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SEMIAMPLENESS FOR CALABI–YAU SURFACES IN POSITIVE
AND MIXED CHARACTERISTIC

FABIO BERNASCONI and LIAM STIGANT

Abstract. In this note, we prove the semiampleness conjecture for Kawamata

log terminal Calabi–Yau (CY) surface pairs over an excellent base ring. As

applications, we deduce that generalized abundance and Serrano’s conjecture

hold for surfaces. Finally, we study the semiampleness conjecture for CY

threefolds over a mixed characteristic DVR.
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§1. Introduction

The abundance conjecture predicts that the canonical divisor KX of a minimal model X

with Kawamata log terminal (in short, klt) or log canonical (lc) singularities is semiample

and it is one of the most important conjectures of the minimal model program (MMP).

Abundance is known to hold for surfaces over fields of arbitrary characteristic [P], [T5]

and threefolds in characteristic 0 by Kawamata and Miyaoka (see [K3] for references), but

in higher dimensions, even the effectivity of a multiple of KX (the so-called nonvanishing
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366 F. BERNASCONI AND L. STIGANT

conjecture) is still an open problem. For threefolds in positive and mixed characteristic,

various special cases have been proved in [BBS], [DW], [W1], [XZ], [Z1], [Z2], but the

general conjecture is still unanswered.

A generalized form of abundance is expected to hold for K -trivial varieties and their log

generalizations (see, e.g., [K2, Conj. 51]).

Conjecture 1.1 (Semiampleness conjecture on klt Calabi–Yau pairs). Let (X,Δ) be

a projective klt pair of dimension n over a field k such that KX +Δ ≡ 0. Let L be a nef

Q-Cartier Q-divisor on X. Then L is num-semiample, that is, there exists a Q-Cartier

Q-divisor L′ on X such that L≡ L′ and L′ is semiample.

If k is a field of characteristic 0, a thorough discussion of this conjecture and its

connections to the MMP can be found in the work of Lazić and Peternell [LP1], [LP2].

Under the same hypothesis on k, Conjecture 1.1 has been proved for projective surfaces

[LP1, Th. 8.2], certain classes of Calabi–Yau (CY) threefolds [LOP], [LS], and hyperkähler

fourfolds [DHM+]. Moreover, some partial results for compact Kähler surfaces are obtained

in [FT].

The aim of this note is to confirm the conjecture for projective surfaces over arbitrary,

possibly imperfect, fields of positive characteristic.

Theorem 1.2 (see Theorem 3.6). The semiampleness conjecture holds for klt CY

surface pairs over a field k of characteristic p > 0.

In [HL], [LP1], the authors propose a further generalization of the abundance and

semiampleness conjectures.

Conjecture 1.3 (Generalized abundance conjecture). Let (X,B) be a projective klt

pair over a field k such that KX +B is pseudo-effective, and let M be a nef Q-Cartier

Q-divisor on X. If KX +B+M is nef, then it is num-semiample.

Following, in part, ideas of [LP1], we give a direct proof of the generalized abundance

conjecture for excellent surfaces by reducing to the semiampleness conjecture on klt CY

surfaces over a field of characteristic p > 0.

Theorem 1.4 (See Theorem 4.2). Let π : X → T be a projective R-morphism of quasi-

projective integral normal schemes over R. Suppose that (X,B) is a klt surface such that:

(a) KX +B is pseudo-effective over T;

(b) M is a nef Q-Cartier Q-divisor over T;

(c) L :=KX +B+M is nef Q-Cartier Q-divisor over T.

Then L is num-semiample over T.

We note that similar results have also been obtained in the context of generalized surface

pairs in characteristic 0 by Han–Liu [HL] and following their strategy we characterize when

generalized abundance fails if KX +B is not pseudo-effective (see Proposition 4.5). As an

application thereof, together with a careful analysis over imperfect fields, we provide a proof

of Serrano’s conjecture [S2] for klt surfaces and suitable threefolds in the positive and mixed

setting.

Corollary 1.5 (See Theorem 4.6 and Corollary 4.7). Let R be an excellent ring of finite

Krull dimension with dualizing complex. Let X → T be a projective contraction of quasi-
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projective R-schemes. Suppose that (X,B) is klt, −(KX +B) is strictly nef, and further

that:

(a) X has dimension 2; or

(b) X has dimension 3, dimT > 0, and the closed points of R have residue fields of

characteristic p= 0 or p > 5.

Then −(KX +B) is ample.

Using Serrano’s conjecture, we then show in Theorem 4.8 that the numerical nonvanishing

conjecture of [HL] holds for generalized klt surface pairs even if KX +B is not pseudo-

effective. We recall that the numerical nonvanishing conjecture is still open even for

threefolds over the complex numbers C (see [LPT+] for recent progress).

To complete the picture, we also prove that generalized abundance holds for generalized

lc pairs if the b-nef part is b-semiample Theorem 4.11 in positive and mixed characteristic.

The main difficulty here is the lack of Bertini-type theorems.

Recently, a large part of the MMP for threefolds in mixed characteristic (0,p > 5) has

been established in [BMP+], [TY], [W2]. We conclude by showing an application of the

semiampleness conjecture for surfaces to arithmetic klt CY threefolds.

Theorem 1.6. Let R be an excellent discrete valuation ring (DVR) with residue field k

of positive characteristic p> 5. Let π : (X,B)→ Spec(R) be a projective dominant morphism

such that (X,B) is klt and KX +B ≡ 0 over R.

If L is a nef Q-Cartier Q-divisor over R, then L is num-semiample over R.

§2. Preliminaries

2.1 Notation

(a) In this article, a base ring R will always denote an excellent domain of finite Krull

dimension admitting a dualizing complex ω•
R. We assume that ω•

R is normalized as

explained in [BMP+].

(b) For a field k, we denote by ksep (resp. k) a separable (resp. an algebraic) closure of k.

(c) For an integral scheme X with generic point η, its function field k(X) is the field OX,η.

(d) If X is an Fp-scheme, we denote by F : X →X its (absolute) Frobenius morphism. We

say that X is F-finite if F is a finite morphism.

(e) For a field k, we say that X is a variety over k or a k -variety if X is an integral scheme

that is separated and of finite type over k.

(f) Given a scheme X, we denote by Xred the reduced closed subscheme of X underlying

the same topological space (see [TSP, Tag 01IZ]).

(g) We say that (X,Δ) is a log pair if X is a normal excellent integral pure d -dimensional

Noetherian scheme with a dualizing complex, Δ is an effective Q-divisor, and KX +Δ

is Q-Cartier. The dimension of (X,Δ) is the total dimension of X.

(h) We will follow [K1] and [BMP+, §2.5] for the definition of singularities of log pairs

(such as klt and lc).

