
Forum of Mathematics, Sigma (2019), Vol. 7, e6, 18 pages
doi:10.1017/fms.2018.16 1

OBSTRUCTIONS TO ALGEBRAIZING
TOPOLOGICAL VECTOR BUNDLES

A. ASOK1, J. FASEL2 and M. J. HOPKINS3

1 Department of Mathematics, University of Southern California, 3620 S. Vermont Ave.,
Los Angeles, CA 90089-2532, USA;

email: asok@usc.edu
2 Institut Fourier - UMR 5582, Université Grenoble Alpes CS 40700,
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Abstract

Suppose X is a smooth complex algebraic variety. A necessary condition for a complex topological
vector bundle on X (viewed as a complex manifold) to be algebraic is that all Chern classes must
be algebraic cohomology classes, that is, lie in the image of the cycle class map. We analyze
the question of whether algebraicity of Chern classes is sufficient to guarantee algebraizability
of complex topological vector bundles. For affine varieties of dimension 63, it is known that
algebraicity of Chern classes of a vector bundle guarantees algebraizability of the vector bundle.
In contrast, we show in dimension >4 that algebraicity of Chern classes is insufficient to guarantee
algebraizability of vector bundles. To do this, we construct a new obstruction to algebraizability
using Steenrod operations on Chow groups. By means of an explicit example, we observe that our
obstruction is nontrivial in general.

2010 Mathematics Subject Classification: 14F42 (primary); 32L05, 55R25, 13C10 (secondary)

1. Introduction

Suppose X is a smooth complex algebraic variety. We write X an for X (C) viewed
as a complex manifold. Write Vn(X) for the set of isomorphism classes of rank-n
algebraic vector bundles on X , V an(X) for the set of isomorphism classes of rank-
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n analytic vector bundles on X an and V top(X) for the set of isomorphism classes
of rank-n complex topological vector bundles on X an.

For any integer n > 0, the assignment X 7→ X an gives rise to a sequence of
functions

Vn(X) −→ V an(X) −→ V top(X).

An element of V top(X) that lies in the image of the composite map
Vn(X) −→ V top(X) will be called an algebraizable vector bundle. The
motivating problem of this paper is as follows: characterize algebraizable
vector bundles among topological vector bundles. This problem is very old; it
is studied explicitly for projective varieties of small dimension, for example, in
the work of Schwarzenberger [Sch61], Atiyah–Rees [AR76] and Bănică–Putinar
[BP87]. Very little is known about this problem for varieties of dimension >4.

Suppose E top
→ X an is a complex topological vector bundle. If E top is

algebraizable, then the Chern classes ctop
i (E top) ∈ H 2i(X an,Z) of E top are

algebraic, that is, they lie in the image of the cycle class map

cl : CHi(X) −→ H 2i(X an,Z).

Using this observation, one can show that the map Vn(X) −→ V top(X) is, in
general, neither injective nor surjective. If X is a smooth affine variety, then by
Grauert’s Oka principle (see [Gra58, Section 2 Satz I, II] or [For11, Theorem
7.2.1] for a textbook treatment), every topological vector bundle on X an admits a
unique analytic structure, that is, the map V an(X)→ V top(X) is a bijection. The
following question is a concrete form of the problem stated above.

QUESTION 1. If X is a smooth complex affine variety, and E an
→ X an is

a complex analytic vector bundle with algebraic Chern classes, then is E an

algebraizable?

Question 1 has a positive answer in small dimensions. Serre’s splitting theorem
[Ser58, Théorème 1] implies that any algebraic vector bundle of rank r > dim X
on a smooth affine variety can be written as the direct sum of a vector bundle of
rank 6 dim X and a trivial bundle (note: the smoothness hypothesis is unnecessary
to apply Serre’s result). To answer Question 1, it therefore suffices to establish
that topological vector bundles of rank below the dimension with algebraic Chern
classes are algebraizable.

For vector bundles of rank one on smooth affine varieties of any dimension,
since CH1(X) = Pic(X) algebraicity of the Chern classes essentially by definition
guarantees algebraizability; it follows immediately that Question 1 has a positive
answer for varieties of dimension one. In dimension two, a positive answer to
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Question 1 follows from the work of Murthy and Swan [MS76] who show that
if X is a smooth complex affine surface, then for any pair (c1, c2) ∈ CH1(X) ×
CH2(X) there is an algebraic vector bundle of rank two with those Chern classes.
Similarly, in dimension three, a positive answer to Question 1 follows from
the work of Kumar and Murthy [KM82, Theorem 2.1]. In particular, Kumar
and Murthy established existence of algebraic vector bundles of rank 63 with
arbitrary prescribed Chern classes on smooth affine 3-folds.

The main result of this paper is that Question 1 admits a negative answer in the
first unknown case: rank-two vector bundles on smooth complex affine varieties
of dimension >4. To see this, we will give a necessary and sufficient condition for
algebraizability of rank-two bundles on smooth complex affine 4-folds involving
the integral Steenrod squaring operation Sq2 on Chow groups; this operation was
described by Voevodsky [Voe03] and Brosnan [Bro03] though for our purposes
the latter (more elementary) description is sufficient. We then show, by means of
explicit examples, that the necessary and sufficient condition for algebraizability
we write down is not always satisfied. More precisely, we establish the following
results (the first result is established just after Theorem 2.2.2 in the body of the
text).

