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Abstract. Under the standard model extension (SME) framework, Lorentz invariance is tested
in five binary pulsars: PSR J0737-3039, PSR B1534+12, PSR J1756-2251, PSR B1913+16 and
PSR B2127+11C. By analyzing the advance of periastron, we obtain the constraints on a di-
mensionless combination of SME parameters that is sensitive to timing observations. The results
imply no evidence for the break of Lorentz invariance at 10−10 level, one order of magnitude
larger than previous estimation.
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1. Introduction
Unification of general relativity (GR) and quantum mechanics is a grand challenge in

the fundamental physics. Some candidates of a self-consistent quantum theory of gravity
emerge from tiny violations of Lorentz symmetry (Kostelecký 2005; Mattingly 2005). To
describe observable effects of the violations, effective field theories could be a theoretical
framework for tests.

The standard model extension (SME) is one of those effective theories. It includes
the Lagrange densities for GR and the standard model for particle physics and allows
possible breaking of Lorentz symmetry (Bailey & Kostelecký 2006). The SME parameters
s̄μν control the leading signals of Lorentz violation in the gravitational experiments in
the case of the pure-gravity sector of the minimal SME. By analyzing archival lunar laser
ranging data, Battat et al. (2007) constrain these dimensionless parameters at the range
from 10−11 to 10−6 , which means no evidence for Lorentz violation at the same level.

However, tighter constraints on s̄μν would be hard to obtain in the solar system be-
cause the gravitational field is weak there. Thus, for this purpose, binary pulsars provide
a good opportunity. Because of their stronger gravitational fields, for example the rel-
ativistic periastron advance in the double pulsars could exceed the corresponding value
for Mercury by a factor of ∼ 105, these systems are taken as an ideal and clean test-bed
for testing GR, alternative relativistic theories of gravity and modified gravity, such as
the works by Bell et al. (1996), Damour & Esposito-Farèse (1996), Kramer et al. (2006),
Deng (2009) and Deng (2011).

Motivated by this advantage of binary pulsars, we will try to test Lorentz invariance
under the SME framework with five binary pulsars: PSR J0737-3039, PSR B1534+12,
PSR J1756-2251, PSR B1913+16 and PSR B2127+11C. In Section 2, the orbital dy-
namics of double pulsars in the SME will be briefed. Observational data will be used
to constrain the SME parameters in Section 3. The conclusions will be presented in
Section 4.

558

https://doi.org/10.1017/S1743921312024866 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921312024866


Constraints on SME parameters 559

2. Orbital dynamics of double pulsars in SME
When the pure-gravity sector of the minimal SME is considered, it will cause secular

evolutions of the orbits of double pulsars. Since timing observations of double pulsars
could obtain its value very precisely, the periastron advance plays a much more important
role in constraining s̄μν and, with widely used notations in celestial mechanics, it reads
(Bailey & Kostelecký 2006)〈
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where M = m1 +m2 , δm = m2−m1 (m2 > m1) and ε = 1−(1−e2)1/2 . In this expression,
the coefficients s̄· and s̄·· for Lorentz violation with subscripts P , Q and k are projections
of s̄μν along the unit vectors P , Q and k. The unit vector k is perpendicular to the orbital
plane of the binary pulsars, P points from the focus to the periastron, and Q = k × P .
By definitions (Bailey & Kostelecký 2006), s̄k ≡ s̄0j kj , s̄Q ≡ s̄0jQj , s̄kP ≡ s̄ij kiP j ,
s̄kQ ≡ s̄ij kiQj , s̄P P ≡ s̄ijP iP j and s̄QQ ≡ s̄ijQiQj . However, according to Eq. (2.1) , it
is easy to see that the measurement of ω̇ is sensitive to a combination of s̄μν instead of
its individual components. Bailey & Kostelecký (2006) define the combination as

s̄ω ≡ s̄kP sinω + (1 − e2)1/2 s̄kQ cos ω − δm
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and crudely estimate its value at the level of 10−11 .
Together with the contribution from GR, the total secular periastron advance of a

double pulsars system is
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The quantity x in Eq. (2.4) is the projected semi-major axis, which is usually given by
the timing observations, while, in some cases, s could be measured directly so that there
is no necessity to evaluate it from this equation. In this work, Eq. (2.3) will be taken to
find the constraints on s̄ω with timing measurements of double pulsars.

3. Observational constraints
Long-term timing observations can determine the geometrical and physical parameters

of binary pulsars very well. Among them, PSR J0737-3039 (Kramer et al. 2006), PSR
B1534+12 (Stairs et al. 2002), PSR J1756-2251 (Faulkner et al. 2005), PSR B1913+16
(Weisberg et al. 2010) and PSR B2127+11C (Jacoby et al. 2006) are good samples for
gravitational tests. Some of their timing parameters are listed in the Table 1. In terms
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Table 1. Timing Parameters of the Double Pulsars.

PSR Pb (d) M (M�) e s ω̇ (◦ yr−1 ) Reference

J0737-3039 0.10225156248 2.58708 0.0877775 0.99974 16.89947(68) Kramer et al. (2006)
B1534+12 0.420737299122 2.678428 0.2736775 0.975 1.755789(9) Stairs et al. (2002)
J1756-2251 0.319633898 2.574 0.180567 0.961a 2.585(2) Faulkner et al. (2005)
B1913+16 0.322997448911 2.828378 0.6171334 0.733650a 4.226598(5) Weisberg et al. (2010)
B2127+11C 0.33528204828 2.71279 0.681395 0.76762a 4.4644(1) Jacoby et al. (2006)

a Derived value according to Eq. (2.4).

Table 2. Values of s̄ω .

Group I Group II Predicted sensitivity
Bailey & Kostelecký (2006)

s̄ω (−1.24 ± 0.54) × 10−10 (−1.42 ± 0.75) × 10−10 10−11

of the estimated uncertainties given in parentheses after ω̇, the data pool is divided into
two groups: Group I, all the double pulsars are taken; and Group II, including PSR
B1913+16, PSR B1534+12 and PSR B2127+11C, which have the smallest uncertainties.

By weighted least square method, the parameter s̄ω is estimated (see Table 2). The
estimation made by Group I is s̄ω = (−1.24 ± 0.54) × 10−10 and Group II gives s̄ω =
(−1.42±0.75)×10−10 . For comparison, Bailey & Kostelecký (2006) propose the attainable
experimental sensitivity of s̄ω is 10−11 , which is 10 times less than the results we obtain.

4. Conclusions
In this work, we test Lorentz violation with five binary pulsars under the framework

of standard model extension. It finds that s̄ω , which is a dimensionless combination of
SME parameters, is at the order of 10−10 , whether all five systems are taken or top three
systems with the smallest estimated uncertainties of periastron advances are used. This
value, one order of magnitude greater than the estimation by Bailey & Kostelecký (2006),
implies no evidence for the break of Lorentz invariance at 10−10 level.
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Bailey, Q. G. & Kostelecký, V. A. 2006, Phys. Rev. D, 74, 045001
Battat, J. B. R., Chandler, J. F., & Stubbs, C. W. 2007, Phys. Rev. Lett., 99, 241103
Bell, J. F., Camilo, F., & Damour, T. 1996, ApJ, 464, 857
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