(i) We refer to [BMP+, §2.5] and [La] for notions of positivity (such as big, nef, and pseudo-

effective) for Q-Cartier Q-divisors, relative to a projective morphism of separated

Noetherian schemes.
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368 F. BERNASCONI AND L. STIGANT

(j) Let L be a Cartier divisor on an integral scheme X of finite type over R. We denote by

Bs(L) the base locus of L, considered as a closed reduced subscheme of X. We denote

by SB(L) :=
⋂

m>0Bs(mL) the stable base locus of L over R.

(k) A morphism f : X → Y of normal schemes is called a contraction if f is proper and

f∗OX =OY .

2.2 Num-semiample divisors

In this section, we fix S to be a Noetherian excellent base scheme. Given a proper

scheme X over S, we define a curve in X over S to be an integral closed subscheme C ⊂X

of dimension 1 such that C is proper over some closed point s ∈ S. If it is clear from the

context, we will omit to mention S.

2.2.1. Nef and num-semiample

The notion of nefness is numerical, whereas semiampleness is not as the example of

a torsion nontrivial line bundle on an elliptic curve shows. The notion of numerical

semiampleness is an interpolation between the two: while remaining a numerical condition,

it implies the existence of a contraction morphism to a scheme.

Definition 2.1. Let X be a proper S -scheme. A Q-Cartier Q-divisor L on X is said to

be semiample (resp. num-semiample) over S if there exists a proper contraction f : X → Z

of S -schemes and an ample Q-Cartier Q-divisor A on Z such that L∼Q f∗A (resp. L≡ f∗A)

over S.

Clearly, a num-semiample Q-Cartier Q-divisor is nef, but it is easy to construct nef

divisors which are not num-semiample (see [LP1, Exam. 6.1]). Strictly, nef divisors will

appear frequently in our proofs.

Definition 2.2. Let X be a projective S -scheme, and let L be a Q-Cartier Q-divisor

on X. We say that L is strictly nef over S if for every curve C over S, we have L ·C > 0.

Note that the sum of a nef and a strictly nef line bundle is strictly nef. We recall the

definition of numerical dimension for nef divisors.

Definition 2.3. Let X be a normal projective variety defined over a field k, and let L

be a nef Q-Cartier Q-divisor. The numerical dimension of L is defined as

ν(L) := max
{
d ∈ Z≥0 | Ld �≡ 0

}
.

2.2.2. Descent of relatively numerically trivial divisors

We collect some results on descent of trivial divisors. We recall a descent for divisors

which are Q-linearly trivial on the generic fiber used successfully in [CT], [W1].

Proposition 2.4. Let f : X → Z be a proper contraction between normal projective S-

schemes, where Z is one-dimensional. Let L be a nef Q-Cartier Q-divisor on X such that

L|Xk(Z)
∼Q 0, where Xk(Z) is the generic fiber. Then there exists a Q-Cartier Q-divisor LZ

on Z such that L∼Q f∗LZ .

Proof. It is sufficient to note that hypotheses of [CT, Lem. 2.17] are easily verified when

the base has dimension 1.

We now discuss numerical descent of numerically trivial nef divisors. In characteristic 0,

several results are proved in [Le] and [LP1, Lem. 3.1] and their analogues for threefolds
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in positive characteristic are discussed in [BW, §5]. We begin with the case of numerical

descent over a curve.

Lemma 2.5. Let f : X → Y be a projective dominant morphism of integral S-quasi-

projective excellent schemes. Let L be a Q-Cartier Q-divisor and suppose that:

(a) L is nef;

(b) L|Xk(Y )
≡ 0; and

(c) Y has dimension 1.

Then L≡f 0.

Proof. We can freely replace Y with its normalization and X by the normalization of

the corresponding fiber product. Then, after taking a Stein factorization, we may suppose

that Y is regular and X → Y is a flat contraction. Let C be a curve contracted to a closed

point y ∈ Y . It suffices to show that L ·C = 0. Since X → Y is flat, the fibers are of pure

dimension d. If d= 1, then L ·C = 0 by the argument of [BW, Lem. 5.3].

Otherwise, if d > 2, we cut with a very ample Cartier divisor and proceed by induction.

More precisely, let H be an ample Cartier divisor on X and write I for the ideal sheaf

defining C. Then, form� 0,OX(mH)⊗I is globally generated. Thus, we can findD∼Q mH

such that D contains C but does not vanish at the generic point of any component of the

fiber over y. Then no component of D can be contracted over y, and thus there is some

horizontal component Z containing C. Replacing X with Z, we see that the result holds by

induction on k.

Proposition 2.6. Let X be a normal integral scheme of dimension at most 3, and

let f : X → C be a projective contraction over S with generic fiber Xk(C). Suppose that C

is a regular one-dimensional scheme and L is a nef Q-Cartier Q-divisor on X such that

L|Xk(C)
≡ 0. Then there exists a Q-Cartier Q-divisor D on C such that L≡ f∗D.

Proof. By Lemma 2.5, L ≡f 0. If C is not contracted over S, then in fact L ≡S 0.

Otherwise, C is projective over a field and we conclude by the arguments of [BW,

Lem. 5.2].

2.3 Generalized pairs

Generalized pairs have been introduced in [BZ], and since then, they revealed to be

powerful tools in birational geometry over fields of characteristic 0. Here, K is either Z or Q.

Definition 2.7. For an integral normal scheme X, an integral K-b-divisor is an element

D ∈WDiv(X)K = lim
Y→X

WDiv(Y )K,

where Y → X run through all possible proper birational morphisms of normal schemes.

Given Y → X a proper birational morphism of normal schemes, we have a natural map

trY : WDiv(X)K →WDiv(Y )K, called the trace. We denote DY = tr(D)Y .

We say that D is a K-b-Cartier K-b-divisor if there is a model X ′ →X such that DX′ is

K-Cartier and for any φ : X ′′ →X ′ the equality DX′′ = φ∗DX′ holds. In this case, we say

that D descends to X ′.
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Every K-Cartier K-divisor D on X induces a natural K-Cartier K-b-divisor D = D as

follows:

(D)Y = f∗D where f : Y →X is a proper birational morphism.

In particular, D=DX′ if and only if D descends on X ′.

Definition 2.8. Let X → T be a proper morphism of quasi-projective normal schemes

over R. Let D be a K-Cartier K-b-divisor on X, and let X ′ be a model on which D descends.

If DX′ is a nef (resp. semiample) K-Cartier K-divisor over T, we say that D is b-nef (resp.

b-semiample) over T.

Clearly, if D is nef (resp. semiample), then D is b-nef (resp. b-semiample).

Definition 2.9. A generalized pair (or g-pair) (X,B+M) over T consists of:

(a) a projective morphism f : X → T of normal quasi-projective R-schemes;

(b) an effective Q-divisor B (called the boundary part);

(c) a b-nef Q-Cartier Q-b-divisor M (called the moduli part);

(d) KX +B+MX is Q-Cartier.

If D is b-nef (resp. b-semiample), then for any X ′ with D=DX′ , the divisor DX′ is nef

(resp. semiample). We recall the definition of singularities for generalized pairs.

