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Abstract. I describe ongoing work developing Bayesian methods for flexible modelling of arrival-
time-series data without binning. The aim is to improve the detection and measurement of X-ray
and gamma-ray pulsars and of pulses in gamma-ray bursts. The methods use parametric and
semi-parametric Poisson point process models for the event rate, and by design have close con-
nections to conventional frequentist methods that are currently used in time-domain astronomy.
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Measuring the arrival times, directions and energies of individual quanta—photons or
particles—potentially provides the finest possible resolution of dynamical astronomical
phenomena, particularly for high-energy sources that produce low detectable fluxes. The
simplest methods for signal detection and measurement bin the data for statistical or
computational convenience (for example, to allow the use of asymptotic Gaussian ap-
proximations, or to enable fast Fourier decomposition with an FFT). But methods that
instead directly analyze the event data without binning can detect weaker signals and
probe shorter time-scales than can ones that require binning.

The ongoing work I briefly describe here was motivated by studies of X-ray and
gamma-ray pulsars, which produce periodic signals, and gamma-ray bursts, which pro-
duce chaotic signals that are typically comprised of multiple overlapping pulses. In the
former case there may be less than one event per period (particularly in energy-resolved
studies); in the latter, time-scales as short as milliseconds are relevant, and detected
photons are sparse at high energies. Both phenomena motivate the development of data
analysis techniques that can milk every hard-won event for what it is worth.

For simplicity we focus here just on the arrival-time data (also known as time-tagged
event data), and presume that the events being analyzed have been selected to have
directions consistent with an origin from a single source, and moreover that energy de-
pendence of any putative signal is not significant (so the signal’s temporal signature is
not corrupted by ignoring event energies). We can represent the data as points on a
time-line, as in Fig. 1. The dots denote events at times ti that have been detected within
small time intervals (δt), which represents the instrumental time-resolution. The empty
intervals, denoted ∆tj , are informative; seeing no events in an observed interval provides
a constraint on the signal, in contrast to simply not observing during the interval.

Conventional approaches to detecting signals in such data (binned or unbinned) adopt
an approach of frequentist hypothesis testing: one devises a test statistic that measures
departure of the data from the predictions of an uninteresting “null” model, and uses
it to see if the null model may be safely rejected (implying that an interesting signal is
present). No explicit signal model is needed to define such a test.
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Figure 1. Arrival-time series depicted as points on a timeline, with detection and
nondetection intervals noted.

Here I describe methods that were developed from the Bayesian approach, where one
compares the null model to explicit alternative models that describe interesting signals.
One motivation was to show how conventional “alternative free” test statistics arise
in this framework (exactly or approximately). It illuminates implicit assumptions un-
derlying conventional methods; more constructively, it provides a framework whereby
generalizations of the implicit models may lead to new methods. Some other virtues of
adopting a Bayesian approach to these problems, both pragmatic and conceptual, are
outlined below; Loredo (2011) gives a more extensive, but still introductory, discussion.

We model the data with a non-homogeneous Poisson point process in time. A model,
M , specifies an intensity function (event rate) r(t;P) that depends on the model’s param-
eters, P. Parametric models have a parameter space of fixed dimension; for example, a
periodic-signal model will typically have frequency, amplitude and phase parameters, and
possibly additional parameters describing the light-curve shape. Non-parametric models
have a parameter space whose (effective) dimension may grow with sample size, adapt-
ing to the data; it may formally be infinite-dimensional. Semi-parametric models have a
parameter space with a fixed-dimension part (e.g. the frequency and phase of a periodic
model), and a non-parametric part (e.g. an adaptive light-curve shape).

