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Abstract

Mixtures of increasing failure rate distributions can decrease, at least in some intervals
of time. Usually this property is observed asymptotically, as t → ∞, which is due to the
fact that a mixture failure rate is ‘bent down’, as the weakest populations are dying out
first. We consider a survival model that generalizes additive hazards models, proportional
hazards models, and accelerated life models very well known in reliability and survival
analysis. We obtain new explicit asymptotic relations for a general setting and study
specific cases. Under reasonable assumptions we prove that the asymptotic behavior
of the mixture failure rate depends only on the behavior of the mixing distribution in
the neighborhood of the left-hand endpoint of its support, and not on the whole mixing
distribution.
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1. Introduction

Mixtures of decreasing failure rate distributions are always decreasing failure rate (Barlow
and Proschan (1975, pp. 101–104)). However, mixtures of increasing failure rate distributions
can decrease, at least in some intervals of time, which means that the increasing failure rate
class of distributions is not closed under the operation of mixing (Lynch (1999)). As increasing
failure rate distributions usually model lifetimes governed by ageing processes, this implies that
the operation of mixing can change the pattern of ageing, e.g. from positive ageing (increasing
failure rate) to negative ageing (decreasing failure rate). These important facts should be taken
into account in applications.

It is hard to find homogeneous populations in real life, and mixtures of distributions usually
present an effective tool for modeling heterogeneity. A natural specific approach to this model-
ing exploits the notion of a nonnegative, random, unobserved parameter (frailty), Z, introduced
by Vaupel et al. (1979) in a demographic context. This in fact leads to the consideration of a
random failure rate, λ(t, Z). As the failure rate is a conditional characteristic, the ‘ordinary’
expectation with respect to Z, E[λ(t, Z)], does not define a mixture failure rate, λm(t), and
proper conditioning should be performed (Finkelstein (2004)).

Received 26 August 2005; revision received 7 January 2006.
∗ Postal address: Department of Mathematical Statistics, University of the Free State, PO Box 339, 9300 Bloemfontein,
Republic of South Africa. Email address: finkelm.sci@mail.uovs.ac.za
∗∗ Postal address: Faculty of Mathematics, Otto-von-Guericke-Universität Magdeburg, Postfach 4120, D-39016
Magdeburg, Germany. Email address: veronica.esaulova@gmail.com

244

https://doi.org/10.1239/aap/1143936149 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1143936149


Asymptotic behavior of mixture failure rates 245

A convincing ‘experiment’ showing the deceleration of the observed failure rate occurs in
nature. It is well known that human mortality follows the Gompertz lifetime distribution with
an exponentially increasing mortality rate. Assume that heterogeneity can be described by the
proportional gamma frailty model

λ(t, Z) = Zαeβt ,

where α and β are positive constants defining a baseline mortality rate. Owing to its computa-
tional simplicity, the gamma frailty model is largely the only one so far used in applications. It
can be shown (see, e.g. (25) below) that in this case the mixture failure rate, λm(t), is monotone
on [0,∞] and tends to a constant as t → ∞. It is monotone increasing, however, for the
actual parameter values of this model. This fact explains the recently observed deceleration
in mortality of the very oldest humans (the human mortality plateau; see Thatcher (1999)).
A similar result was experimentally obtained for a large cohort of medflies by Carey et al.
(1992). However, in engineering applications the operation of mixing can result in an even
more dramatic effect: the mixture failure rate increases on [0, tm), tm > 0, and decreases
asymptotically to 0 on [tm,∞). This was experimentally observed by Finkelstein (2005) for a
heterogeneous sample of miniature light bulbs. This fact is easily explained theoretically using
the gamma frailty model with a baseline failure rate increasing, in accordance with a Weibull
law, like a power function (Gupta and Gupta (1996), Finkelstein and Esaulova (2001a)).