Definition 2.10. Let (X,B +M) be a g-pair over T. For every proper birational

morphism π : Y →X of normal schemes, we can write

KY +BY +MY = π∗(KX +B+MX).

The generalized discrepancy of E is a(E,X,B+M) =−coeffE(BY ).We say that (X,B+M)

is generalized klt (resp. generalized lc) if a(E,X,B+M)>−1 (resp. a(E,X,B+M)≥−1)

for all divisors E appearing on some birational model.

If (X,B+M) is generalized lc, (X,B) is divisorially log terminal (dlt), and (X,B+(1+

t)M) is generalized lc for some t > 0, then we say that the pair is generalized dlt.

If (X,B) is klt/lc/dlt and N is a nef K-Cartier K-divisor, then (X,B+N) is always

generalized klt/lc/dlt for N=N .

We will often use the following result on singularities of surfaces.

Lemma 2.11. Let (X,Δ) be a dlt surface pair. Then X has rational and Q-factorial

singularities.

Proof. By [K1, Prop. 2.28], dlt surface singularities are rational and rational surface

singularities are Q-factorial by [K1, Prop. 10.9].

For surfaces, the MMP for generalized pairs is immediate from the usual MMP as the

moduli part M is nef on every model.

Proposition 2.12. Let (X,B+M) be a generalized dlt projective surface over T. Then

we can run a (KX +B+MX)-MMP over T which terminates.

Proof. As X is Q-factorial, MX is a Q-Cartier Q-divisor. We start by proving that MX

is nef. If π : Y →X is a proper birational morphism on which MY is nef, then by projection

formula, we have that for every curve C ⊂X,

MX ·C = π∗MY ·C =MY ·π∗C ≥ 0.
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This shows that MX is nef. As MX is a nef, then a step of a (KX +B+MX)-MMP is thus

also a step of a (KX +B)-MMP, which we know exists and terminates by [T4].

2.4 Birational geometry of klt Calabi–Yau pairs

Let S be a quasi-projective normal integral scheme over R. We study birational properties

of CY pairs over S.

Definition 2.13. We say that (X,Δ) is a klt CY pair over S if (X,Δ) is a klt pair,

proper over S such that KX +Δ≡ 0 over S.

If S is clear from the context, we will simply omit it. We discuss some results on the

birational geometry of klt CY pairs.

Lemma 2.14. Let (X,Δ) be a klt CY pair over S. Let π : X → Y be a proper birational

contraction between normal proper S-schemes. Then (Y,π∗Δ) is crepant birational to (X,Δ).

In particular, (Y,π∗Δ) is a klt CY pair over S.

Proof. As KX +Δ≡ 0, then clearly KY +π∗Δ≡ 0. Then, by negativity lemma [BMP+,

Lemma 2.14], we conclude that KX +Δ∼Q π∗(KY +π∗Δ).

Lemma 2.15. Let k be an algebraically closed field. Let X be a projective surface over k

such that KX ≡ 0. Suppose that:

(a) If k = Fp, X is klt.

(b) If k �= Fp, X is Q-factorial (e.g., X is klt).

If the singularities of X are worse than canonical, then X is birational to P2
k.

Proof. Let π : Y →X be the minimal resolution. We have KY +E = π∗KX = 0, where

E > 0. Suppose for contradiction that Y is not a rational surface. Therefore, there exists

f : Y → B where B is a curve of genus g(B) ≥ 1. We now claim that all irreducible

components of E are rational curves. This is guaranteed by (a) and (b): the minimal

resolution of a klt singularity is a tree of rational curves (by the classification in [K1,

3.40, page 123]) and in the case where k �= Fp and X is Q-factorial we apply [T1,

Th. 3.20] to conclude. Therefore, each irreducible component of E must be contained

in a fiber of f. Let F be a general fiber of f. As E · F = 0, by adjunction, we know

(KY +E) ·F =KY ·F = degKF =−2, contradicting KY +E ≡ 0.

We recall a straightforward application of the abundance theorem to the semiampleness

conjecture. We say that a Q-Cartier Q-divisor D on X is Q-effective if there exists n > 0

such that H0(X,OX(nD)) �= 0.

Proposition 2.16. Let (X,Δ) be a klt CY pair over S, and let L be a nef Q-Cartier

Q-divisor on X. Suppose that:

(a) dimX = 2; or

(b) dimX = 3, the image of X is positive-dimensional, and the residue field of any closed

point is of characteristic p > 5.

If L is Q-effective, then L is semiample. Moreover, if L≡E over S where E is an effective

Q-divisor, then L is num-semiample.

Proof. By assumption, there exists an effective Q-Cartier Q-divisor E such that L∼Q E.

If we consider 0 < ε � 1, the pair (X,Δ+ εE) is klt and KX +Δ+ εE ∼Q εE. By the
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abundance theorem for klt surfaces and threefolds (see [BBS, Ths. 1.1 and 3.1]), the divisor

E, and thus L, is semiample. The last assertion now follows immediately.

§3. Semiampleness for klt Calabi–Yau surfaces

In this section, we prove the semiampleness conjecture for klt CY surface pairs. Our

principal tools are the MMP for excellent surfaces [T4], the classification of Bombieri–

Mumford of smooth varieties with trivial canonical class over an algebraically closed field

[BM1] and the abundance theorem for surfaces [T5]. To treat the case of imperfect fields,

we use the base change formula of [PW], [T3]. The main difficulty in the proof lies in ruling

out the existence of strictly nef divisors which are not ample on klt CY surfaces.

3.1 Semiampleness for canonical K -trivial surfaces

We fix k to be a field of characteristic p > 0. We prove the semiampleness conjecture

for K -trivial projective surfaces with canonical singularities over algebraically closed k.

The result is probably well known to the experts, but we include a proof for the sake of

completeness. We start with the following lemma on abelian varieties.

Lemma 3.1. Let k be an algebraically closed field, and let A be an abelian variety over

k. If L is a strictly nef line bundle on A, then L is ample.

Proof. The proof of [S2, Prop. 1.4] works over any algebraically closed field of arbitrary

characteristic.

Proposition 3.2. Let k be an algebraically closed field of characteristic p > 0, and let

X be a smooth projective surface over k such that KX ≡ 0. If L is a strictly nef Cartier

divisor on X, then L is ample.

Proof. By the Bombieri–Mumford classification (see [BM1, p. 1]), we have χ(X,OX)≥ 0.

If χ(X,OX)> 0, then we conclude that h0(X,L)> 0 by the Riemann–Roch theorem. Thus,

L2 > 0 and so L is ample by the Nakai–Moishezon criterion.

If χ(X,OX) = 0, then by [BM1], [BM2] X is either an abelian surface, a hyperelliptic

surface, or a quasi-hyperelliptic surface. If X is hyperelliptic, we consider a finite étale cover

f : Y → X where Y is an abelian variety. Then f∗L is strictly nef and we conclude that

f∗L, and thus L, is ample by Lemma 3.1. If X is quasi-hyperelliptic, by [BM1, Th. 1],

there exists a finite morphism f : E×P1 → X, where E is an elliptic curve. Since f∗L is

strictly nef and NE(E×P1) = NE(E×P1), we conclude by Kleimann’s criterion (see [La,

Th. 1.4.29]) that f∗L, and thus L, is ample.