The data drive Bayesian inferences via the likelihood function, the probability for the
data, D = ({ti}, {∆tj}), given values for the parameters. Referring to Fig. 1, we build the
likelihood function by calculating the product of Poisson counting probabilities for zero
counts in the empty intervals, and one count in each detection interval. The zero-count
probabilities are of the form exp[−

∫
∆ i

dt r(t)], and the one-count probabilities are of
the form [r(ti)δt] exp[−r(t)δt] (presuming δt is small so that r(t)δt � 1). The likelihood
function is thus:

LM (P) ≡ p(D|P,M) = exp
[
−

∫
T

dt r(t)]
] N∏

i=1

r(ti)δt, (0.1)

where T denotes the full observing interval and N is the number of detected events. To
go further, we must give specific rate models and priors for the model parameters. To fit
a particular model, we use Bayes’s theorem to calculate a posterior probability for the
parameters, p(P|D,M) = p(P|M)LM (P)/ZM , where ZM is a normalization constant
given by the integral of the product of the prior probability density, p(P|M), and the
likelihood function. To detect a signal, we instead use Bayes’s theorem on a hypothesis
space including one or more models for interesting signals, and the null model (here,
a constant-rate model with a single parameter, the amplitude, A, with r(t) = A). In
this space, the normalization constant for a particular model, ZM , plays the role of the
likelihood for the model (as a whole); ZM is often called the marginal likelihood for the
model, where “marginal” refers to the integration over P used to calculate its value.

As a simple starting point, consider a model where the logarithm of the rate is pro-
portional to a sinusoid plus a constant; the logarithm guarantees that the rate itself is
non-negative. We may then write the rate as r(t) = A exp[κ cos(ωt− φ)]/I0(κ), where A
is the time-averaged rate and I0(·) denotes the modified Bessel function of order 0 (this
normalizes the exponential factor so that A is the time-average). Light curves with that
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shape have a single peak per period; its width (equivalently, the duty cycle) is determined
by the concentration parameter, κ, with large values corresponding to sharp peaks and
κ = 0 corresponding to a constant rate. To estimate the frequency and concentration,
we calculate the posterior for all four parameters, p(A,ω, κ, φ|D,M), and marginalize
(integrate) over A and φ. By adopting a flat prior for the phase, and nearly any prior for
A that is independent of the other parameters, we find a marginal posterior probability
density for frequency and concentration proportional to I0 [κR(ω)]/[I0(κ)]N , where R(ω)
is the Rayleigh statistic given by

R2(ω) =
1
N

⎡
⎣

(
N∑

i=1

cos ωti

)2

+

(
N∑

i=1

sinωti

)2
⎤
⎦ . (0.2)

Estimation of ω alone, accounting for uncertainty in all other parameters, is found by
further integrating over κ, which is easy to do numerically. Detection requires calculating
the marginal likelihood, corresponding to a further integration over ω, and must be done
numerically. It can be time-consuming for blind searches, but not significantly more so
than the kind of frequency-grid searching employed by conventional tests.

The Rayleigh statistic was invented for the well-known (frequentist) Rayleigh test for
periodic signals in arrival-time series; Lewis (1994) gives a review of the Rayleigh test
and other frequentist period detection methods mentioned below. The quantity 2R2(ω) is
called the Rayleigh power; it is the point process analogue of the periodogram or Fourier
power spectral density. From a Bayesian point of view, the Rayleigh test implicitly as-
sumes that periodic signals may be modelled well by log-sinusoid rate functions. Notably,
there is no parameter corresponding to κ in the Rayleigh test; also, in practice it is known
to work well only for smooth light curves with a single broad peak per period. Such light
curves correspond to values of κ near unity—another implicit assumption of the Rayleigh
test. These results indicate that one can implement Bayesian period searches using con-
ventional computational tools already at hand for the Rayleigh test. They also indicate
that explicit consideration of the κ parameter may lead to procedures which are more
sensitive to sharply-peaked light curves than are the conventional Rayleigh tests.