THEOREM 2. Suppose X is a smooth complex affine variety of dimension four,
and E an

→ X an is a rank-two complex analytic vector bundle with Chern classes
ctop

i ∈ H 2i(X an,Z). Assume the Chern classes ctop
i of E an are algebraic, that is, lie

in the image of the cycle class map cl. The bundle E an is algebraizable if and only
if we may find (c1, c2) ∈ CH1(X) × CH2(X) with (cl(c1), cl(c2)) = (ctop

1 , ctop
2 )

such that Sq2c2 + c1 ∪ c2 = 0 ∈ CH3(X)/2.

REMARK 3. Note that, even if ctop
1 is zero in the above statement, unless the

cycle class map cl : CH1(X) → H 2(X,Z) is injective in degree one we cannot
guarantee that c1 can be chosen to vanish. A priori it is possible that Sq2c2+c1 ∪ c2

is always zero, but the following result shows that this is not the case.

THEOREM 4 (See Corollary 3.1.5). There exists a smooth hypersurface Z of
bidegree (3, 4) in P1

× P3, such that, setting X := (P1
× P3) \ Z, the following

statements hold:
(a) The cycle class map cl : CHi(X)→ H 2i(X an,Z) is injective for i 6 2.
(b) The manifold X an carries a rank-two topological vector bundle E an with

Chern classes (0, ctop
2 ) such that ctop

2 is algebraic and the unique lift c2 of ctop
2

granted by (a) satisfies Sq2c2 6= 0 (in particular, E an is not algebraizable).
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Theorem 2 is established by first observing that the map Vn(X) → V top
n (X)

factors through [X,BGLn]A1 , that is, the set of A1-homotopy classes of maps X to
BGLn (the set [X,BGLn]A1 has been called the set of motivic vector bundles on X
by the authors). Thus, to produce the obstruction, it suffices to obstruct existence
of an A1-homotopy class of maps, that is, to obstruct existence of a ‘motivic’ lift of
a given homotopy class. This is accomplished by analysis of the Moore–Postnikov
factorization of the map assigning to the universal rank-two vector bundle over
the Grassmannian its Chern classes; these ideas are discussed in Section 2.1.
The primary obstruction to the existence of a lifting yields the condition of the
statement, and we establish a vanishing theorem showing that, under suitable
hypotheses, all higher obstructions vanish. To prove necessity of the vanishing of
the obstruction, we appeal to Morel’s vector bundle classification: if X is smooth
and affine, then [X,BGLn]A1 ∼= Vn(X) (see [AHW17, Theorem 1]).

The construction of the example in Theorem 4 is closely related with the
failure of the integral Hodge conjecture for the hypersurface Z . The failure of
injectivity of the cycle class map CH3(X) → H 6(X an,Z) is precisely what
allows the examples above to exist. In Section 3.2, we explain how some general
conjectures on algebraic cycles suggest examples like those above are ‘generic’.
By considering products of the form X × An with X as in Theorem 4, one may
construct examples of nonalgebraizable topological vector bundles with algebraic
Chern classes in any dimension >4.

REMARK 5. Theorem 4 also provides a counterexample to a related K-theoretic
variant of Question 1. Indeed, for any smooth C-scheme X , we may consider the
Grothendieck groups K0(X) and K top

0 (X an). The functions Vn(X) → V top
n (X an)

(for varying n) induce a function K0(X) → K top
0 (X); we will say that a class

in K top
0 (X) is algebraic if it lies in the image of this map. One might ask

whether topological vector bundles whose associated K-theory class is algebraic
themselves admit algebraic structures.

Since Chern classes factor through K-theory, algebraicity of the topological K-
theory class of a vector bundle is a stronger restriction than algebraicity of Chern
classes. [KM82, Theorem 2.1] essentially shows that the K-theoretic variant of
Question 1 admits a positive solution for smooth affine C-schemes of dimension
63. On the other hand, the proof of Proposition 2.2.1 shows that the restriction
on Chern classes appearing in Theorem 2 is precisely the primary obstruction to
building a rank-two vector bundle on a smooth affine 4-fold given a fixed class in
K0(X). Thus in dimension >4, the K-theoretic variant of Question 1 mentioned
in the previous paragraph also admits a negative solution.
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2. Obstruction theory: proof of Theorem 2

The goal of this section is to prove Theorem 2. We begin with some
preliminaries regarding Chern classes and obstruction theory in A1-homotopy
theory. We will use rather freely the terminology of [MV99, Mor12]; instead of
bulking up this paper with a long section of notation and terminology, we have
chosen to focus on the argument; we will follow the notations and conventions of
[AF15b, Section 2.1] and we refer the reader there for terminology not explicitly
defined here (for example, spaces, homotopy sheaves, strong and strict A1-
invariance of sheaves and their basic properties). When we consider cohomology
of a sheaf on a smooth scheme, we mean cohomology in the Nisnevich site. We
also remind the reader that strongly or strictly A1-invariant sheaves are unramified
and that to check a morphism of unramified sheaves is an isomorphism, it suffices
to check this on sections over finitely generated extensions of the base field. For a
general discussion of the Moore–Postnikov factorization in A1-homotopy theory,
we refer the reader to [AF15b, Section 6].