Lemma 3.3. Let X be a normal projective surface over a field k. Suppose that L is a nef

line bundle with ν(L) = 1 and C a curve with L ·C = 0. Then C2 ≤ 0. Moreover, C2 = 0 if

and only if L≡ tC for some t > 0.

Proof. If C2 > 0, then C is big and we write C ∼Q A+E for A ample and E ≥ 0. Then

L ·C =L ·(A+E)≥L ·A> 0 since L is nef, and hence pseudo-effective, but not numerically

trivial. If C2 = 0, then we conclude that L ≡ tC by the Hodge index theorem. As C is

effective and ν(L) = 1, then t > 0.

Proposition 3.4. Let k be an algebraically closed field of characteristic p > 0, and let

X be a projective surface over k with canonical singularities such that KX ≡ 0. If L is a nef

Cartier divisor, then it is num-semiample.
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Proof. By passing to the minimal resolution and the base point-free-theorem [B, Prop.

2.1.a], it is sufficient to discuss the case of smooth surfaces with numerically trivial canonical

class. If ν(L) = 0, the claim is obvious, and if ν(L) = 2, we conclude by the base-point-free

theorem [T4, Th. 4.2].

We now suppose that ν(L) = 1. As L is not strictly nef by Proposition 3.2, then there

exists a curve C such that L ·C = 0. By Lemma 3.3, either C2 = 0 and L ≡ tC for some

t > 0 or C2 < 0. Take ε > 0 with (X,εC) klt. If C2 = 0, we conclude that KX + εC ≡ εC

is semiample by Proposition 2.16, and hence L is num-semiample. Otherwise, C2 < 0, then

we can contract C as a step of (KX + εC)-MMP which is L-trivial. We thus reduce to CY

surface with canonical singularities by Lemma 2.14 with smaller Picard rank. After finitely

many steps, as L is not strictly nef by Proposition 3.2, there is a curve C with C2 = 0 and

we conclude.

3.2 Klt CY surfaces

We now prove the semiampleness conjecture for klt CY surface pairs (X,Δ) over an

arbitrary field k. We start by discussing the case where the boundary divisor Δ is empty.

Proposition 3.5. Let k be a field of characteristic p > 0, and let X be a klt projective

surface over k such that KX ≡ 0. Let L be a nef Cartier divisor on X with ν(L) = 1. Then

L is num-semiample.

Proof. Without loss of generality, we can suppose that k =H0(X,OX). We divide the

proof in several steps.

Step 1. We can suppose that for all irreducible curves C ⊂X such that L ·C = 0, then

C2 = 0.

Proof. We first note that C2 ≤ 0 by Lemma 3.3. Let us consider a sufficiently small

rational number ε > 0 such that (X,εC) is klt. If C2 < 0, by [T4, Theorem 4.4], there exists

a birational morphism ϕ : X → Y such that Ex(ϕ) = C and a Cartier divisor LY such that

L ∼ ϕ∗LY . Thus, it is sufficient to prove that LY is num-semiample. Since Y is a klt CY

surface by Lemma 2.14, this process will terminate after a finite number of steps as the

Picard number decreases by 1 at each step.

Step 2. If there exists a curve C such that L ·C = 0, then L is num-semiample.

Proof. By Lemma 3.3, we have L≡ tC for some t > 0. However, (X,εC) is klt for some

ε > 0 and so we conclude that L is num-semiample by Proposition 2.16.

Suppose now that L is strictly nef. To conclude the proof, it is sufficient to show that L

is ample.

Step 3. We can suppose that X is geometrically normal.

Proof. Suppose X is not geometrically normal. Let Y be the normalization of (X ×k

k)red, and let f : Y →X be the natural morphism. Since X is not geometrically normal and

k = H0(X,OX) is algebraically closed in k(X), by [T3, Th. 1.1], there exists an effective

divisor E > 0 such that

KY +E ∼ f∗KX ≡ 0.

By Serre duality, we have H2(Y,OY (f
∗mL))  H0(Y,OY (KY − f∗mL))∗, which vanishes

as (KY − f∗mL) ·A = (−E − f∗mL) ·A < 0 for an ample Cartier divisor A and m > 0.

Let π : Z → Y be the minimal resolution and write KZ +F = π∗KY , for some effective
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π-exceptional Q-divisor F. By the Riemann–Roch theorem [T4, Th. 2.10] and the projection

formula, we deduce

h0(Z,OZ(mπ∗f∗L))≥ χ(Z,OZ)+mπ∗f∗L · (mπ∗f∗L−KZ)

= χ(Z,OZ)+mf∗L ·E,

where the last inequality follows from L2 = 0, π∗f∗L ·F = 0, and KY ≡ −E. Since L is

strictly nef, we have f∗L ·E > 0 and thus h0(Y,OY (mf∗L))> 0 for m sufficiently large. As

f∗L is strictly nef and effective, then f∗L is ample. Therefore, L is ample, concluding.

We now prove the assertion of the theorem when X is geometrically normal. Note that

if k  Fp (resp. k �= Fp), then Xk is klt (resp. Q-factorial). Indeed, Xksep is klt by [K1,

Prop. 2.15] and thus Q-factorial by Lemma 2.11. Therefore, by [T3, Lem. 2.5], Xk is Q-

factorial. We now divide the proof in two cases according to the singularities ofXk. IfXk has

canonical singularities, we conclude by Proposition 3.4. If the singularities of Xk are worse

than canonical, then Lemma 2.15 guarantees that Xk is a rational surface. Let us consider

the minimal resolution π : Y → Xk. Since Y is a smooth rational surface, H1(Y,OY ) = 0

and thus by the Leray spectral sequence we deduce that H1(Xk,OXk
) = 0. By flat base

change, we conclude that H1(X,OX) = 0 and thus χ(X,OX) ≥ 1. Since ν(L) ≥ 1, we

have H2(X,OX(L))  H0(X,OX(KX −L))∗ = 0 and by Riemann–Roch we deduce that

h0(X,OX(L))≥ χ(X,OX)≥ 1. Therefore, L is ample, concluding the proof.

Theorem 3.6. Let k be a field, and let (X,Δ) be a projective klt surface pair such that

KX +Δ is Q-Cartier and KX +Δ ≡ 0. If L is a nef Q-Cartier Q-divisor on X, then L is

num-semiample.

Proof. If the characteristic of k is 0, this is [LP1, Th. 8.2]. So we suppose that the

characteristic is p > 0 and we subdivide the proof according to the numerical dimension of

L. If ν(L) = 0, the claim is obvious. If ν(L) = 2, then L is big and nef and we conclude by

the base-point-free theorem (see [T4, Th. 4.2]).

