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Abstract

Continuum percolation models in which pairs of points of a two-dimensional Poisson
point process are connected if they are within some range of each other have been
extensively studied. This paper considers a variation in which a connection between
two points depends not only on their Euclidean distance, but also on the positions of
all other points of the point process. This model has been recently proposed to model
interference in radio communications networks. Our main result shows that, despite the
infinite-range dependencies, percolation occurs in the model when the density λ of the
Poisson point process is greater than the critical density value λc of the independent
model, provided that interference from other nodes can be sufficiently reduced (without
vanishing).
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1. Introduction

Continuum percolation models originated with a paper of Gilbert [3], who considered the
following construction of a random graph: each pair of points of a two-dimensional Poisson
point process of density λ is joined by an edge if the points are within a distance 2r of each
other. The motivation to introduce such a construction was to model networks of broadcasting
stations that can exchange messages if they are within a certain range of each other. Gilbert
proved a phase-transition behavior, namely the existence of a critical value λc ≡ λc(r) for the
density of the Poisson point process such that, for λ > λc, an unbounded connected subgraph
almost surely forms (i.e. the model percolates) and, so, the network can provide long-distance
communication by multi-hopping messages along a path of connected stations. On the other
hand, for λ < λc any connected component is bounded. Gilbert’s results sparked a wide range
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of interest and have been considerably extended by many mathematicians. We refer to [5] for
a survey of the literature.

Gilbert’s model applies to multi-hop wireless networks, when the circular discs centered at
the Poisson points are considered as the radiation patterns of signals transmitted by the broad-
casting stations. We pick two points of the Poisson process and label them as a transmitter xi

and a receiver xj . The transmitter xi radiates a signal with intensity proportional to the power P

spent to generate the transmission. The signal diffuses isotropically in the environment and is
then received by xj with intensity P multiplied by a loss factor �(xi , xj ) ≤ 1, due to isotropic
dispersion and absorption in the environment. Furthermore, the reception mechanism is affected
by noise, which means that xj is able to detect the signal only if its intensity is sufficiently
high compared to the environmental noise N > 0. Assuming that �(xi , xj ) = �(xj , xi ),
we conclude that xi and xj are able to establish a communication link if the signal to noise
ratio (SNR) is above a given threshold T , that is, if

SNR = P�(xi , xj )

N
> T .

It is reasonable to assume the loss factor �(x, y) to be a decreasing function of the Euclidean
distance between x and y. It follows that fixing the threshold T is equivalent to fixing the
radius r of the discs in Gilbert’s model.

From a practical viewpoint, however, this simple model does not account for interference
effects that arise when all nodes transmit at the same time. In this case, all nodes can contribute
to the amount of noise present at the receiver and increasing the density of the transmitters may
not always be beneficial for connectivity. These observations motivated Dousse et al. [2] to
introduce a dependent percolation model that can be described as follows.

Consider two points of a planar Poisson point process, xi and xj , and assume that xi wants
to communicate a message to xj . At the same time, however, all other nodes xk , k �= i, j ,
also transmit an interfering signal that reaches xj . We write the total interference term at xj

as γ
∑

k �=i,j P �(xk, xj ), where P is the transmitted power and γ > 0 is a factor that depends
on the technology adopted in the system. Node xj can then successfully receive the message
from xi if the signal to noise plus interference ratio (SINR) is greater than a given threshold,
that is, if

SINR = P�(xi , xj )

N + γ
∑

k �=i,j P �(xk, xj )
> T . (1)

A random graph is now constructed as follows. For each pair of Poisson points, the SINR
level at both ends is computed and an undirected edge between the two is drawn if this exceeds
the threshold T in both cases. In this way, the presence of an edge indicates the possibility of
direct bidirectional communication between the two nodes, while the presence of a path between
two nodes in the graph indicates the possibility of multi-hop bidirectional communication. Note
that the constructed random graph does not have the independence structure of Gilbert’s model,
because the presence of an edge between any pair of nodes now depends on the random positions
of all other nodes in the plane that are causing interference, and not only on the two end-nodes
of the link. Such dependencies, as we shall see, make the mathematical analysis of this kind of
graph considerably more challenging. We call this model the SINR model.

