(m) O <n<mn,

H, =n'? < n<mn).

(4.13)
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Figure 11. Similarity solutions describing the release of two fluids for (¢) M = 10 and (b) M = 0.1, both with
R =2,V =0.5. The similarity solutions are given by (4.13) and (4.14). (¢) The front positions, 1, and 7;, given
by (4.14) plotted as a function of the dimensionless number V(MR) 172,

The thicknesses of each layer therefore increase as n'/? towards their respective flow
fronts. Substituting these expressions into (4.12), we determine the front positions as

3 2/3 3 2/3
n = <§V(MR)1/2) - <5(1 + V(MR)1/2)> , (4.14a,b)

and their ratio as

L (4.14¢)

mo VMRV '
This expression is a dimensionless ratio that is a decreasing function of V(MR)!/?,
representing the shortening length of the lighter fluid as the volume and density of the
heavier fluid is increased and the viscosity of the heavier fluid is reduced relative to that of
the lighter fluid. Two illustrative solutions given by (4.13) and (4.14) are shown in figure 11
for (a) M = 10 and (b) M = 0.1, each for V = 0.5 and R = 2. The solutions illustrate the
intervening shock layer, the curved shape of the profiles, and the potential for the thickness
to increase or decrease across the shock layer.

The self-similar shape of the heavier fluid predicted by (4.13) is exactly the same as that
which would apply if just the heavier fluid were released in isolation (corresponding to
the similarity solution describing a single layer on a slope Huppert 1982a). Therefore, the
lighter fluid has no effect on the dynamics of the heavier fluid at long times. By contrast,
the frontal region comprising the lighter fluid differs from the single-layer prediction
because it must reside in front of the upstream region. In effect it is “pushed’ forward by the
heavier fluid. The added distance travelled by the lighter fluid compared with the prediction

that would apply if it were in isolation is represented by the V(MR)!/? term in (4.14D).
As shown in figure 11(c), the front positions of the two layers are given by a universal

function of the grouping V(MR)'/?. For the situation where the heavier fluid is much less
viscous than the lighter fluid (large M), the control of the propagation of the lighter fluid
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Figure 12. Cross-section and overhead view of the experimental set-up.

by the heavier fluid can be considerable even for a relatively small volume of the heavier
fluid V. This dependence is encapsulated in the M'/3 factor in (4.14). Figure 10(c, f) plots
the predicted front position x,, = nutl/ 3 and x; = mtl/ 3 as black dashed lines, showing
excellent agreement with our numerical simulations of the full governing equations at
long times.

5. Laboratory study

In order to test our theoretical results, we conducted a series of laboratory experiments and
compared the data with our predictions. Our experimental apparatus comprised of a sloped
acrylic channel of dimensions 0.81 m long and 0.14 m wide with 0.05 m high sidewalls
(figure 12). A lock gate was formed by placing two sealed acrylic barriers across the sloped
channel, approximately 8 cm apart. We conducted two different kinds of experiments: one
in which the lighter fluid was more viscous than the heavier fluid (M > 1) and the other in
which the lighter fluid was less viscous than the heavier fluid (M < 1). In each, we used
pure Karo corn syrup as one of the two fluids. For M > 1, we used a solution of potassium
carbonate dissolved in the corn syrup for the more dense, less viscous heavier fluid. For
M < 1, we used a solution of the corn syrup dissolved in water for the lighter, less viscous
fluid. The heavier and lighter fluids were dyed blue and red, respectively.