In Block et al. (2003) it was proved that if the failure rate of each subpopulation converges to
a constant, and this convergence is uniform, then the mixture failure rate converges to the failure
rate of the strongest subpopulation: the weakest subpopulations die out first. (For convenience,
from now on we shall use the term ‘population’ instead of ‘subpopulation’, where appropriate.)
Those authors generalized a case with constant population failure rates considered by Clarotti
and Spizzichino (1990) and presented a further development of Block et al. (1993) (see also
Lynn and Singpurwalla (1997) and Gurland and Sethuraman (1995)). In Block and Joe (1997),
the following asymptotic result, which also addresses the issue of ultimate monotonicity, was
obtained. Let z0 be a realization of a frailty, Z, which corresponds to the strongest population.
If λ(t, z)/λ(t, z0) uniformly decreases as t → ∞, then λm(t)/λ(t, z0) also decreases. If, in
addition, limt→∞ λ(t, z0) exists, then the quotient decreases to 1.

The recent paper of Li (2005) generalized the results of Block et al. (2003) using similar
analytical tools and approaches. Instead of assuming that each individual failure rate has
a limit, the author assumed that there exists an asymptotic baseline function λ(t) such that
the ratio of each individual failure rate to the asymptotic baseline function λ(t, z)/λ(t) has
a limit. Li showed that, under certain conditions, the ratio of the mixture failure rate to the
asymptotic baseline function has a limit. As in Block et al. (2003), it was shown that this limit
is the corresponding essential infimum. The stringent condition of the uniform convergence
of λ(t, z)/λ(t) to some a(z) was again imposed. Therefore, Li (2005) combines the analytical
reasoning of Block et al. (2003) with the ‘ratio approach’ of Block and Joe (1997).

The models in the papers mentioned are in fact generalized proportional hazards models.
They are based on the asymptotic equivalence λ(t, z) ∼ λ(t)a(z), in the sense of the uniform
convergence of the ratio to 1, which is, as already mentioned, a rather strong assumption. Note
that the strongest population is not always identifiable.

Our approach is totally different. Our main focus is on explicit asymptotic formulae and
proving the results linking the asymptotic behavior of mixture failure rates with the behavior of
a mixing distribution in the neighborhood of the left-hand endpoint of its support. The goal of
the current paper is to try to find a balance between the generality of a model and the possibility
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of obtaining explicit asymptotic results for the mixture failure rate, λm(t). We suggest a class of
distribution that hopefully meets this requirement, and develop a new approach to this kind of
application that is related to the theory and methods of generalized convolutions, e.g. Laplace
and Fourier transforms, and especially Mellin convolutions (Bingham et al. (1987)). In proving
our asymptotic results we use a standard technique similar to that used in obtaining Abelian,
Tauberian, and Mercerian-type theorems, although our theorems are not direct corollaries of
results in this field. In line with this relationship it turns out that the asymptotic behavior
of mixture failure rates for the suggested class of lifetime distributions depends only on the
behavior of the mixing distribution in the neighborhood of infz{π(z) > 0}, and not on the
whole mixing probability density function (PDF) π(z).

After defining the survival model in Section 2, we formulate our main theorems in Section 3
and consider examples important for applications in Section 4. As the proofs are more technical
than we had hoped, they are deferred to Section 5. We conclude in Section 6.

2. The survival model

Let T ≥ 0 be a lifetime random variable with cumulative density function (CDF) F(t) (and
let F̄ (t) = 1 − F(t)). Assume that F(t) is indexed by a nonnegative random variable, Z, with
a PDF π(z) and support on [0,∞):

P(T ≤ t | Z = z) ≡ P(T ≤ t | z) = F(t, z).

Also assume that the PDF f (t, z) exists. The corresponding failure rate for every fixed z is thus
λ(t, z) = f (t, z)/F̄ (t, z). The support [a, b], a > 0, b < ∞, can also be considered. Thus,
the mixture CDF and PDF are respectively defined by

Fm(t) =
∫ ∞

0
F(t, z)π(z) dz, fm(t) =

∫ ∞

0
f (t, z)π(z) dz.