It was shown by Dousse et al. [2] that, by taking λ large enough, there exists a γ (λ) > 0 such
that, for γ < γ , the network percolates. In order to deal with the dependency structure of the
model, however, Dousse et al. assumed that the function � has bounded support. This allows
the mathematical analysis to be considerably simplified and a standard coupling argument with
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a finite-range dependent percolation model to be used to immediately obtain the result. In fact,
the main focus of [2] was not mathematical, but rather to present a novel model of engineering
interest.

Nevertheless, we reasonably expect stronger results. If we denote by λc the critical density of
the model when γ = 0, then we expect percolation for all λ > λc, by taking γ > 0 sufficiently
small. Furthermore, this should also be the case when the function � has unbounded support.

Our contribution in this paper is to show that this is correct under the most general class of
loss functions �. We remark that most of the difficulties that we need to overcome deal with the
long-range dependencies introduced by the unbounded support of �. It shall be clear from the
proof of Theorem 1 that a tight density threshold for percolation at λc is easy to obtain when
bounded support is assumed. However, from physics we know that in reality attenuation of a
signal does not have bounded support, which gives some applied motivation to our additional
mathematical efforts.

2. The main result

In this paper, the underlying point process will always be a Poisson process with density
λ > 0. Further parameters of the model are N , γ , P , and T . In the sequel, we consider N > 0,
P > 0, and T > 0 fixed, and study the existence of a percolation phenomenon for varying
values of λ and γ (the case where N = 0 is briefly discussed in Section 3.4). The function � is
called the attenuation function and we assume it to satisfy the following conditions:

1. �(x, y) only depends on |x − y|, that is, �(x, y) = l(|x − y|) for some function
l : R+ → R

+,

2. l(x) ≤ 1,

3. l is continuous and, as long as it does not vanish, strictly decreasing.

These three properties characterize our physical model for wave propagation. In order
to ensure that the model is not degenerate, we must impose, in addition, the following two
conditions on l:

4. l(0) > T N/P ,

5.
∫∞

0 xl(x) dx <∞.

Some comments on these conditions are perhaps necessary. If Condition 4 is not satisfied,
then (1) never holds. Furthermore, the sum in the denominator of (1) is almost surely finite if
and only if Condition 5 is satisfied (see, e.g. [1]).

We remark at this point that the lengths of the edges are uniformly bounded: when �(x, y) ≤
T N/P , no edge can form between x and y. In [2] it was also shown that the degree of any
vertex is bounded above uniformly by 1 + 1/T γ ; the proof there is also valid in the case of
unbounded support of �.

We write x ←→ y if there exists a sequence x1, x2, . . . , xk of Poisson points such that
x1 = x, xk = y, and xl is connected by an edge to xl+1 for 1 ≤ l < k. A (connected)
component or cluster is a set {xi : i ∈ J } of points which is maximal with the property that
xi ←→ xj for all i, j ∈ J .

As mentioned before, we denote by λc the critical density of the model when γ = 0 (and all
other parameters, N , P , and T , are fixed). It is known that for λ ≤ λc we have no infinite cluster
almost surely, while for λ > λc there is an infinite cluster with probability 1. If there is an
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unbounded component of points with positive probability, we say that the signal to interference
ratio graph percolates. (In fact, standard results from ergodic theory say that the existence of
an unbounded component with positive probability implies that this latter probability is equal
to 1. For us, this is not immediately relevant.) We now present our main result.

Theorem 1. Let λc be the critical node density when γ = 0 and assume that the attenuation
function � satisfies Conditions 1–5 above. Then, for any node density λ > λc, there exists a
γ ∗(λ) > 0 such that, for γ ≤ γ ∗(λ), the SINR model percolates.

3. Proof of Theorem 1

The main strategy of the proof is coupling the model to a discrete edge percolation model on
the grid. By doing so, we end up with a dependent discrete model such that the existence of an
infinite connected component in the edge percolation model implies the existence of an infinite
connected component in the original graph. Although the edges of the discrete model are not
finite-range dependent, we show that the probability of having a collection of n closed edges
in the discrete model decreases exponentially as qn, where q can be made arbitrarily small by
appropriate choice of the parameters, and, therefore, that the existence of an infinite connected
component follows from a Peierls argument.

We describe the construction of the discrete model first, then prove the percolation of this
model, and lastly show the final result by coupling it with the SINR model.