The dynamic viscosity of pure corn syrup was determined as a function of temperature
using a rheometer (with an error of £5 x 10™* Pa s) at the outset of our experimental
investigation. The viscosity of the pure corn syrup, used as one of the layers in each
experiment, was determined before each run by measuring its temperature using a
thermometer and applying the viscosity vs temperature relationship determined previously
from the rheometry. The viscosity of the second fluid used in each experiment was
determined by measuring the fall speed of ball bearings through both the corn syrup
(whose viscosity was known) and the second fluid, and multiplying the ratio of the
fall speeds with the known viscosity of the corn syrup determined previously using the
rheometer. The 4 mm ball bearings were dropped into a beaker with a diameter of 15
cm. The densities of the fluids were measured using a hydrometer. The angle of the slope
was measured using a digital inclinometer (0.9° £ 0.05°). To prepare the experiment, we
first poured the heavier fluid and then the lighter fluid sequentially into the lock. The
volume of each fluid released during the experiment was calculated by measuring the
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Figure 13. Snapshots from the overhead camera for experiment (@), with parameters listed in table 3. The
lower layer is dyed blue (appearing black), the upper layer is dyed red.

weight of the beaker containing each fluid before and after the fluid was poured into the
lock gate (to within an error of +0.5 g). Once the fluids stratified to form effectively
horizontal interfaces (which typically took <5 min), the downstream gate was released
and the experiment began.

We present four experiments with viscosity ratios M ranging from 0.34 to 1.5 and
volume ratios V ranging from 0.38 to 1.2 (table 3). Each experiment was recorded using an
overhead camera. Stills extracted from the video taken during experiment (a) are shown in
figure 13. The distance of the front position of each layer from the back wall was measured
digitally from our recorded images. Owing to some variation in the positions of the flow
fronts across the width of the channel (figure 13), we measured the front position along
4-5 equally spaced positions across the width for each experiment. We then averaged these
sets of measurements to calculate the width-averaged front positions.

We compare the width-averaged experimental data to the theoretical front positions in
figure 14 for each of our four experiments. According to our theoretical prediction in § 4.3,
the layer fronts evolve according to

9 1/3

X = |:—V2MR (pugozviot)] , (5.1a)
4 M
9 5 1/3

= [— (14 vep)'?) %aviot} , (5.1b)
4 M

which we have plotted as dashed curves in figure 14. Generally excellent agreement is
observed between the theoretical predictions and the experimental data for both the upper
and lower layer front positions (figure 14). The prediction for the lighter fluid front position
is generally slightly larger than the experimental front positions towards the end of each
experimental run. According to the predictions of (5.1), the data for the heavier and lighter
fluid layers should each collapse onto a single curve (¢/7)'/3. This collapse is defined by
a theoretical non-dimensionalisation given as

N 9 » g 5\’
=x; | ~V°MR : 5.2
X=Xy |:4 < o Qv (5.2a)
9 ) —-1/3
fo = % [— (14 vaum)'2) %avgo] , (5.2b)
4 Hu

where x;, and x; are given by (5.1). As shown in figure 15, the collapse for the heavier fluid
front is excellent. The collapse for the lighter fluid front is generally slightly less than the
theoretical prediction (1/7)!'/3, likely because of variations in the relative significance of
surface tension (see below).

We hypothesize that surface tension at the interface between air and the free surface,
which is neglected in our model, is responsible for the slowdown of the lighter fluid front.
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Figure 14. The width-averaged front positions of the heavier (blue) and lighter (red) fluid fronts measured
from our laboratory experiments compared alongside the theoretical front positions (5.1) in dashed black lines.
Panels correspond to experiments labelled (a—d) in table 3.

Exp. ww o M Pu P R Vy0 ) Voot Bo
(Pas) (Pas) (kgm™3) (kgm™3) (103 m?) (1073 m?) (s) (x1072)
(a 23 69 034 1347 1365 101 1.7 0.64 038 2300 43
) 23 69 034 1347 1365  1.01 1.1 1.3 1.2 2000 3.6
() 68 46 15 1365 1409  1.03 1.1 075  0.66 6600 4.0
d 68 46 15 1365 1409  1.03 1.0 1.0 1.0 7300 5.6

Table 3. Parameters for each experimental run.