2.1. Chern classes and the basic obstruction theory problem. Write
BGLn for the simplicial classifying space of GLn (see, for example, [MV99,
Section 4.1]). The determinant map GLn → Gm induces a map of classifying
spaces BGLn → BGm . If X → BGLn is a simplicial homotopy class of maps
representing a rank-n vector bundle on a smooth scheme X , then the composite
map X → BGLn → BGm represents the determinant line bundle of this
vector bundle. Some A1-homotopy sheaves of BGLn were computed in [Mor12,
Theorem 7.20]; we refer the reader to [AF14a, Lemma 3.1, Theorem 3.2] for
convenient references in the form we require.

LEMMA 2.1.1. There are canonical isomorphisms πA1

1 (BGLn)
∼

→ Gm (induced
by the determinant homomorphism) and πA1

2 (BGL2) ∼= KMW
2 .

The motivic cohomology of BGLn is a polynomial algebra over the motivic
cohomology of a point in variables c1, . . . , cn where ci has bidegree (2i,
i) (this is ‘well known’, but see, for example, [Pus04, Proposition 2] for a
precise statement; Pushin’s argument is a version of the argument of [Gil81],
which itself goes back to Grothendieck’s axiomatic treatment of Chern classes).
By Voevodsky’s (unstable) A1-representability of motivic cohomology [Del09,
Section 2.3 Theorem 2], each ci corresponds to an A1-homotopy class of maps

ci : BGLn → K (Z(i), 2i).
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There is an A1-weak equivalence Grn → BGLn , where Grn is the infinite
Grassmannian [MV99, Section 4 Proposition 3.7]. Here and henceforth, we can
fix suitable A1-fibrant models of BGLn and K (Z(i), 2i) so that the A1-homotopy
classes of maps above are represented by actual morphisms of spaces Grn →

K (Z(i), 2i).
Morel and Voevodsky introduced a complex realization functor [MV99,

Section 3.3]. Under complex realization, Grn is sent to the usual complex
Grassmannian. The model of K (Z(i), 2i) in terms of effective cycles [Voe04,
Section 6] and the classical Dold–Thom theorem show that the complex
realization of K (Z(i), 2i) is K (Z, 2i). Moreover, the maps ci : Grn → K (Z(i),
2i) are sent by realization to the usual Chern class maps ctop

i : Grn → K (Z, 2i).
Indeed, this observation is a consequence of (1) the fact that the finite-dimensional
Grassmannian varieties Grn,N admit a cellular decomposition [Ful98, Example
1.9.1] and thus the cycle class map from Chow groups to ordinary cohomology
is an isomorphism (see also [DI05, Proposition 4.4] for a more homotopic
statement), (2) the fact that Grn is a filtered colimit of the finite-dimensional
Grassmannian varieties Grn,N by construction, and (3) the fact that motivic
cohomology of Grn,N in any given degree stabilizes for N large enough, for
example, by Totaro’s argument [EG98, Definition-Proposition 1 and Section 2.7].
We use the compatibilities discussed above without mention in the following.

The space K (Z(n), 2n) is not an Eilenberg–Mac Lane space in the sense that
its A1-homotopy sheaves are not, in general, concentrated in a single degree.
Nevertheless, one may identify the A1-homotopy sheaves of K (Z(n), 2n). The
first statement is simply a reformulation of the A1-representability of motivic
cohomology mentioned above, while the second statement is a reformulation of
the Nesterenko–Suslin–Totaro theorem (see, for example, [MVW06, Theorem
5.1]).

LEMMA 2.1.2. There is a canonical isomorphism πA1

i (K (Z(n), 2n)) ∼= H2n−i,n ,
where H2n−i,n is the sheafification of the presheaf U 7→ H 2n−i,n(U,Z). In
particular, K (Z(n), 2n) is A1-(n − 1)-connected and its first nonvanishing A1-
homotopy sheaf is KM

n , the nth unramified Milnor K-theory sheaf.

Ideally, we would study the existence of a vector bundle of rank two with
given Chern classes (c1, c2) by studying an obstruction theory problem deduced
from the Moore–Postnikov factorization of the map (c1, c2) : BGL2 → K (Z(1),
2)× K (Z(2), 4). The fact that K (Z(n), 2n) is not an Eilenberg–Mac Lane space
causes various technical complications and we use the description of its homotopy
sheaves provided above to produce an equivalent yet technically simpler problem.
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The first stage of the A1-Postnikov tower of K (Z(n), 2n) yields, by appeal
to Lemma 2.1.2, a canonical map K (Z(n), 2n) → K (KM

n , n). In particular,
composition of the universal nth Chern class with this map yields a map:

c′n : BGLr → K (KM
n , n) (2.1)

for any r > n; this is a modified version of the universal nth Chern class.

REMARK 2.1.3. Since KM
1 = Gm and since the motivic complex Z(1) is Gm

concentrated in a single degree [MVW06, Theorem 4.1], the map K (Z(1), 2)→
K (KM

1 , 1) induced by the Postnikov tower is a simplicial weak equivalence. In
particular, the maps c1 and c′1 lie in the same simplicial homotopy class. Explicitly
identifying the homotopy sheaves of πA1

i (K (Z(n), 2n)) in all degrees seems at
the moment intractable: the Beilinson–Soulé vanishing conjecture predicts that
K (Z(n), 2n) is A1-(2n − 1)-truncated, that is, its homotopy sheaves vanish for
i > 2n − 1.