The only case we thus need to study in detail is when ν(L) = 1. We can suppose L is

Cartier. By Serre duality, h2(X,OX(L)) = h0(X,OX(KX −L)), which vanishes as ν(L)≥ 1.

The strategy is to reduce to Proposition 3.5. For this, we subdivide the proof in various

steps.

Step 1. If L ·Δ> 0, then L is semiample.

Proof. Let π : W →X be the minimal resolution, and let KW +ΔW = π∗(KX +Δ). By

the Riemann–Roch theorem, we have

h0(W,OW (mπ∗L))≥ χ(W,OW )+mπ∗L · (mπ∗L−KW )

= χ(W,OW )+mπ∗L ·ΔW = χ(W,OW )+mL ·Δ.

In particular, for m� 0, we have h0(X,OX(mL)) �= 0 and we conclude that L is semiample

by Proposition 2.16.

Step 2. We can assume that every irreducible curve C contained in the support of Δ

satisfies C2 ≤ 0.

Proof. Suppose that there exists a curve C in the support of Δ such that C2 > 0. Then

Δ = aC+Γ and KX +Γ =−aC is a big and nef Q-Cartier Q-divisor. In particular, (X,Γ)

is klt and L− (KX +Γ) is a big and nef Q-Cartier Q-divisor. Thus, we conclude that L is

semiample by the base-point-free theorem.
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From now on, we assume that L ·Δ = 0 and all curves C in the support of Δ satisfy

C2 ≤ 0.

Step 3. We can suppose that each curve C in Δ satisfies C2 = 0. In particular, Δ is a

nef Q-Cartier Q-divisor.

Proof. Suppose that there exists a curve C such that Δ = aC+Γ, C is not contained

in the support of Γ and C2 < 0. Then we have

(KX +C) ·C ≤ (KX +Δ+(1−a)C) ·C = (1−a)C2 < 0.

Thus, by [T5, Th. 2.10], there exists a birational map π : X → Y such that Ex(π) = C and

L = π∗LY for some Q-Cartier Q-divisor LY on Y. Moreover, (Y,π∗Δ) is a klt CY pair by

Lemma 2.14. After a finite number of such contractions, we end up with a klt CY pair

(Z,ΔZ) such that all irreducible curves C in ΔZ satisfy C2 = 0.

Step 4. We can suppose Δ = 0.

Proof. If Δ �=0, then Δ is an effective nef Q-Cartier Q-divisor with numerical dimension

ν(Δ)≥ 1. Since it is not big by Step 1, ν(Δ) = 1. By Proposition 2.16, Δ is semiample, and

we denote by g : X →B the induced contraction. Since L ·Δ= 0, by Proposition 2.6, there

exists an ample Q-Cartier Q-divisor A on B such that L≡ g∗A.

Therefore, we reduced to prove the theorem in the case where X is a projective surface

with klt singularities and KX ≡ 0, which we proved in Proposition 3.5.

§4. Generalized abundance for surfaces

In [LP1, Th. B], the authors show that, over fields of characteristic 0, Conjecture 1.3

is implied by the standard conjectures of the MMP and the semiampleness conjecture.

Their arguments heavily rely on the canonical bundle formula and therefore do not extend

to positive or mixed characteristic. Despite this obstacle, in this section, we show the

generalized abundance conjecture (and variants thereof) in the case of excellent surfaces.

4.1 Surfaces over a field

For excellent klt surfaces, the base-point-free theorem (resp. abundance) has been proved

in [T4, Th. 4.2] (resp. in [T5] and [BBS, Th. 3.1]). These results together with the MMP

and Theorem 3.6 are sufficient to prove Conjecture 1.3 for surfaces over fields. Our strategy

is similar to [LP1].

Proposition 4.1. Let (X,B) be a projective klt surface pair over a field k. Suppose that

KX +B is a pseudo-effective Q-Cartier, and let M be a nef Q-Cartier Q-divisor such that

L :=KX +B+M is nef. Then L is num-semiample.

Proof. Note first that if L is big, then 2L− (KX +B) = L+M is big and nef; hence, L

is semiample by the base-point-free theorem (see [T4, Th. 4.2]).

As X is a surface, by running a (KX +B)-MMP and abundance [T4], there is a

birational contraction g : X →Xmin together with a contraction morphism h : Xmin →Z :=

ProjkR(X,KX +B) and an ample Q-Cartier Q-divisor A on Z such that KXmin + g∗B =

h∗A. We denote by f : X → Z the composition h◦g. We divide the proof according to the

dimension of Z.
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Case 1. Suppose that dimZ = 2. This means that KX +B is big and therefore also L,

concluding.

Case 2. Suppose that dimZ =1. If L ·F =0 for a general fiber F of f, by Proposition 2.6,

we have L ≡ f∗N for some Q-Cartier Q-divisor N on Z. Note that N must be an ample

Q-Cartier Q-divisor, since if C is a sufficiently general curve on X, we have L ·C ≥
(KX +B) ·C > 0 as f∗C = Z.

Suppose now that L ·F > 0, that is, L is relatively big over Z. It is sufficient to show that L

big to conclude. By the negativity lemma, we deduce that KX +B = g∗(KXmin +g∗B)+E,

where E is an effective Q-divisor contracted by f. In particular, KX +B ∼Q f∗A+E where

A is an ample Q-Cartier Q-divisor on Z. As L= (f∗A+E)+M is relatively big and f∗A+E

is numerical trivial on the generic fiber, then M is relatively big. Note that f∗A+M is nef

and (f∗A+M)2 ≥ 2f∗A ·M > 0 and thus big. Therefore, L is big, concluding.

Case 3. Finally, suppose that dimZ = 0. Let π : X → Y be the minimal model of a

(KX +B)-MMP. Then KY +BY ∼Q 0 and L′ = π∗L∼Q π∗M is nef on Y, and hence num-

semiample by Theorem 3.6. Choose 0 < t < 1 sufficiently small such that X → Y is the

end product of a (KX +B+ tM)-MMP. Then, by the negativity lemma, KX +B+ tM ≡
tπ∗L′+E for E ≥ 0. If L′ is big, then so too is KX +B+ tM and also L, and the result

follows as above.

Suppose now that ν(L′) = 1. As L′ is num-semiample, there exists a contraction g : Y →
W with dimW =1 such that L′ ≡ g∗A for an ample Q-Cartier Q-divisor A on W. Denote by

f : X →W the composition g ◦π. As L|Xk(W )
≡ π∗L′|Xk(W )

≡ 0, we conclude that L≡ f∗D

for some D on W by Proposition 2.6. As ν(L′) = 1, we conclude that D is ample and thus

L is num-semiample.

Finally, if L′ is numerically trivial, then L ∼Q π∗L′+E ≡ E, where E is π-exceptional.

As L is nef, then E ≤ 0 by the negativity lemma [BMP+, Lem. 2.14]. As L≡ E is nef, we

conclude that E = 0.

4.2 Excellent case

We are now ready to prove Conjecture 1.3 for projective surfaces over R.