The mixture failure rate is

λm(t) = fm(t)

F̄m(t)
=

∫ ∞
0 f (t, z)π(z) dz∫ ∞
0 F̄ (t, z)π(z) dz

. (1)

As is usual, we denote the cumulative failure rate by

�(t, z) =
∫ t

0
λ(u, z) du.

We will define a class of lifetime distributions F(t, z) and study the asymptotic behavior of
the corresponding mixture failure rate, λm(t). It is more convenient now to give this definition
in terms of the cumulative failure rate, �(t, z), rather than in terms of the failure rate λ(t, z).
The basic model is given by a relation of the following form:

�(t, z) = A(zφ(t))+ ψ(t). (2)

2.1. General assumptions on the basic model

Natural properties of the cumulative failure rate of the absolutely continuous distribution
F(t, z), z ∈ [0,∞), imply that the functions A(s), φ(t), and ψ(t) are differentiable, that
the right-hand side of (2) is nondecreasing in t and tends to infinity as t → ∞, and that
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A(zφ(0)) + ψ(0) = 0. Therefore, these properties will be assumed throughout the paper,
although some of them will not be needed in the formal proofs.

An important additional simplifying assumption is that A(s), s ∈ [0,∞), and φ(t), t ∈
[0,∞), are increasing functions of their arguments, although some generalizations (e.g. for
ultimately increasing functions) can easily be made. Therefore, in this paper we will view
1 − e−A(zφ(t)), z 	= 0, as a lifetime CDF.

It should be noted that model (2) can also be easily generalized to the form �(t, z) =
A(g(z)φ(t))+ ψ(t)+ η(z) for some properly defined functions g(z) and η(z). However, we
cannot generalize further (at least at this stage), and the multiplicative form of the arguments in
A(g(z)φ(t)) is important for our method of deriving asymptotic relations. It is also clear that
the additive term ψ(t), although important in applications, gives only a slight generalization
in further analysis of λm(t), as (2) can be interpreted in terms of two components in series (or,
equivalently, via two competing risks). However, this term will be essential in Section 3, in
defining the strongest population.

The failure rate corresponding to the cumulative failure rate �(t, z) is

λ(t, z) = zφ′(t)A′(zφ(t))+ ψ(t). (3)

We are now able to explain why we start with the cumulative failure rate rather than with the
failure rate itself, as is often done in lifetime modeling. The reason is that we can easily suggest
intuitive interpretations for (2), whereas it is certainly not so simple to interpret the failure rate
structure of the form (3) without stating that it just follows from the structure of the cumulative
failure rate.

Relation (2) defines a rather broad class of survival models that can be used, e.g. for modeling
the impact of environment on characteristics of survival. The proportional hazards, additive
hazards, and accelerated life models, which are widely used in reliability, survival analysis and
risk analysis, are the obvious specific cases of (2) and (3).

(Multiplicative) proportional hazards model. Let A(u) ≡ u, φ(t) = �(t), and ψ(t) = 0.
Then

λ(t, z) = zλ(t), �(t, z) = z�(t). (4)

Accelerated life model. Let A(u) ≡ �(u), φ(t) = t , and ψ(t) = 0. Then

λ(t, z) = zλ(tz), �(t, z) =
∫ tz

0
λ(u) du = �(tz). (5)

Additive hazards model. Let A(u) ≡ u and φ(t) = t , and let ψ(t) be increasing, with
ψ(0) = 0. Then

λ(t, z) = z+ ψ ′(t), �(t, z) = zt + ψ(t). (6)

The functions λ(t) and ψ ′(t) play the role of baseline failure rates in equations (5) and (6),
respectively. Note that, in all these models, the functions φ(t) and A(s) are monotone increas-
ing.