To test this hypothesis, we estimate a characteristic Bond number Bo = (h/1)?, which we
define as the square of the ratio of the maximum thickness of the flow to the capillary
length scale, 1 = \/y/pug, Where y ~ 80 x 1073 N m~! is the characteristic surface
tension of corn syrup. These values give the capillary length for the system A ~ 2.4 mm.
This is comparable to the typical thickness of layers in our experiments at late times,
which decreases to a few mm by the end of each run. To check the self-consistency of our
theoretical model, we estimate the Bo number using the prediction for the frontal thickness
given by (4.13), namely, h(t) = H(t/T Y~ 1B331/2 The resulting (time-dependent) Bond
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Figure 15. Rescaled frontal positions of the lower and upper fluid layers, as defined by (5.2), plotted against
t/T for the (a) heavier and (b) lighter fluid, showing a collapse of the data for the respective front positions
to single curves. The theoretical prediction for the front position, (¢/7)'/3, is overlaid as a dashed black line
in each case. The experimental data for the lower layer front position collapses onto the theoretical prediction.
The symbols denoting each experimental run are consistent with those used in figure 14.

number is

£\ 2/3 3 172
Bt = (<) zs%(%) (1 + V(MR)'), (5.3a.b)

where 7. is an intrinsic time scale associated with the emergence of surface tension effects.
Once Bo(t) is sufficiently large, the model will predict its own inconsistency, and, hence,
Bo(t) measures the relative significance of surface tension. The Bo at the end of each of
our runs is estimated as 4.3, 3.6, 4.0 and 5.6, respectively (table 3). Since these values are
of order unity, surface tension was indeed likely responsible for the slight slowdown of the
lighter fluid towards the ends of our experiments.

We test a second hypothesis, that interactions with the sidewalls induce a drag force
that is responsible for the retardation of the lighter fluid propagation. A thin boundary
layer forms near the channel walls in which the shear stress of the fluids is affected by the
no-slip condition at the sidewalls. We characterise the importance of sidewall drag by the
ratio of the height of the lighter fluid to the width of the channel, A, (¢)/w. Since the fluid
layer thins with time, we expect the effect of the sidewalls to become increasingly less
important. If sidewall drag was the cause of the disagreement between the data and our
theory, then we would expect the disagreement to reduce with time. However, since we
observe the disagreement to increase with time, we anticipate that our explanation based
on surface tension given above is more plausible. The characteristic values of A, (t.pq) /W
at the end of our experiments (a)—(d) are 3.6 x 1072, 3.3 x 1072, 3.5 x 1072 and
4.1 x 1072, respectively, indicating that the effect of sidewalls was negligible.

6. Conclusions

This study has established the general principles of the dynamics of two-layer fluid
flows released on slopes. A general model of a two-layer gravity current was developed
and analysed using a combination of numerical solutions and analytical approaches.
Focusing on two cases, that of constant flux input and of fixed volume release, we
determined all the possible flow configurations that can arise for the case of a constant
slope, revealing a rich variety of regimes.

917 A54-28


https://doi.org/10.1017/jfm.2021.273

https://doi.org/10.1017/jfm.2021.273 Published online by Cambridge University Press

Two-layer fluid flows on inclined surfaces

For the case of a constant flux input, we found that the flow forms two distinct
regions: immediately downstream of the source, the flow forms a spatially uniform region
comprising both fluid layers; beyond the internal flow front, the heavier fluid terminates
and a single-layer region comprised purely of the lighter fluid develops downstream. To
explore the dynamics of the system, we began by considering the independent problem
of how the thicknesses of two fluid layers are controlled in terms of the viscosity ratio
M and flux ratio Q. Asymptotic descriptions of the model were determined in each limit
of the dimensionless parameters. For example, in the limit of large M, corresponding to
a lubricating lower fluid, both layers thin mutually as M~!/3, such that the ratio of the
thicknesses of the fluid layers becomes independent of the viscosity ratio. The result is to
propagate the more viscous lighter fluid considerably faster than it would in isolation.