3.1. Mapping on a lattice

If we set γ = 0, then we obtain a fixed-radius Poisson Boolean model with radius rB given by

2rB = l−1
(

T N

P

)
.

Since l is continuous, strictly monotone, and larger than T N/P at the origin, it follows that
l−1(T N/P ) exists.

We consider next a supercritical Boolean model B(λ, rB) with radius rB, where the node
density λ is higher than the critical value λc. By rescaling the model, we can establish that the
critical radius for a fixed density λ is

r∗(λ) =
√

λc

λ
rB < rB.

Therefore, a Boolean model B(λ, r) with density λ and radius r satisfying r∗(λ) < r < rB is
still supercritical.

We map the latter model onto a discrete percolation model as follows. For d > 0, we denote
by Ld the two-dimensional square lattice whose vertices are located at all points of the form
(dx, dy) with (x, y) ∈ Z

2. For each horizontal edge a of Ld , we denote by za = (xa, ya) the
point in the middle of the edge, and introduce a random field Aa , indexed by the edges of Ld ,
that takes the value 1 if the following two events (illustrated in Figure 1) occur, and takes the
value 0 otherwise:

1. the rectangle [xa − 3d/4, xa + 3d/4]× [ya − d/4, ya + d/4] is crossed from left to right
by an occupied component in B(λ, r),
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Figure 1: A horizontal edge a that fulfils the two conditions for having Aa = 1.

2. both squares [xa−3d/4, xa−d/4]× [ya−d/4, ya+d/4] and [xa+d/4, xa+3d/4]×
[ya−d/4, ya+d/4] are crossed from top to bottom by an occupied component in B(λ, r).

We define Aa similarly for vertical edges, by swapping the horizontal and vertical coordinates
in the above conditions.

According to [5, Corollary 4.1], the probability that Aa = 1 can be made as large as we like
by choosing d large. The variables Aa are not independent in general. However, if a and b are
not adjacent, then Aa and Ab are independent; these variables thus define a 1-dependent edge
percolation process.

We next define a second random field, Ba , again indexed by the edges in Ld . We first define
l̃, a shifted version of l, as follows:

l̃(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l(0), x ≤
√

10d

4
,

l

(
x −
√

10d

4

)
, x >

√
10d

4
.

We define the shot noise processes I and Ĩ as follows:

I (z) =
∑

k

l(|z− xk|),

Ĩ (z) =
∑

k

l̃(|z− xk|),

where z ∈ R
2 is an arbitrary point and the sum is over all points of the Poisson process X.

Note that the shot noises are random variables, since they depend on the random positions of
the points of X.

We now define the second random field Ba as taking the value 1 if the value of the shot noise
Ĩ (za) does not exceed a certain threshold M , and taking the value 0 otherwise. As the distance
between any point z inside the rectangle R(za) = [xa−3d/4, xa+3d/4]×[ya−d/4, ya+d/4]
and its center za is at most

√
10d/4, the triangle inequality implies that |za −xk| ≤

√
10d/4+

|z − xk| and, thus, that I (z) ≤ Ĩ (za) for all z ∈ R(za). Therefore, Ba = 1 implies that
I (z) ≤ M for all z ∈ R(za). Later, we will make an appropriate choice firstly for d and then
for M .
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3.2. Percolation in the lattice

For any edge a of Ld , we call the edge open if Ca = AaBa = 1, that is, if both of the
following events occur: there exist crossings in the rectangle R(za) as described above and the
shot noise is bounded by M for all points inside R(za). An edge a that is not open is closed.
We want to show that, for an appropriate choice of the parameters M and d, there exists an
infinite connected component of open edges at the origin, with positive probability.

To do this, we need an exponential bound on the probability of a collection of n closed edges.
Most of the difficulty of obtaining this resides in the infinite-range dependencies introduced by
the random variables Bi . A careful application of Campbell’s theorem will take care of this.

Consider any collection of n edges a1, . . . , an. To keep the notation simple, we write
Aai
= Ai , Bai

= Bi , and Cai
= Ci , i = 1, . . . , n. In Proposition 3, below, we will prove that

the probability that all these edges are closed simultaneously decreases exponentially with n.
To do this, we first prove this for the fields A and B.