The asymptotic behavior of mixture failure rates in the proportional hazards and addi-
tional hazards models was studied for some specific mixing distributions in, e.g. Gurland and
Sethuraman (1995) and Finkelstein and Esaulova (2001a) . However, as far as the authors know,
the mixture failure rate for the accelerated life model has been considered at a descriptive level
only, in Anderson and Louis (1995).
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3. General results

Our first theorem provides an asymptotic formula for the mixture failure rate, λm(t), under
rather mild assumptions.

Theorem 1. Let the cumulative failure rate, �(t, z), be given by model (2) and let the mixing
PDF π(z) be defined as

π(z) = zαπ1(z), (7)

where α > −1 and π1(z), π1(0) 	= 0, is a function bounded on [0,∞) and continuous at
z = 0.

Also assume that
φ(t) → ∞ as t → ∞ (8)

and ∫ ∞

0
e−A(s)sα ds < ∞, (9)

where A(s) is also ultimately increasing. Then

λm(t)− ψ ′(t) ∼ (α + 1)
φ′(t)
φ(t)

. (10)

In (10), by ‘∼’ we as usual mean asymptotic equivalence, writing a(t) ∼ b(t) as t → ∞ if
limt→∞ a(t)/b(t) = 1.

It is easy to see that assumption (7) holds for the main lifetime distributions, such as Weibull,
gamma, lognormal, etc. Assumption (8) states a natural condition on the function φ(t), which
can often be viewed as a scale transformation. Condition (9) ensures that the CDF, 1 − e−A(s),
not be ‘too heavy tailed’ (as, e.g. is the Pareto distribution 1 − s−β , for s ≥ 1 and β − α > 1),
and in our assumptions is equivalent to the condition of existence of the moment of order α+ 1
for this CDF. The examples in the next section will clearly show that these conditions are not
at all stringent and can be easily met in most practical situations.

A crucial feature of this result is that the asymptotic behavior of the mixture failure rate
(omitting an obvious additive term, ψ(t)) depends only on the behavior of the mixing distri-
bution in the neighborhood of 0 and the derivative of the logarithm of the scale function φ(t),
given by (logφ(t))′ = φ′(t)/φ(t). When π(0) 	= 0 and π(z) is bounded on [0,∞), the result
does not depend on the mixing distribution at all, as α = 0.

Theorem 1 (as well as Theorems 2 and 4 below) can be formally generalized to the case in
which the mixing random variable, Z, does not necessarily possess an absolutely continuous
CDF on [0,∞); it is sufficient that it should be absolutely continuous (from the right) at z = 0.

We can formulate a more general result, which states a similar dependence on the behavior
of the mixing distribution at 0 in terms of the asymptotic comparison of two mixture failure
rates: if, under some assumptions, the two mixing distributions are equivalent at z = 0, then
the mixture failure rates are equivalent as t → ∞.

Formally, we state this as follows.

Theorem 2. Let f (t, z) and π(z) respectively be the lifetime and mixing PDFs in the general
mixing model (2). Assume that there exists a positive function, α(t), that is ultimately decreasing
to 0 as t → ∞ and satisfies ∫ α(t)

0 f (t, z)π(z) dz∫ ∞
0 f (t, z)π(z) dz

→ 1. (11)

https://doi.org/10.1239/aap/1143936149 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1143936149


Asymptotic behavior of mixture failure rates 249

Denote another mixing PDF by ρ(z) and assume that ρ(z)/π(z) is bounded on [0,∞),
continuous at 0, and satisfies limz→0 ρ(z)/π(z) 	= 0. Then

λπm(t) :=
∫ ∞

0 f (t, z)π(z) dz∫ ∞
0 F̄ (t, z)π(z) dz

∼
∫ ∞

0 f (t, z)ρ(z) dz∫ ∞
0 F̄ (t, z)ρ(z) dz

=: λρm(t) (12)

as t → ∞.

It is worth noting that ifψ ≡ 0 and all other conditions of Theorem 1 hold, then (8) guarantees
assumption (11) to hold.

It is important that when applying Theorem 2 we do not need a specific form of survival
model. As will be seen from the theorem’s proof, π(z) and ρ(z) also need not necessarily be
probability density functions (local integrability is in fact sufficient). The following corollary
exploits the latter fact in the case with π(z) ≡ 1.