Having understood the independent behaviour of the two-layer region, we used the
theory to construct similarity solutions describing the full system comprising both a finite
two-layer region and a downstream single-layer region of the lighter fluid. The step-by-step
construction involves utilising the results of the two-layer theory in conjunction with the
integral constraints on the volumes of the two layers. It was determined that the extent of
the two-layer region is controlled independently by the dynamics of the two-layer theory
and by the volume of the lower layer. The volume of lighter fluid in the two-layer region
is set by its thickness (predicted by the two-layer theory) and the length of the lower layer,
leaving a surplus volume to extend downstream and form the single-layer region. The
construction involves purely algebraic equations, affording considerable analytical inroads
compared with previous studies considering the case of a horizontal substrate.

A universal regime diagram was constructed revealing a variety of possible
configurations over the parameter space of M and Q. The regimes describe a rich variety
of behaviours including the upper layer acting as a ‘rigid lid’, the lower layer acting as a
‘bulldozer’ and the lower layer acting as a ‘conveyor belt’ on top of which the upper layer
translates. In some cases, the frontal region can be thicker than the upstream two-layer
region, resulting in the potential for a significant mass of lighter fluid to be pushed ahead
of the two-layer region. We established that the length of the two-layer region always
grows as M'/3 in the limits of both small and large M, with differing prefactors dependent
on Q and R in these respective limits. The corresponding dimensionless length of the
frontal region was found to be a near-universal function of the viscosity ratio M alone.
In the asymptotic regime of large fluxes of the lower layer (large Q), we identified a
general property (applicable for all viscosity and density ratios) that the lighter fluid always
partitions between the two- and single-layer regions in a 2:1 ratio.

For the release of two fluids of fixed volume, we found that the two fluids instead
separate into two distinct single-layer regions connected at a short interface. The constraint
on the lighter fluid layer to lie entirely ahead of the heavier fluid results in a strong
dynamic coupling between the fluid layers, with the potential to considerably accelerate
the propagation of the lighter fluid. Even a small volume of lubricating fluid can ‘push’ the
lighter fluid much faster than it would flow in isolation. In further contrast to the constant
flux input case, the layers involve spatially variable thicknesses profiles, forming similarity
solutions that grow in thickness as x!/? towards their respective fronts, and extend as ¢!/°.

Our theoretical predictions showed excellent agreement with the experimental front
positions of a fixed volume release of two fluids. We derived a scaling for each fluid
layer for which its experimental data collapse onto a single curve. We proposed a
time-dependent Bond number to quantify the relative importance of surface tension during
the evolution. The value of the number indicated that surface tension was responsible for
inhibiting the propagation of the upper fluid layer by the ends of each of our experimental
runs.
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Our study has demonstrated considerable analytical inroads for the analysis and
classification of regimes applying to multi-layer gravity currents, as compared with
previous studies, all of which have focused on horizontal substrates (Woods & Mason
2000; Kowal & Worster 2015; Pegler et al. 2016). Our classification of the regimes for
inclined two-layer gravity currents fed by a constant flux input show that the classification
can be reduced entirely to the consideration of a cubic equation which independently
partitions the M, Q parameter space into four regimes. Remarkably the partitioning curves
between our regimes and those in Kowal & Worster (2015) have the same M and Q scalings
but represent fundamentally different regimes, specifically, ours is a steady-state solution
while theirs is a time-dependent similarity solution. Our framework provides a clearer
explanation for the regimes and our asymptotic reduction enables exact descriptions for
the separatrices.

The analysis of this paper provides a foundation for the theoretical treatment of two-layer
fluid flows on sloped surfaces widely seen in geophysical, environmental and industrial
applications. While we have focused here on the idealised case of two-dimensional
Newtonian fluid layers, the phenomena revealed are likely to underlie more complex
generalized examples of layered flows. Important additional effects we have neglected
include those of a porous domain, of surface tension at the interface, of non-Newtonian
rheology, of three-dimensionality, and of thermodynamic controls on viscosity and
density. Each of these effects presents directions for new research for which the model
and analytical inroads revealed here provide a basis for generalization.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.273.
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Appendix A. Numerical scheme for the time-dependent model

This appendix details the second-order finite-volume numerical scheme that we use to
solve the full model (2.5). The method converts the conservative form of the partial
differential equations to surface integrals and solves them by evaluating the flux into and
out of ‘cells’ (small volumes) at each spatial node (e.g. LeVeque 1992).