2.2. Homotopy sheaves and Moore–Postnikov factorizations. Consider the
map

(c′1, c′2) : BGL2 → K (KM
1 , 1)× K (KM

2 , 2),

where c′1 and c′2 are the maps mentioned in (2.1). Our goal is to analyze the
homotopy fiber of this map. Write F2 for the A1-homotopy fiber of (c′1, c′2).

By Lemma 2.1.1 there is a canonical identification πA1

1 (BGL2) ∼= Gm and the
map c′1 yields an isomorphism of A1-fundamental sheaves of groups (see also
Remark 2.1.3). As a consequence, we will be considering a twisted obstruction
theory problem and we will have to keep track of the action of Gm on the higher
A1-homotopy sheaves of the A1-homotopy fiber. We begin by identifying the
relevant A1-homotopy sheaves of F2 together with the action of Gm (for the
relevant definitions about twisted A1-homotopy sheaves, we refer the reader to
[AF15b, Section 2.4]).

PROPOSITION 2.2.1. There are canonical isomorphisms πA1

2 (F2) ∼= I3 and
πA1

3 (F2) ∼= πA1

3 (BGL2) ∼= πA1

2 (SL2). Moreover, the actions of Gm on these
sheaves coincide with the actions described in [AF14b, Propositions 6.3 and 6.5].

Proof. Observe that K (KM
1 , 1) × K (KM

2 , 2) is A1-2-truncated, that is, has A1-
homotopy sheaves concentrated in degrees 62. The second assertion is therefore
immediate from the isomorphism πA1

3 (BGL2) ∼= πA1

2 (SL2).
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For the first statement, the long exact sequence in A1-homotopy sheaves of a
fibration yields (using Lemma 2.1.1) a short exact sequence

0 −→ πA1

2 (F2) −→ KMW
2 −→ KM

2 −→ 0.

On the other hand, recall that there is an exact sequence of sheaves of the form

0 −→ I3
−→ KMW

2 −→ KM
2 −→ 0;

this is the sheafified version of the exact sequence of [Mor04, Corollaire 5.4]. We
will identify these two exact sequences.

To this end, let us unwind some of the identifications. Recall that the A1-fiber
sequence

Gm −→ BSL2 −→ BGL2

yields the identification πA1

2 (BSL2) ∼= πA1

2 (BGL2).
Identify SL2

∼= Sp2 and consider the following commutative diagram:

BSp2
//

��

BGL2

��
BSp

∞
// BGL∞

The left vertical map induces an isomorphism on πA1

2 by [AF14b, Theorem 2.6]
and yields the isomorphism πA1

2 (BSp2)
∼= πA1

2 (BSp
∞
) ∼= KSp2. By Suslin’s

theorem, KSp2
∼=KMW

2 [Sus87, Corollaries 6.2, 6.4 and Theorem 6.5] (see [AF17,
Theorem 4.1.2] and the discussion there for an explanation in the context we
consider). On the other hand, the map on πA1

2 induced by the right vertical map is
a map KMW

2 → KM
2 (see [AF14a, Lemma 3.1 and Theorem 3.2]). The bottom

horizontal map induces the forgetful map, which coincides with the standard
surjection KMW

2 → KM
2 .

The second Chern class map BGL2 → K (KM
2 , 2) necessarily factors through

the map BGL2 → BGL∞ and the map BGL∞ → K (KM
2 , 2) is an isomorphism

on πA1

2 by Matsumoto’s theorem identifying Quillen’s K2 of a field with Milnor’s
K2. Therefore, the second Chern class map induces a map on πA1

2 that, up to the
identifications described above, coincides with the forgetful map KMW

2 → KM
2 ,

which is precisely what is asserted above.
By construction, the actions mentioned in the statement are inherited from

the Gm-actions on homotopy sheaves of BGL2 as described in the referenced
propositions.

THEOREM 2.2.2. Suppose X is a smooth affine 4-fold over an algebraically
closed field having characteristic unequal to 2, and fix a line bundle L on X
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with first Chern class c1 ∈ CH1(X). Given c2 ∈ CH2(X), the pair (c1, c2) are the
first and second Chern classes of a vector bundle of rank two and determinant L
if and only if Sq2c2 + c1 ∪ c2 = 0.

Proof. Suppose X is a smooth affine 4-fold over Spec k and fix (c1, c2) ∈

CH1(X) × CH2(X) as in the statement. Such a pair determines a map ψ : X →
K (KM

1 , 1)×K(KM
2 , 2). Fix a line bundle L on X representing c1. We now analyze

the Moore–Postnikov factorization of the map (c1, c′2) : BGL2 → K (KM
1 , 1)

× K (KM
2 , 2).

This analysis proceeds in several steps, which we now outline. First, we analyze
the primary obstruction: we begin by constructing a ‘quotient’ of the primary
obstruction, which is easier to identify. Then, we show that this ‘quotient’ of the
primary obstruction actually coincides with the primary obstruction by means
of suitable cohomological vanishing statements. Next, we analyze the secondary
obstruction. We show the secondary obstruction vanishes again by establishing a
general cohomological vanishing result. Finally, we appeal to general theory to
show that no further obstructions can arise.