Theorem 4.2. Let π : X → T be a projective R-morphism of quasi-projective integral

normal schemes over R. Suppose that (X,B) is a klt surface such that:

(a) KX +B is pseudo-effective over T;

(b) M is a nef Q-Cartier Q-divisor over T;

(c) L :=KX +B+M is nef Q-Cartier Q-divisor over T.

Then L is num-semiample over T.

Proof. Without loss of generality, we can suppose that π is a surjective contraction

between normal schemes. Suppose first that L is big, in which case 2L− (KX +B) is big

and nef, so L is semiample by [T4, Th. 4.2]. In particular, if dim(T ) = 2, we conclude. From

now on, we suppose that L is not big over T, or equivalently that L|Xk(T ) is not big.

If dim(T ) = 1, then Xk(T ) is a curve. As L|Xk(T )
is not big, then L|Xk(T )

≡ 0 and we

conclude by Proposition 2.6 that L≡ π∗A where A is a nef Q-divisor on T. As nef divisors

on a curve are num-semiample, we conclude.

If dim(T ) = 0, we apply Proposition 4.1.
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In particular, the semiampleness conjecture holds for klt CY excellent surface pairs.

Remark 4.3. Note that the klt assumption is necessary in Conjectures 1.1 and 1.3 as

there are counterexamples if (X,B) is allowed to be lc (or even log smooth), even if L is

supposed to be big (see [MNW, Exams. 7.1 and 7.2]).

Remark 4.4. The semiampleness conjecture and generalized abundance are false for

R-divisors as shown by the examples on projective K3 surfaces constructed in [FT, Th.

1.5.b].

The pseudo-effectivity of KX +B is necessary as shown in [LP1, Exam. 6.2]. In fact, we

can completely characterize when generalized abundance holds in the case of surfaces (cf.

[HL, Th. 3.13]).

Proposition 4.5. Let (X,B +M) be a generalized klt surface over T and suppose

that MX and L = KX +B+MX are nef Q-Cartier Q-divisors over T. If L is not num-

semiample, then:

(a) T is the spectrum of a field k;

(b) KX +B is not pseudo-effective;

(c) −(KX +B)≡ tMX for some 0< t≤ 1;

(e) ν(MX) = 1.

Proof. We first suppose dim(T )≥ 1. If L is big, then it is num-semiample by the base-

point-free theorem. Therefore, the only interesting case is L not big and dim(T ) = 1. Then

L|X
k(T )

≡ 0 and therefore L≡ g∗M by Proposition 2.6, proving (a).

We can thus suppose that dim(T ) = 0, that is, it is the spectrum of a field. We first note

that KX +B is not pseudo-effective by Theorem 4.2. We now follow some of the ideas of

[HL, Th. 3.13]. If KX +B+2MX is big, then 2L− (KX +B) is big and nef and thus L is

semiample by the base-point-free theorem.

If not, then (KX +B+2MX)2 = 0, which implies that (KX +B+MX) ·MX = 0 and

M2
X = 0. By an application of the Hodge index theorem (see [HL, Lem. 3.2]), we conclude

that there exists a ∈ Q≥0 such that aMX ≡ KX +B +MX . Suppose that a ≥ 1. Then

KX +B ≡ (a−1)MX is pseudo-effective and thus L is num-semiample by Proposition 4.1,

contradicting the hypothesis. Therefore, 0 ≤ a < 1, which implies (c) as −(KX +B) ≡
(1−a)MX .

We are only left to check that ν(MX) = 1. As MX is not big, then ν(MX) < 2.

If ν(MX) = 0, then KX + B is pseudo-effective, and thus L is num-semiample by

Proposition 4.1, contradiction.

4.3 Serrano’s conjecture and numerical nonvanishing

As a consequence, we obtain a version of Serrano’s conjecture for excellent klt surface

pairs (see [HL, Cor. 1.8] for a similar result in characteristic 0). We note that the case where

the base is an imperfect field needs a careful analysis.

Theorem 4.6. Let π : X → T be a projective morphism of quasi-projective integral

normal schemes over R and suppose that (X,B) is a klt surface pair. If M is a strictly

nef Cartier divisor, then Lt :=KX +B+ tM is ample for t > 4.

Proof. We can suppose π is a contraction, by taking the Stein factorisation. By the

cone theorem for excellent surfaces (see [BMP+, Th. 2.40]), Lt is strictly nef for t > 4. By
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Proposition 4.5, we see that either Lt is num-semiample or Lt ≡−s(KX+B) for some s> 0.

In the first case, Lt is necessarily ample.

In the latter case, H0(X,OX) = k is a field, T = Spec(k), and we are left to show

that the strictly nef Q-divisor L := −(KX +B) is ample. Suppose for contradiction it is

not: in particular, L2 = 0. It is sufficient to show that L is Q-effective. We first show

that H2(OX(nL)) = 0 for n sufficiently large. Let n > 0 such that nL is Cartier, so that

by Serre duality there is an isomorphism H2(X,OX(nL))  H0(X,OX(KX − nL))∗. If

H0(X,OX(KX −nL)) �= 0, for an ample Cartier divisor H, we have 0 < (KX −nL) ·H ≤
KX ·H−n, which gives a contradiction for n sufficiently large.

Let f : Y := (X ×k k)
n
red →X be the normalization of the base change to the algebraic

closure, and let E ≥ 0 be the Z-divisor for which KY +E = f∗KX . First suppose that

E+f∗B > 0, which implies that

f∗L · (−KY ) = f∗L · (E−f∗KX) = f∗L · (E+f∗B)> 0,

where we used the condition L2 = 0 in the last equality. Let π : Z → Y be the minimal

resolution. Thus, by the Riemann–Roch formula, we have

h0(Z,OZ(π
∗f∗nL))≥ χ(Z,OZ)−

1

2
nf∗L ·KY > 0

for sufficiently large n> 0 for which nL is Cartier. In particular, f∗nL is effective, and thus

ample. In particular, L is Q-effective and thus ample.

If E+ f∗B = 0, then B = 0 and X is geometrically normal by [T3, Th. 1.1]. We run

a KX -MMP which ends with a Mori fiber space π : Y → C and −KY is strictly nef. If

dim(C) = 0, then Y is a klt del Pezzo surface. If dim(C) = 1, then ρ(Y ) = 2 and thus the

cone theorem [BMP+, Th. 2.40] implies that Y is a klt del Pezzo surface. In both cases,

Y is a geometrically normal del Pezzo surface and by [S1] we know H1(Y,OY ) = 0. As X

and Y have both rational singularities, by Lemma 2.11, we deduce that H1(X,OX) = 0.

By Riemann–Roch, we thus have

h0(X,OX(nL))≥ χ(X,OX)+
1

2
nL · (nL−KX)≥ 1,

which shows L is ample.

We can generalize this result immediately to threefolds in the setting of [BMP+].