We sub-divide the spatial domain x into finite volumes (cells) centred at index i, with
the upstream and downstream faces of each cell at i — 1/2 and i + 1/2, respectively. We
note that, by conserving mass across cells that contain flow fronts, our solver evolves flow
fronts automatically without the need for explicit equations describing their evolution.
Derivatives of h, and h; are computed using the second-order centred finite difference

ohi.  hitl —pi7!

, Al
ox 2Ax (AD)

where k = u or /. Using a first-order Taylor series to estimate the values of the thickness
to the right (R) and left (L) of the face of each cell (shown below for i 4+ 1/2), we obtain
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the approximations

. Y N . )
h5,1+1/2 =h + a_; (7’“) : hf’“/z =hl — 8_): <7x> . (A2a,b)

Similarly, for the derivative terms dh,/dx and dh;/dx, defined in (A1), we obtain

e \ B2 o, N Ax 82h, ah \ETY2 dhe Ax2h, A3
= — —_— . —_— = —_— . a
ox ox 2 9x2 ox ox 2 9x2
where
9%h 1 [ontt  gnit
L= Kk ). (A3b)
ox2 2Ax \ 9x ox

Since the cells are the same size, a first-order Taylor series is sufficient for stability
(LeVeque 1992).

In order to prevent the introduction of spurious maxima and minima in the numerical
solution (particularly near any shock fronts), we implement a flux limiter. The limiter used
for each layer thickness is

max(h, A1) if AR > max(K, B,
AR = I min(kh, Kl if AR < min(h, ATV, (A4)

R otherwise,

with a similar expression for i’. The same limiter is applied to d4/dx. This allows
the numerical scheme to maintain a shock front if required. Our finite-volume method
implements a flux interpolation scheme between the values to the left and right of each
interface according to

hf+,i+1/z _ hﬁ,H—l/Z—i—l’ hl’g+,i+l/2 _ hf,i—l/Z’ (ASa.b)

where the value to the right of the interface (denoted by R+) is the value to the left of the
next cell. The value to the left of the interface (denoted by L+) is the value to the right
of the cell that is located immediately to the left of cell i. The same construction has been
applied to calculate the values of the derivatives at each cell interface. These thickness and
derivative values are used to compute the values of ¢, and g; using expressions (3.6b,c) to
the left and right of each cell.

A standard Godunov upwind scheme is used to interpolate fluxes (LeVeque 1992).
This has been chosen both because it is particularly suited to identifying discontinuities
and is inherently mass conservative. We then integrate (3.6a) in time using a forward
Runge—Kutta scheme to the next time step and repeat.

The conditions for global volume conservation and continuity of flux and velocity at the
lower layer front are automatically satisfied by this numerical method. There is no need
for special treatment of a cell that spans a flow front because, like every other point on
the numerical grid, a condition of flux continuity is imposed across every cell. It should
be noted that the flow fronts predicted by the model generally involve steep gradients in
layer thicknesses. Since our flux limiter prevents spurious maxima or minima, our solver is
able to resolve these steep gradients sufficiently (without the need to specify a minimum
thickness, for example). To increase the spatial resolution at which the flow fronts are
extracted from our solutions, we consider the three nodes upstream of x; at which the
thickness vanishes, fit a line through these three points and extrapolate the line until it
intersects the x-axis.
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The numerical solver was benchmarked in three ways: first, we checked that the total
mass of the numerical solution was conserved. Next, we checked that our numerical solver
is stable for very low spatial resolutions. Finally, we checked the agreement with the
steady-state asymptotic solutions for both single-layer and two-layer systems (figure 4).
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