Step 1: Analyzing the primary obstruction. The primary obstruction to
lifting ψ to a map X → BGL2 is, by means of Proposition 2.2.1, a class in
H 3(X, I3(L)).

Step 1a: A quotient of the primary obstruction. To identify this obstruction
more explicitly, we consider the exact sequence of [Fas13, Section 2.1, p. 423]:

0 −→ I j+1(L) −→ I j(L) −→ I j/I j+1
−→ 0.

By the sheafified version of the Milnor conjecture on quadratic forms [OVV07]
there is a canonical isomorphism of sheaves I j/I j+1 ∼= KM

j /2. We consider the
composite map (via this isomorphism)

H 2(X,KM
2 ) −→ H 3(X, I3(L)) −→ H 3(X,KM

3 /2).

The first map here is precisely the k-invariant in the Moore–Postnikov
factorization and the identifications of Proposition 2.2.1 show that it is exactly the
connecting homomorphism in the long exact sequence in cohomology associated
with the exact sequence of sheaves on X :

0 −→ I3(L) −→ KMW
2 (L) −→ KM

2 −→ 0.

The composite above can be described in a fashion that extends a result of Totaro.
More precisely, we claim that if c2 ∈ H 2(X,KM

2 ), then the map just described,

H 2(X,KM
2 ) −→ H 3(X,KM

3 /2),
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sends c2 7→ Sq2c2 + c1(L) ∪ c2. First, we treat the case where L is trivial. In that
case, the map H 2(X,KM

2 )−→ H 3(X,KM
3 /2) factors through the mod 2 reduction

map CH2(X) = H 2(X,KM
2 ) → H 2(X,KM

2 /2) = CH2(X)/2 (see [AF15a,
Diagram 2.1.2] and the preceding discussion). Therefore, [Tot03, Theorem 1.1]
implies that the composite map is precisely the composite of the mod 2 reduction
map and Sq2, that is, the integral Steenrod squaring map. To treat the general case,
we appeal to [AF15a, Theorem 3.4.1] (applied in the case i = j = 2), which
reduces the description of the relevant operation when L is nontrivial to the case
where L is trivial.

Step 1b: The actual primary obstruction. The relationship between the
obstruction just mentioned and the actual primary obstruction is measured by
the difference between the groups H 3(X, I3(L)) and H 3(X,KM

3 /2). In this case,
we have the long exact sequence

· · · −→ H 3(X, I4(L)) −→ H 3(X, I3(L)) −→ H 3(X,KM
3 /2)

−→ H 4(X, I4(L)) −→ · · · .

Since X is a smooth affine 4-fold over an algebraically closed field, by [AF14b,
Proposition 5.2] the groups H 3(X, I4(L)) and H 4(X, I4(L)) vanish. Thus, the
primary obstruction coincides with the ‘quotient’ constructed in Step 1a, that is,
the primary obstruction to lifting is precisely the vanishing of Sq2c2 + c1 ∪ c2.

Step 2: Analyzing the secondary obstruction. If the primary obstruction
vanishes, then we can choose a lift to the second stage of the Moore–Postnikov
factorization of the map (c1, c′2). Upon choosing a lift to this stage, we
obtain a secondary obstruction lying in H 4(X,πA1

3 (F2)(L)). By means of
Proposition 2.2.1, this obstruction is an element of H 4(X,πA1

3 (BGL2)(L)).
A priori, this obstruction depends on the choice of lift, but we claim H 4(X,
πA1

3 (BGL2)(L)) = 0, independent of this choice.
To see this, recall by [AF14b, Theorem 3.3] that πA1

3 (BSp2) is an extension
of KSp

3 = GW2
3 by a certain sheaf T′4. Observe first that H 4(X,GW2

3(L)) = 0 by
explicit construction of the Gersten resolution. Indeed, H 4(X,GW2

3(L)) is simply
a quotient of

⊕
x∈X (4)(GW2

3(L))−4(κx) and the latter vanishes by [AF14b, Lemma
4.11].

By [AF14b, Corollary 4.9] the induced Gm-action on T′4 is trivial. Again using
[AF14b, Theorem 3.3], S′4 is a quotient of T′4 by D5; the sheaf S′4 is itself a
quotient of KM

4 /12 while the sheaf D5 is a quotient of I5. Observe that H 4(X,
KM

4 /12) ∼= CH4(X)/12. Since X is smooth and affine over an algebraically closed
field, CH4(X) is divisible and therefore, H 4(X,KM

4 /12) is trivial. On the other
hand, H 4(X, I5) is trivial since [AF14b, Proposition 5.1] shows the sheaf I5 is
itself trivial when restricted to X .
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Step 3. Lifting to BGL2. Since the secondary obstruction vanishes, we may
choose a lift to the third stage of the Moore–Postnikov factorization of the
map. Since X has Nisnevich cohomological dimension four, there are no further
obstructions to lifting and we may arbitrarily make a choice of lift of X to the
fourth stage of the Moore–Postnikov factorization of the map (c1, c′2). Moreover,
again using the fact that X has Nisnevich cohomological dimension four we see
that beyond the fourth stage of the factorization all lifts are uniquely determined.
Thus, by the same argument as in [AF14b, Proposition 6.2], we obtain an element
of [X,BGL2]A1 . Combining the discussion of the previous steps we see that a
necessary and sufficient condition to lift (c1, c2) ∈ CH1(X) × CH2(X) to an
element of [X,BGL2]A1 is the vanishing of Sq2c2 + c1 ∪ c2 ∈ CH3(X)/2.