Many pulsars have light curves with two or more peaks per period. That suggests
generalizing the log-sinusoid model to a log-Fourier model, with the logarithm of the rate
proportional to a sum of harmonic sinusoids. By adopting a finite sum of m harmonics
with concentration parameters κk (k = 1 to m, with the fundamental corresponding
to k = 1), we may proceed analogously to the above analysis. The larger number of
phases and concentration parameters thwarts analytical integration; in an approximate
treatment the posterior distribution for frequency and concentration is proportional to
exp[S(ω)], with S(ω) ≡

∑m
k=1 κkR(kω). The frequentist test generalizing the Rayleigh

test to multiple harmonics is the Z2
m test, with Z2

m (ω) = 2
∑m

k=1 R2(kω), a sum of
Rayleigh powers at harmonics. Notably, the Bayesian analysis uses the sum of R(kω)
values (“harmonic Rayleigh amplitudes”) rather than powers. Note that, for κk = 1,
S2(ω) = Z2

m (ω)/2 +
∑

k

∑
j �=k R(jω)R(kω); that is, S2 contains information not in Z2

m .
Roughly speaking, Z2

m corresponds to incoherently summing power in harmonics, but the
quantity arising in the Bayesian treatment of a harmonic model instead sums amplitudes,
accounting for phase information ignored by Z2

m .
A popular frequentist period-detection method that aims to be sensitive to periodic

signals of complex shape is χ2 epoch folding (χ2-EF). One folds the arrival times given by
a trial period to produce a phase, θi , for each event, with θi in the interval [0, 2π]. For a
constant signal, the phases should be uniformly distributed. The χ2-EF method bins the
phases into B bins and uses Pearson’s χ2 to test consistency of the binned phases with
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a uniform distribution. This motivates a Bayesian model with a piecewise-constant rate
function and B steps per period. Gregory & Loredo (1992) (GL92) analyzed such a model,
giving the rate in a bin as Afk , where A is the average rate, and the shape parameters, fk

(k = 1 to B), specify the fraction of the rate attributed to each bin, with
∑

k fk = 1. They
assigned a constant prior to the shape parameters, from the intuition that that spreads
probability across all possible shapes. After marginalizing over the shape parameters, the
posterior for frequency and phase is inversely proportional to the multiplicity of the set of
counts of events in phase bins. In a large-count limit, that is approximately exp(−χ2/2),
providing a tie to χ2-EF. The method has performed impressively, detecting an X-ray
pulsar where the Rayleigh test failed, and performing well in a simulation study by Rots
(1993) that compared it to other methods.

Despite those successes, there is room for improvement in the GL92 analysis, for a sur-
prising reason. The constant prior adopted in GL92 does not in fact spread probability
over all possible shapes. As the number of bins increases, the constant prior assigns ever
larger probability to the neighborhood of flat models, making it harder than necessary
to detect narrow peaks. The reason is a “curse of dimensionality” known as concen-
tration of measure: a multi-dimensional distribution built out of the product of broad
one-dimensional distributions with finite moments concentrates its probability in a de-
creasing volume of parameter space as dimension increases. Concentration can be avoided
by letting the parameters of the one-dimensional component distribution vary with the
target dimension. A theoretically appealing way to do that is to require divisibility of the
prior; for example, the four-bin prior should reduce to the two-bin prior if we create a
two-bin model out of the combination of bins 1 and 2, and 3 and 4. A divisible Dirichlet
distribution prior accomplishes that, and improves the sensitivity to sharply peaked light
curves so long as any constant background component is small (Loredo 2011).

Extending the construction to functions described with an infinite number of bins
or points leads one to consider infinitely divisible priors for non-parametric functions:
Gaussian process priors for curve fitting, Dirichlet process priors for modelling probability
densities, and Lévy process priors for modelling Poisson intensities. With a team of
statistician and astronomer colleagues, I am developing methods using priors built on
Lévy processes for modelling pulses in gamma-ray bursts. This approach can quantify
uncertainty even in a regime where pulses are highly overlapping. Its implementation
involves compound Poisson processes, as arise in simple models of accumulation of rain,
where drops with a distribution of sizes fall radomly over a region of space. And so
Bayesian modelling of arrival-time series has led us from sines to steps to droplets.
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