Corollary 4.7. Let π : X → T be a projective morphism of quasi-projective integral

normal schemes over R, and let (X,B) be a klt threefold pair. Suppose that the closed

points of R have residue fields of characteristic 0 or p > 5. Let M be a strictly nef Cartier

divisor. If dim(π(X))≥ 1, then Lt :=KX +B+ tM is ample for t > 4.

Proof. We can suppose π to be a contraction. Let F be the generic fiber of X → T . If F

is a surface, then Lt|F is ample by Theorem 4.6. If instead F is a curve, then Lt|F is ample

since it has positive degree. In particular, Lt is big.

Then, by [BMP+, Th. H], Lt is strictly nef and moreover 2Lt− (KX +B) =M +Lt is

nef and big. Thus, we conclude that Lt is semiample by [BMP+, Th. G], and hence it is

ample as claimed.

We can also show the numerical nonvanishing conjecture for generalized surface pairs.

The strategy of the proof is similar to [HL]. However, due to some complications over
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imperfect field, we apply Serrano’s conjecture to solve the nonpseudo-effective case, instead

of referring to the explicit classification of [S3, Exam. 1.1].

Theorem 4.8 (Numerical nonvanishing for generalized klt surfaces). If (X,B+M) is a

generalized klt surface pair over T and KX+B+MX is pseudo-effective, then KX+B+MX

is num-effective.

Proof. Let r ∈ Q>0 such that L := r(KX +B+MX) is Cartier. By running a (KX +

B+MX)-MMP over T, we reduce to prove the statement in the case KX +B+MX is

nef. By Proposition 4.5, we are only left to prove the case when −(KX +B) is nef with

ν(−(KX +B)) = 1 and −(KX +B)≡ tMX .

By Theorem 4.6, −(KX +B) is not strictly nef. Thus, there exists an irreducible curve

C ⊂X such that −(KX +B) ·C = 0. By Lemma 3.3, we have C2 ≤ 0 with equality if and

only if (−KX +B) ≡ λC for λ > 0. Thus, we may suppose that C2 < 0. Hence, we can

contract it X → X ′ by running a (KX +B+ εC)-MMP for ε > 0 sufficiently small. This

MMP is clearly (KX +B)-trivial. Therefore, (X ′,B′) is a klt pair with −(KX′ +B′)2 = 0

and ν(−(KX′ +B′)) = 1 and we can repeat then the same procedure. After a finite number

of steps, this process must terminate. Replacing (X,B) with the output, either L is strictly

nef or we find a curve C such that −(KX +B) ·C = 0 and C2 = 0. In either case, we

conclude.

4.4 Semiampleness for lc pairs

In this section, we study the generalized abundance for generalized lc surface pairs under

the assumption that the b-nef part is b-semiample. In characteristic 0, this is immediate

from the Bertini theorem and the abundance for lc surfaces. We will overcome the lack of

Bertini in positive and mixed characteristic via Keel–Witaszek’s base-point-free theorem.

For a nef line bundle L on X over S, we define the exceptional locus E(L) to be the union

of all closed integral subschemes Z ⊂X such that L|Z is not relatively big over S. We recall

the following semiampleness criterion for line bundles.

Theorem 4.9 [W2]. Let L be a nef line bundle on a scheme X projective over an

excellent Noetherian base scheme S. Then L is semiample over S if and only if both L|E(L)

and L|XQ
are semiample.

We first need an adjunction result.

Lemma 4.10. Let X → T be a projective contraction of integral, excellent, normal quasi-

projective schemes over R. Let X be a surface and C is an irreducible curve on X contracted

over T. Suppose that (X,C) is an lc surface and C is an irreducible curve over T such that

(KX +C) ·C = 0. Then (KX +C)|C ∼Q 0.

Proof. As C is contracted over T, it is a curve over some field k. The same proof of [T5,

Th. 2.13] assures that (KX +C)|C ∼Q 0 as claimed.

The following theorem should be well known if T is a scheme over Spec(Q). We include

a proof as we lack a suitable reference and some arguments do not clearly carry over to the

case that T is not of finite type over a field.

Theorem 4.11. Let π : X → T be a projective R-morphism of quasi-projective integral

normal schemes over R. Suppose that (X,B+M) is a generalized lc surface pair over T

such that dimT > 0, M is b-semiample, and L=KX +B+MX nef. Then L is semiample.
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Proof. By taking Stein factorization, we may assume that π is a contraction.

If dim(T ) = 1 and L|Xk(Z)
∼Q 0, then we conclude by Proposition 2.4.

We may assume that L is big. After taking a dlt modification, we may suppose that

(X,B) is a Q-factorial dlt pair. Let C be an integral curve on X such that L ·C = 0. As L

is big, we deduce that C2 < 0. We write B = BC + tCC for some tC ∈ [0,1] such that the

support BC does not contain C. As C2 < 0, we deduce that

(KX +C) ·C ≤ (KX + tCC) ·C ≤ (KX +B) ·C ≤ L ·C = 0

since MX is nef. Moreover, this is a chain of equalities if and only if tC = 1 and BC ·C =

MX ·C = 0.

If (KX +C) ·C < 0, by [T3, Th. 4.4], there exists a contraction X → Y such that its

exceptional locus is C and Y is Q-factorial. In this way, we contract all the curves satisfying

(KX +C) ·C < 0 and C2 < 0. As during this process we contract only curves C with

(KX +B) ·C ≤ 0, the pair (X,B) remains lc. Moreover, if (KX +B) ·C ≤ 0, then either

tC = 1 and (X,C) is lc or tC < 1 and (X,tCC) is klt, so X remains klt and Q-factorial by

Lemma 2.11.

We may suppose that every curve Ci for which L ·Ci = 0 satisfies C2
i < 0 as L is assumed

to be big and the following equalities hold:

(KX +Ci) ·Ci =MX ·Ci =BCi ·Ci = 0.

We can write B =Δ+
∑

iCi where Ci are the curves with L ·Ci = 0. As observed above,

Supp(Δ) is disjoint from C :=
∑

Ci and Ci ∩Cj = 0 if i �= j. Recall by construction that

we have E[L] = C and MX ·C = 0. Since MX is b-semiample, there is a model π : Y →X

with MY semiample on Y and π∗MY =MX .

Let D ∼Q MY be an effective section which does not contain any irreducible component

of the strict transform of C. Then π∗D∼Q MX does not contain any irreducible component

of C. As MX ·C = 0, we deduce that MX |C ∼Q 0 and in particular L|C ∼Q (KX +C)|C . We

then have L|C ∼Q 0 by Lemma 4.10.

The final argument differs depending on the characteristic. We may assume that T is

local, and suppose first that the closed point has characteristic p> 0. For dimension reasons,

L|XK(Z)
is ample, and therefore by Theorem 4.9 L is semiample if and only if L|E[L] is so.

As E[L] is the disjoint union of curves Ci with L ·Ci = 0 and L|Ci ∼Q 0 for every i from

above, we conclude.