Proposition 1. There exists a constant, qA < 1, such that, for any collection {ai}ni=1 of n

distinct edges, we have

P(A1 = 0, A2 = 0, . . . , An = 0) ≤ qn
A,

where {Ai}ni=1 denotes the random variables of the field A associated with them. Furthermore,
for any ε > 0, we can choose d large enough that qA ≤ ε.

Proof. This proposition follows directly from the observation that it is always possible to
find a subset of indices {kj }mj=1, with 1 ≤ kj ≤ n for each j , such that the variables {Akj

}mj=1
are independent and such that m ≥ n/4. Therefore, we have

P(A1 = 0, A2 = 0, . . . , An = 0) ≤ P(Ak1 = 0, Ak2 = 0, . . . , Akm = 0)

= P(A1 = 0)m

≤ P(A1 = 0)n/4

=: qn
A.

Furthermore, since qA = P(A1 = 0)1/4, it follows from [5, Corollary 4.1] that qA tends to zero
as d tends to infinity.

Proposition 2. There exists a constant, qB < 1, such that, for any collection {ai}ni=1 of n

distinct edges, we have

P(B1 = 0, B2 = 0, . . . , Bn = 0) ≤ qn
B,

where {Bi}ni=1 denotes the random variables of the field B associated with them. Furthermore,
for any ε > 0 and fixed d , we can choose M large enough that qB ≤ ε.

Proof. To simplify the notation, we denote by zi the center, zai
, of the edge ai . By Markov’s

inequality we have, for any s ≥ 0,

P(B1 = 0, B2 = 0, . . . , Bn = 0) = P(Ĩ (z1) > M, Ĩ (z2) > M, . . . , Ĩ (zn) > M)

≤ P

( n∑
i=1

Ĩ (zi ) > nM

)

≤ exp(−snM) E

(
exp

(
s

n∑
i=1

Ĩ (zi )

))
.
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Applying Campbell’s theorem (see, e.g. [6, p. 28]) to the function

f (x) =
n∑

i=1

l̃(|zi − x|),

we obtain

E

(
exp

(
s

n∑
i=1

Ĩ (zi )

))
= exp

(
λ

∫
R2

(
exp

(
s

n∑
i=1

l̃(|x − zi |)
)
− 1

)
dx

)
. (2)

We need to estimate the exponent s
∑n

i=1 l̃(|x − zi |). As the {zi} are centers of edges, they
are located on a square lattice with edge length d/

√
2. So, if we consider the square in which

x is located, the contribution to
∑n

i=1 l̃(|x − zi |) coming from the four corners of this square
is, at most, equal to 4, since l̃(x) ≤ 1. Around this square, there are 12 nodes, each located at
a distance of at least d/

√
2 from x. Further away, there are 20 other nodes at distances of at

least 2d/
√

2 from x, and so on. Consequently,

n∑
i=1

l̃(|x − zi |) ≤
∞∑
i=1

l̃(|x − zi |)

≤ 4+
∞∑

k=1

(4+ 8k)l̃

(
kd√

2

)

=: K.

Now Condition 5, above, on l can easily be extended to l̃, and we clearly have∫ ∞
y

xl̃(x) dx <∞, for some y > 0. (3)

Using the integral criterion and (3), we conclude that the sum converges and, thus, K <∞.
The computation above holds for any s ≥ 0. We now take s = 1/K , so that

s

n∑
i=1

l̃(|x − zi |) ≤ 1,

for all x. Furthermore, since ex − 1 < 2x for all x ≤ 1, we have

exp

(
s

n∑
i=1

l̃(|x − zi |)
)
− 1 < 2s

n∑
i=1

l̃(|x − zi |) = 2

K

n∑
i=1

l̃(|x − zi |).

Substituting this into (2), we obtain

E

(
exp

( n∑
i=1

Ĩ (zi )

K

))
≤ exp

(
λ

∫
R2

2

K

n∑
i=1

l̃(|x − zi |) dx

)

= exp

(
2nλ

K

∫
R2

l̃(|x|) dx

)

=
[

exp

(
2λ

K

∫
R2

l̃(|x|) dx

)]n

.
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Putting things together, we obtain

P(Ĩ (z1) > M, Ĩ (z2) > M, . . . , Ĩ (zn) > M)

≤ exp(−snM) E

(
exp

(
s

n∑
i=1

Ĩ (zi )

))

≤ exp

(
−nM

K

)[
exp

(
2λ

K

∫
R2

l̃(|x|) dx

)]n

= qn
B,

where qB is defined as

qB := exp

(
2λ

K

∫
l̃(|x|) dx − M

K

)
.