Corollary 1. Let f (x, t) be a lifetime PDF in the general mixing model (2). Assume that there
exists a positive function, α(t), that is ultimately decreasing to 0 as t → ∞ and satisfies

∫ α(t)
0 f (t, z) dz∫ ∞
0 f (t, z) dz

→ 1.

Let ρ(z) be a positive function bounded on [0,∞), continuous at 0, and satisfying ρ(0) 	= 0.
Then ∫ ∞

0 f (t, z)ρ(z) dz∫ ∞
0 F̄ (t, z)ρ(z) dz

∼
∫ ∞

0 f (t, z) dz∫ ∞
0 F̄ (t, z) dz

as t → ∞.

Theorems 1 and 2 treat the case in which the support of the mixing distribution includes 0,
i.e. z ∈ [0,∞). If the support excludes 0, the situation changes significantly and we observe
the well-known principle that the mixture failure rate tends to the failure rate of the strongest
population (Block and Joe (1997), Block et al. (2003), Finkelstein and Esaulova (2001a)).

Theorem 3. Let the class of lifetime distributions be defined by (2), where φ(t) → ∞ and
A(s) is twice differentiable. Assume that, as s → ∞,

A′′(s)
A′(s)2

→ 0 (13)

and
sA′(s) → ∞. (14)

Also assume that, for all b and c, b, c > 0, b < c, the quotient A′(bs)/A′(cs) is bounded as
s → ∞. Let the mixing PDF π(z) be defined on [a,∞), a > 0, be bounded on this interval,
be continuous at z = a, and satisfy π(a) 	= 0. Then

λm(t)− ψ ′(t) ∼ aφ′(t)A′(aφ(t)). (15)

It is clear that conditions (13) and (14) trivially hold for the specific multiplicative and
additive models of the previous section. We will discuss them within the framework of the
accelerated life model later. More generally, these conditions hold if A(s) belongs to a class of
functions of smooth variation (Bingham et al. (1987, p. 44)).
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Assume additionally that the family of failure rates (3) is ordered in z, at least ultimately:

λ(t, z1) < λ(t, z2), for all z1, z2 ∈ [z0,∞) with z1 < z2 and z0 ≥ 0, and t ≥ 0.

Then, as we mentioned, Theorem 3 can be interpreted via the principle that the mixture failure
rate converges to the failure rate of the strongest population. (Note that in this case the right-
hand side of (15) can also be interpreted as the failure rate of the strongest population for
a survival model defined by a random variable with the CDF 1 − e−A(zφ(t)).) An interesting
question arises: is this principle a ‘universal law’or a consequence of the sufficient assumptions
of Theorem 3? Theorem 1 gives us an idea of how to create counterexamples.

Example 1. Assume that all the conditions of Theorem 1 hold and, additionally, that A′(s) is
increasing on [0,∞). Then an ordering of failure rates with respect to z in family (3) holds
(for each fixed t > 0), resulting formally in the strongest population being defined as having
λ(t, 0) = φ′(t). Note, however, that 1 − e−A(zφ(t)), z = 0, cannot be viewed as a CDF.
Therefore, the principle in question implies that λm(t) ∼ ψ ′(t). Yet it follows from (10) that

λm(t) ∼ ψ ′(t)+ (α + 1)(logφ(t))′,

and if the second term on the right-hand side of this relation increases faster thanψ ′(t) as t → ∞,
then this term defines the asymptotic behavior of λm(t). It is clear that this is possible for rapidly
increasing functions such as, e.g. exp{tn}, n ≥ 1. Thus, if then ψ ′(t) = o((logφ(t))′), we
have

λm(t) ∼ (α + 1)(logφ(t))′,
whereas the principle holds only when (logφ(t))′ = o(ψ ′(t)).