Step 4. Geometrization. Finally, we apply Morel’s A1-representability
theorem for vector bundles [AHW17, Theorem 1] to identify [X,BGL2]A1

with V2(X).

Proof of Theorem 2. Consider the map

(ctop
1 , ctop

2 ) : BGL2(C) −→ K (Z, 2)× K (Z, 4).

The map (ctop
1 , ctop

2 ) is a 4-equivalence and thus the homotopy fiber is 5-connected.
If X is a smooth affine 4-fold, then X an has the homotopy type of a CW complex
of dimension 64. A straightforward obstruction theory argument then shows
that there is a bijection V top

2 (X)
∼

→ H 2(X an,Z) × H 4(X an,Z). Combining this
observation with Theorem 2.2.2 yields Theorem 2.

REMARK 2.2.3. It is possible to establish Theorem 2 by a direct analysis of the
Moore–Postnikov factorization of (c1, c2) : BGL2 → K (Z(1), 2) × K (Z(2), 4),
but identifying the A1-homotopy sheaves of the A1-homotopy fiber is slightly
more complicated than the approach described above.

3. Constructing examples: proof of Theorem 4

The goal of this section is to construct explicit examples of smooth complex
affine varieties for which (a) the cycle class map CHi(X) → H 2i(X,Z) is
injective for i 6 2 and (b) there exist classes α ∈ CH2(X) such that Sq2α 6= 0.

3.1. Explicit examples of nonalgebraizable vector bundles. If dim X < 3,
CH3(X) is trivial by definition and if dim X = 3 then CH3(X) is divisible
(which is classical); thus, if dim X 6 3, then CH3(X)/2 is trivial. Therefore the
first dimension that can support nontrivial examples of the kind we envision is
dimension four.
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PROPOSITION 3.1.1. Suppose Y is a smooth projective variety of dimension >4
and Z is an ample hypersurface on Y (that is, OY (Z) is an ample line bundle) and
set X := Y \ Z. If the cycle class map CHi(Y )→ H 2i(Y an,Z) is an isomorphism
for i 6 2, then the cycle class maps CHi(X) → H 2i(X an,Z) are injective for
i 6 2.

Proof. Using the assumption on the dimension and the hypothesis that Z is an
ample hypersurface, the Grothendieck–Lefschetz theorem guarantees that the
pullback map Pic(Y )→ Pic(Z) is an isomorphism [Har70, Corollary IV.3.3]. By
the usual Lefschetz hyperplane theorem [Voi07, Theorem 1.1], the map H i(Y an,

Z)→ H i(Z an,Z) is an isomorphism for i 6 2 and injective for i = 3. Since the
cycle class map commutes with pullbacks [Voi07, Proposition 9.2.1(i)] and since
the map Pic(Y ) → H 2(Y an,Z) is an isomorphism by assumption, we conclude
that Pic(Z)→ H 2(Z an,Z) is an isomorphism as well.

Since the cycle class map commutes with Gysin maps [Voi07, Proposition
9.2.1(ii)], there is a commutative diagram of the form

CHi−1(Z) //

��

CHi(Y ) //

��

CHi(X) //

��

0

��
H 2i−2(Z an,Z) // H 2i(Y an,Z) // H 2i(X an,Z) // H 2i−1(Z an,Z)

The map cl : CHi−1(Z)→ H 2i−2(Z an,Z) is an isomorphism for i = 1 essentially
by definition and an isomorphism for i = 2 by the discussion of the previous
paragraph. The map cl : CHi(Y ) → H 2i(Y an,Z) is an isomorphism for i 6 2
by assumption. Since the right vertical map is injective, it follows from the five
lemma that CHi(X)→ H 2i(X an,Z) is injective for i 6 2 as well.

REMARK 3.1.2. If Y is 1-connected, it follows from the Lefschetz theorem on
the fundamental group (see, for example, [Har70, Corollary IV.2.2]) that Z is
also 1-connected. In that case, one concludes that Pic(X) → H 2(X an,Z) is an
isomorphism as well since H 1(Z an,Z) = 0 by the Hurewicz theorem. One way
to guarantee that Y is simply connected and that the cycle class map CHi(Y )→
H 2i(Y an,Z) is an isomorphism is to require that Y admit a cellular decomposition
in the sense of, for example, [Ful98, Example 1.9.1]. Recall that a variety Y is said
to admit a cellular decomposition if it admits an increasing filtration by closed
subvarieties ∅ = Y−1 ⊂ · · · ⊂ Yi ⊂ Yi+1 ⊂ · · · ⊂ Yn = Y such that Yi \ Yi−1 can
be written as a disjoint union of varieties isomorphic to affine space. In that case,
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Y is a rational variety and Y an is simply connected, for example, by [Ser59]. In
the examples we consider below, Y will admit a cellular decomposition.

If Y admits a cellular decomposition, then the cohomology of Y an is
concentrated in even degrees. In particular, H 5(Y an,Z) = 0 and therefore
the map H 4(X an,Z) → H 3(Z an,Z) in the Gysin sequence is surjective. By
taking Z to be a sufficiently ample hypersurface, we can guarantee that H 3(Z an,

Z) is nonzero in general (for example, take a smooth hypersurface of degree >5
in P4). Thus, in general, CH2(X)→ H 4(X an,Z) need not be surjective.