Finally, it is easy to observe that this expression tends to zero as M tends to infinity (for fixed
d and, hence, since K depends only on d , for fixed K).

We next combine Propositions 1 and 2, in order to obtain a similar result for the field C.

Proposition 3. There exists a constant, qC < 1, such that, for any collection {ai}ni=1 of n

distinct edges, we have

P(C1 = 0, C2 = 0, . . . , Cn = 0) ≤ qn
C,

where {Ci}ni=1 denotes the random variables of the field C associated with them. Furthermore,
for any ε > 0, we can choose d and M so that qC ≤ ε.

Proof. For convenience, in the following calculations we introduce the notation Āi = 1−Ai

and B̄i = 1− Bi . Firstly observe that

1− Ci = 1− AiBi ≤ (1− Ai)+ (1− Bi) = Āi + B̄i .

Let us denote by p(n) the probability that we want to bound, and let (ki)
n
i=1 be a binary sequence

(i.e. ki = 0 or ki = 1) of length n. We denote by K the set of the 2n such sequences. Then we
can write

p(n) = P(C1 = 0, C2 = 0, . . . , Cn = 0)

= E((1− C1)(1− C2) · · · (1− Cn))

≤ E((Ā1 + B̄1)(Ā2 + B̄2) · · · (Ān + B̄n))

=
∑

(ki )∈K
E

( ∏
{i : ki=0}

Āi

∏
{i : ki=1}

B̄i

)

≤
∑

(ki )∈K

√√√√E

( ∏
{i : ki=0}

Ā2
i

)
E

( ∏
{i : ki=1}

B̄2
i

)

=
∑

(ki )∈K

√√√√E

( ∏
{i : ki=0}

Āi

)
E

( ∏
{i : ki=1}

B̄i

)
,
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where the two last inequalities follow, respectively, from Schwartz’s inequality and from the
observation that Ā2

i = Āi and B̄2
i = B̄i . Applying Propositions 1 and 2, we can bound each

expectation in the sum. We thus obtain

p(n) ≤
∑

(ki )∈K

√ ∏
{i : ki=0}

qA

∏
{i : ki=1}

qB

=
∑

(ki )∈K

∏
{i : ki=0}

√
qA

∏
{i : ki=1}

√
qB

= (
√

qA +√qB)n

=: qn
C.

Firstly choosing d large, and then M appropriately, we can make qC smaller than any given ε.

With Proposition 3, the existence of percolation in our dependent bond percolation model
follows from standard arguments. Indeed, with our exponential bound in Proposition 3, we
can apply the usual Peierls argument (see, e.g. [4, pp. 16–19]) to establish the existence of
percolation for appropriate M and d .

3.3. Percolation of the SINR model

To conclude the proof of Theorem 1, we need to show that percolation of Ca implies
percolation in the SINR model, with appropriate γ . If Ba = 1 then the interference level
in the rectangle R(za) is, at most, equal to M . Therefore, for two nodes xi and xj in R(za)

such that |xi − xj | ≤ 2r , we have

P l(|xi − xj |)
N + γ

∑
k �=i,j P l(|xk − xj |) ≥

P l(|xi − xj |)
N + γPM

≥ P l(2r)

N + γPM
.

As r < rB and as l is strictly decreasing, we choose

γ = N

PM

(
l(2r)

l(2rB)
− 1

)
> 0,

yielding
P l(2r)

N + γPM
= P l(2rB)

N
= T .

Therefore, there exists a positive value of γ such that any two nodes separated by a distance less
than r are connected in the SINR model. This means that in the rectangle R(za) all connections
of B(λ, r) also exist in the SINR model.

Finally, if Aa = 1, there exist crossings along edge a, as shown in Figure 1. These crossings
are designed such that if, for two adjacent edges a and b, Aa = 1 and Ab = 1, then the crossings
overlap, and they all belong to the same connected component (see Figure 2). Thus, an infinite
cluster of such edges implies an infinite cluster in the Boolean model of radius r and density λ.
Since all edges a of the infinite cluster of the discrete model are such that Aa = 1 and Ba = 1,
this means that the crossings also exist in the SINR model, and thus form an infinite connected
component.
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a

b

Figure 2: Two adjacent edges a (solid) and b (dashed) with Aa = 1 and Ab = 1. The crossings overlap,
and form a connected component.