Now, suppose that the closed point has a residue field of characteristic 0 instead. Take

k ∈ N such that Lk = kL−C is big, and in particular effective. Then Lk intersects only

finitely many curves negatively, call them γj ⊆ SB(Lk). By construction, C ·Ci < 0 for each

i, since C is a disjoint union of irreducible components and every component has negative

self-intersection. Hence, L · γj > 0 for each j, so increasing k we may assume that Lk is

strictly nef. Since it is big, Lk is ample. In particular, the stable base locus has SB(L)⊆C.

Now, we have a short exact sequence

0→OX((k+1)L−C)→OX((k+1)L)→OC((k+1)L|C)→ 0,

where (k+1)L−C =KX+B+MX+Lk. ThenHi(X,OX((k+1)L−C))= 0 by Kawamata–

Viewhweg vanishing [T4, Th. 3.3], since Lk is ample, (X,B) is lc, and X is klt. As L|C ∼Q 0,

we have (k+1)L|C ∼ 0 for (k+1) sufficiently large and divisible. As H0(X,OX((k+1)L))→
H0(C,OC((k+1)L)) is surjective, we conclude that SB(L) is empty, concluding.
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We prove a variant of the semiampleness conjecture for lc pairs.

Corollary 4.12. Let π : X → T be a projective R-morphism of quasi-projective integral

normal schemes over R. Let (X,B +M) be a generalized lc surface over T with M b-

semiample. If KX +B+MX is nef over T, then it is semiample over T.

Proof. We can suppose π to be surjective. Otherwise, if dimT > 0, then this is Theorem

4.11. Suppose then that dimT = 0, so it is the spectrum of a field k. If the characteristic of k

is 0, then we conclude by the Bertini theorem and [F, Th. 6.1]. If k is finite, we consider the

base change to k. Then (Xk,Bk+Mk) is a generalized lc pair and since k → k is faithfully

flat, it is sufficient to prove Lk is semiample. Suppose now that k is an infinite F -finite

field of characteristic p > 0. Then there exists an effective Q-divisor such that D ∼Q M and

(X,B+D) is lc by [T2, Th. 1]. Hence, L∼Q KX +B+D is semiample by [T5, Th. 1].

If k is not F -finite, then by standard arguments (cf. [DW]), there are an F -finite subfield

l ⊆ k and a generalized klt pair (Xl,Bl+MXl
) such that:

◦ (X,B+M) = (X×Spec(l)Spec(k),Bl×Spec(l) Spec(k)+MXl
×Spec(l) Spec(k)); and

◦ MXl
is b-semiample.

As KXl
+Bl+MXl

is semiample, so is KX +B+MX .

§5. Semiampleness for CY threefolds

In this section, we show the semiampleness conjecture for threefolds in mixed charac-

teristic (or over positive-dimensional bases of positive characteristic). We fix R to be an

excellent DVR with maximal ideal m, residue field k := R/m of characteristic p > 0, and

fraction field K. We recall the following well-known fact on divisor class groups of projective

morphisms over DVR.

Lemma 5.1. Let π : X→ Spec(R) be a projective contraction of integral normal schemes.

We write (Xk)red =
∑

iDi as a Weil divisor. Then the following sequence is exact:

⊕

i

Q[Di]
j−→ Cl(X)Q → Cl(XK)Q → 0.

Define PicXk
(X)Q := j (

⊕
iQ[Di]∩Pic(X)Q) and denote by N1

Xk
(X)Q its quotient by the

numerical equivalence relation. Then the following sequences are exact:

PicXk
(X)Q → Pic(X/R)Q → Pic(XK)Q,

N1
Xk

(X)Q →N1(X/R)Q →N1(XK)Q.

If X is Q-factorial, then the second and third sequences are also surjective on the right.

Proof. The first sequence is obtained from [H, Prop. 6.5] by tensoring with Q. The

second exact sequence follows immediately from the first one by considering the natural

injections Pic(X/R) → Cl(X) and Pic(XK) → Cl(XK). The third exact sequence follows

from the second and the fact that L≡L′ over R if and only if L|XK
≡L′|XK

by Proposition

2.6. If X is Q-factorial, then we have a natural isomorphism Pic(XK)  Cl(X)Q, so the

second sequence is surjective on the right. Then the third sequence must also be surjective

on the right as N1(X/R)Q is a quotient of Pic(X/R)Q.
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We now prove the semiampleness conjecture for CY threefolds over a DVR of residue

characteristic p > 5. Using the semiampleness conjecture for surfaces, we show a numerical

nonvanishing on the threefold fibration. This allows to conclude by the abundance theorem

for klt threefolds [BBS].

Theorem 5.2. Let R be an excellent DVR with residue characteristic p > 5, and let

π : (X,B)→ Spec(R) be a projective klt CY pair of dimension 3. If π is surjective and L is

a nef Q-Cartier Q-divisor, then L is num-semiample.

Proof. By taking a Q-factorialization [BBS], we can suppose X to be Q-factorial. If

ν(L|XK
) = 2, then we conclude by the base-point-free theorem [BMP+, Th. 9.15]. If

ν(L|XK
) = 0, then L|XK

≡ 0 and by Proposition 2.6, there exists a Q-Cartier Q-divisor

D on Spec(R) such that L≡ π∗D, concluding.

Suppose ν(L|XK
) = 1. Thanks to Proposition 2.16, it is sufficient to show that there exists

an effective Q-divisor E such L≡π E. By Theorem 3.6, there exists ϕ : XK →W such that

LK ≡ ϕ∗A for some A ample Q-Cartier Q-divisor on W. Take a Nagata compactification W

of W over Spec(R) (see [TSP, Tag 0F41]), and let g : Z →W be a projective resolution of

singularities [BMP+, Prop. 2.12]. Resolving the indeterminacy of t : X ��� Z and applying

again [BMP+, Prop. 2.12], there exist projective birational morphisms π : Y → X and

ψ : Y → Z of normal projective R-schemes.

Write (Yk)red =
∑

iEi and (Zk)red =
∑

jDj as Weil divisors. By Lemma 5.1, we have the

following commutative diagram of exact sequences:

⊕
Q[Dj ]

ψ∗

��

�� N1(Z/R)Q ��

ψ∗

��

�� N1(ZK)Q ��

ψ∗
K

��

0

N11
Xk

(X)Q �� N1(Y/R)Q �� N1(YK)Q,

where the surjectivity of the top row comes from Z being regular. If we write N := π∗L,

we know that NK = π|∗Kϕ∗A. Let H := g∗Kϕ∗A be the pullback of A via the morphism

ZK → W . By the above sequence, there exists a Q-Cartier Q-divisor D on Z such that

D|ZK
∼Q H. Note, in particular, that D is big over R.

By the exact sequence, we deduce that on Z we have N−ψ∗D≡
∑

biEi for certain bi ∈Z.

By adding a sufficiently high multiple of the central fiber Xk, we see that N ≡ ψ∗D+F ,

where F is effective. As D is big over R, we conclude that N ≡ E for some E effective. As

N = π∗L, we conclude that L≡ π∗E.
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