Fix an isomorphism CH∗(P1
× P3) ∼= Z[ξ, τ ]/〈ξ 2, µ4

〉 (here ξ and µ are
elements of degree one in the Chow ring). If Z is a smooth hypersurface of
bidegree (d1, d2), then under this isomorphism [Z ] = d1ξ +d2µ. We now identify
the Chow groups of the complement of Z in P1

× P3 in low degrees; we do
this since the computation is concrete and elementary (the full strength of this
statement is not necessary in Theorem 3.1.4 below).

PROPOSITION 3.1.3. Suppose Z ⊂ P1
×P3 is a hypersurface of bidegree (d1, d2)

with d1 6= 0, d2 6= 0. Set g = gcd(d1, d2) and pick m and n such that md1+nd2 = g.
If X := P1

× P3
\ Z, then

CH1(X) ∼= Z/d1Z⊕ Z/d2Z, and

CH2(X) ∼= Z/gZ⊕ Z/
d2

2

g
Z.

Under the first isomorphism Z/d1Z is generated by the image of ξ while Z/d2Z is
generated by the image of µ. Under the second isomorphism, the class ξµ is sent
to (1,−md2/g), while the class µ2 is sent to a generator of Z/(d2

2/g)Z. If d1 - d2

and d2 - d1 (for example, if gcd(d1, d2) = 1), then ξµ can be assumed to restrict
nontrivially to CH2(X).

Proof. It suffices to identify the map CH j−1(Z) → CH j(P1
× P3). Since i∗ :

CH j−1(P1
× P3) → CH j−1(Z) is an isomorphism for j 6 2 as observed in the

proof of Proposition 3.1.1, it remains to compute the cokernel of the map i∗i∗ :
CH j−1(P1

× P3) → CH j(P1
× P3), which comes from the intersection with a

divisor formula [Ful98, Proposition 2.6c].
By definition, [Z ] ∈ CH1(P1

×P3) is precisely d1ξ+d2µ. The first isomorphism
of the statement then follows immediately from this: CH1(X) ∼= Zξ⊕Zµ/〈d1ξ+

d2µ〉. For the second isomorphism we proceed as follows. Consider the matrix
representing i∗i∗ with respect to the bases ξ, µ of CH1(P1

× P3) and ξµ,µ2 of
CH2(P1

× P3). This matrix is not diagonal, but can be put in Smith normal form
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via the identity:

 1 0

−
md2

g
1

(d2 d1

0 d2

)n −
d1

g

m
d2

g

 =
g 0

0
d2

2

g

 .
In particular, the cokernel of the map i∗i∗ can be computed from that of diag(g,
d2

2/g), which is what was asserted in the statement. The statements regarding the
images of ξµ and µ2 are immediate, and the final statement follows from the
choice of Bézout identity presenting gcd(d1, d2) that arises from the Euclidean
algorithm.

THEOREM 3.1.4. Suppose Z ⊂ P1
× P3 is a smooth complex hypersurface of

bidegree (3, 4) defined over Q that specializes modulo some prime p to the
singular hypersurface y3

0 x4
0 + y2

0 y1x4
1 + y0 y2

1 x4
2 + y3

1 x4
3 over Fp. The classes ξµ

and ξµ2 both restrict nontrivially from P1
× P3 to X = (P1

× P3) \ Z and if ψ is
the image of ξµ ∈ CH2(X), then Sq2ψ 6= 0 ∈ CH3(X)/2.

Proof. Observe that Sq2(ξµ) = ξµ2
+ξ 2µ = ξµ2 in CH∗(P1

×P3) by the Cartan
formula [Voe03, Proposition 9.7] (note that Sq1(ξ) = Sq1(µ) = 0 since H 3,1(W,
Z) vanishes for any smooth scheme W ). Since motivic Steenrod operations are
compatible with pullbacks along morphisms of smooth schemes by construction,
the statement that Sq2(ψ) is nontrivial will follow from the assertion that ξµ
and ξµ2 restrict nontrivially to X . Since gcd(3, 4) = 1, the fact that ξµ restricts
nontrivially to X follows immediately from Proposition 3.1.3. Thus, it remains to
show that ξµ2 restricts nontrivially to X .

To this end, we use an idea of Totaro who showed that every curve in Z
has even degree over P1. Indeed, see [Tot13, Proof of Theorem 3.1] for this
precise statement. Given this statement, one deduces immediately that i∗[C] for
a 1-cycle C on Z is of the form 2rξµ2

+ sµ3. In particular, ξµ2 does not lie
in the image of i∗ or the corresponding map for Chow groups modulo 2 and
therefore restricts nontrivially to CH3(X)/2. (Note: this last observation reproves
the fact that ξµ restricts nontrivially to X since it follows immediately from the
previous statement that Sq2(ψ), which is the restriction of Sq2(ξµ) = ξµ2 to X ,
is nontrivial.)

COROLLARY 3.1.5. Suppose X is a variety as described in the statement of
Theorem 3.1.4. For a given ctop

2 ∈ H 4(X an,Z), there is a unique topological vector

bundle E an over X an with ctop
1 (E an) = 0 and ctop

2 (E an) = ctop
2 . If ctop

2 is the image
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of ξµ under the cycle class map, then the topological vector bundle with Chern
classes (0, ctop

2 ) has algebraic Chern classes yet fails to be algebraizable.