3.4. The case where N = 0

It is clear that the model degenerates to trivial particular cases if we set P = 0 or T = 0.
However, it is interesting to look at the case where there is no background noise, i.e. N = 0,
as the length of the edges is unbounded in this case. The proof given in the above sections can
easily be adapted to this case. The only difference is that there is no Boolean threshold λc and,
thus, the result holds for any density λ > 0.

Corollary 1. Let N = 0, and assume that the attenuation function � satisfies Conditions 1–5
as in Theorem 1. Then, for any node density λ > 0, there exists a γ ∗(λ) > 0 such that, for
γ ≤ γ ∗(λ), the SINR model percolates.

4. Conclusion and possible extensions

In this paper, we proved that a percolation phenomenon occurs for some values of the
parameters λ (node density) and γ (weight of the interference term) in the SINR model. When
γ = 0, the model reduces to a standard Boolean model, and it is known that there exists a λc
such that percolation occurs whenever λ > λc. We showed that, for any density λ > λc, we
can pick γ small enough (but nonzero) that percolation still occurs.

We have thus improved the results of [2] in two ways: firstly we extended the range of
node densities where a percolation phenomenon is proved to exist to the actual range where
percolation can occur, and secondly we established the result for a large class of attenuation
functions (in particular with unbounded support) that includes all isotropic, continuous, and
strictly decreasing functions bounded from above by 1.

We now present a summary of what is known about the set of couples (λ, γ ) for which
percolation occurs:

• no percolation occurs when λ < λc,

• no percolation occurs when γ > 1/T ,
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Figure 3: The percolation domain for l(x) = min(1, x−3), computed by simulation.

• when λ > λc, there exists a γ ∗(λ) > 0 such that percolation occurs whenever γ < γ ∗(λ),

• there exist c1 <∞ and λ′ <∞ such that γ ∗(λ) ≤ c1/λ for all λ > λ′.

The last property follows from [2]. Figure 3 shows a simulation of the percolation domain for
an attenuation function of the form l(x) = min(1, x−3).

Finally, we mention a few possible extensions of our results. Firstly, our proof is two-
dimensional, at least the argument in Section 3.3 is. It is, therefore, a natural question as to
whether our results can be extended to higher dimensions. From the application point of view,
there is perhaps not so much interest in this question, but the mathematical challenges could
be quite interesting. A second possible extension, which has more practical relevance, is to
weaken the assumption of fixed power P . Instead of a fixed power P , we could argue that it is
more realistic to have random, independent, and identically distributed transmitting powers for
the points of the Poisson process. It would be interesting to see how moment conditions on P

would play their role in the analysis. Finally, there is the challenge to verify rigorously more
properties of the curve in Figure 3.

Acknowledgements

The work presented in this paper was supported (in part) by the National Competence
Center in Research on Mobile Information and Communication Systems (NCCR-MICS), a
center supported by the Swiss National Science Foundation under grant number 5005-67322.
Massimo Franceschetti was supported by the NSF Career grant CNS-0546235.

References

[1] Daley, D. J. (1971). The definition of a multidimensional generalization of shot noise. J. Appl. Prob. 8, 128–135.
[2] Dousse, O., Baccelli, F. and Thiran, P. (2005). Impact of interferences on connectivity in ad-hoc networks.

IEEE/ACM Trans. Networking 13, 425–436.
[3] Gilbert, E. N. (1961). Random plane networks. J. SIAM 9, 533–543.
[4] Grimmett, G. (1999). Percolation, 2nd edn. Springer, Berlin.
[5] Meester, R. and Roy, R. (1996). Continuum Percolation. Cambridge University Press.
[6] Kingman, J. F. C. (1993). Poisson Processes (Oxford Stud. Prob. 3). Clarendon Press, Oxford.

https://doi.org/10.1239/jap/1152413741 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1152413741

	1 Introduction
	2 The main result
	3 Proof of Theorem 1
	3.1 Mapping on a lattice
	3.2 Percolation in the lattice
	3.3 Percolation of the SINR model
	3.4 The case where N=0

	4 Conclusion and possible extensions
	Acknowledgements
	References