Proof. As discussed in the proof of Theorem 2 at the end of Subsection 2.2 the
map (ctop

1 , ctop
2 ) : V

top
2 (X) → H 2(X an,Z) × H 4(X an,Z) is a pointed bijection.

Thus, the pair (0, ctop
2 ) determines a unique rank-two topological vector bundle

on X an. In the case where ctop
2 is the image of ξµ under restriction, it follows

immediately from Theorem 3.1.4 that Sq2(ξµ) 6= 0 ∈ CH3(X)/2. Therefore, the
claim follows from Theorem 2.2.2.

3.2. Conjectures on cycles and genericity of the examples. The example of
the previous section seems intimately related to the failure of the integral Hodge
conjecture. We explore this connection in greater detail now.

EXAMPLE 3.2.1. There are examples due to Kollár–van Geemen that show the
integral Hodge conjecture can fail for hypersurfaces in projective space; see
[Tre92] or [SV05, Theorem 2]. Indeed, suppose Z ⊂ P4 is a hypersurface of
degree d . Assume that for some integer p coprime to 6, p3 divides d . Then, for
a general Z , any curve C ⊂ Z has degree divisible by p. Observe that, in this
case, Pic(Z) ∼= Z by the Grothendieck–Lefschetz theorem. Setting X := P4

\ Z ,
we can compute CHi(X) in low degrees. Identify CH∗(P4) = Z[ξ ]/ξ 5. Then,
CH1(X) = Z/dZ generated by the image of ξ and CH2(X) = Z/dZ generated by
the class of ξ 2. Note that Sq2(ξ 2) = 2ξ Sq2ξ = 0 ∈ CH3(X)/2. Take a topological
complex vector bundle on X of rank two with Chern classes of the form (mξ,
aξ 2). If m is even, all such bundles are necessarily algebraizable. If m is odd, then
Sq2(aξ 2)+mξ ∪aξ 2

= amξ 3. If a is also odd, then am is odd and so amξ 3 could
restrict nontrivially to CH3(X)/2. However, the construction above only shows
that CH3(X) is a quotient of Z/nZ, where p|n. However, since p is odd, we do
not know whether ξ 3 restricts nontrivially to CH3(X)/2.

EXAMPLE 3.2.2. By [Tot13, Lemma 5.1], there is a smooth hypersurface
Z ⊂ P4 of degree 48 over Q̄ for which the integral Hodge conjecture fails. The
construction of this example is, however, rather involved. Set X = P4

\ Z . In
this case, Pic(X) ∼= Z/48Z and CH2(X) ∼= Z/48Z, generated by ξ and ξ 2 in the
notation of Example 3.2.1. Totaro shows that every curve C ⊂ X has even degree
over Q̄, that is, the pushforward map CH2(Z) → CH3(X) has image contained
in 2ξ 3. In particular, in this example CH3(X)/2 is necessarily nontrivial, and ξ 2

restricts nontrivially. As before, if we fix Chern classes (mξ, aξ 2) with both a and
m odd, then maξ 3 restricts nontrivially to CH3(X)/2 and we thus obtain more
nonalgebraizable bundles with algebraic Chern classes.
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Let us recall the following conjecture of Nori, as modified by Totaro.

CONJECTURE 3.2.3 (Nori,Totaro). If Y is a smooth projective variety, and
Z ⊂ Y is a very general, sufficiently ample hypersurface, then the restriction
map CHi(Y )→ CHi(Z) is an isomorphism for i < dim Z.

Combined with Theorem 2, Conjecture 3.2.3 suggests that nonalgebraizable
topological complex vector bundles of rank two should be rather common.

EXAMPLE 3.2.4. Under the hypotheses of Conjecture 3.2.3, set ξ = [Z ] ∈ Pic(Y )
and X := Y \ Z , which is necessarily affine. Observe then that if Z ⊂ Y has
dimension three, then Pic(X) = Pic(Y )/〈ξ〉, CH2(X) = CH2(Y )/〈ξ ∪ Pic(Y )〉,
while CH3(X) = CH3(Y )/〈ξ ∪ CH2(Y )〉. Thus, assuming Nori’s conjecture, if
Y = P4 then for d sufficiently large, and any sufficiently general hypersurface
of degree d , then Pic(X) ∼= Z/dZ, CH2(X) ∼= Z/dZ and CH3(X) ∼= Z/dZ
generated by the image of ξ, ξ 2, ξ 3. If d is even, then we expect only those
topological complex vector bundles of rank two whose Chern classes are of the
form (mξ, aξ 2) with a and m both odd to be nonalgebraizable.
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[For11] F. Forstnerič, Stein Manifolds and Holomorphic Mappings, Ergebnisse der Mathematik
und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 56
(Springer, Heidelberg, 2011).

[Ful98] W. Fulton, Intersection Theory, 2nd edn, Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 2 (Springer,
Berlin, 1998).

[Gil81] H. Gillet, ‘Riemann-Roch theorems for higher algebraic K -theory’, Adv. Math. 40(3)
(1981), 203–289.

[Gra58] H. Grauert, ‘Analytische Faserungen über holomorph-vollständigen Räumen’, Math.
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