4. Specific models

4.1. (Multiplicative) proportional hazards model

In conventional notation the baseline failure rate is usually denoted as λ0(t) (or λb(t)).
Therefore, model (4) reads

λ(t, z) = zλ0(t), �0(t) =
∫ t

0
λ0(u) du, (16)

and the mixture failure rate is given by

λm(t) =
∫ ∞

0 zλ0(t)e−z�0(t)π(z) dz∫ ∞
0 e−z�0(t)π(z) dz

. (17)

As A(u) ≡ u, φ(t) = �0(t), and ψ(t) ≡ 0 in this specific case, Theorems 1 and 3 simplify to
the following corollaries.

Corollary 2. Assume that the mixing PDF π(z), z ∈ [0,∞), can be written as

π(z) = zαπ1(z), (18)

where α > −1 and π1(z) is bounded on [0,∞), continuous at z = 0, and satisfies π1(0) 	= 0.
Then the mixture failure rate for the multiplicative model (16) has the following asymptotic
behavior:

λm(t) ∼ (α + 1)λ0(t)∫ t
0 λ0(u) du

. (19)
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Corollary 3. Assume that the mixing PDF π(z), z ∈ [a,∞) (we can define π(z) = 0 for
z ∈ [0, a)), is bounded, right semicontinuous at z = a, and satisfies π(a) 	= 0. Then, in
accordance with (15), the mixture failure rate for the model (16) has the following asymptotic
behavior:

λm(t) ∼ aλ0(t).

Corollary 2 states a remarkable fact: the asymptotic behavior of the mixture failure rate,
λm(t), depends only on the behavior of the mixing PDF in the neighborhood of z = 0 and
the baseline failure rate λ0(t). Corollary 3 describes the convergence of a mixture failure rate
to the mixture failure rate of the strongest population. In this simple multiplicative case, the
family of the failure rates is trivially ordered in z and the strongest population has the failure
rate aλ0(t).

The next theorem generalizes the result of Corollary 3.

Theorem 4. Assume that the mixing PDF π(z) in model (16) has support on [a, b], a < 0,
b ≤ ∞, and, for z ≥ a, can be defined as

π(z) = (z− a)απ1(z− a), (20)

where α > −1 and π1(z) is bounded on [0, b − a], with π1(0) 	= 0. Then

λm(t) ∼ aλ0(t). (21)

It is quite remarkable that the asymptotic result in this theorem does not depend on a mixing
distribution even when there is a singularity at z = a. This differs from the case with a = 0,
in Corollary 2. Relation (21) also describes the convergence to the failure rate of the strongest
population, which differs dramatically from the convergence described by (19). The explanation
of this difference is quite obvious: owing to the multiplicative nature of the model, the behavior
of zλ0(t) in the neighborhood of z = 0 (for the PDF (18)) is different from the behavior of this
product in the neighborhood of z = a (for the PDF (20)).

The mixture failure rate given by (16) can be obtained explicitly when the Laplace transform
of the mixing PDF, π̃(z), is easily computed, as in Example 2 below. As the cumulative failure
rate is monotone increasing in t , the mixture survival function is written in terms of the Laplace
transform as ∫ ∞

0
e−z�0(t)π(z) dz = π̃(�0(t)).

Therefore, (17) becomes

λm(t) = − (π̃(�0(t)))
′

π̃(�0(t))
= −(log π̃(�0(t)))

′

and the corresponding inverse problem, namely to obtain the baseline failure rate, given the
mixture failure rate and the mixing distribution, can also be solved (Finkelstein and Esaulova
(2001b)).

Example 2. Let the mixing distribution be the gamma distribution with PDF

π(z) =
(
z

b

)c−1

e−z/b 1

b
(c)
, (22)
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where b, c > 0. The Laplace transform of π(z) is π̃(t) = (tb+1)−c and, therefore, the mixture
failure rate is given by

λm(t) = bcλ0(t)

1 + b
∫ t

0 λ0(u) du
. (23)

The expected value of a random variable Z with PDF (22) is bc, and the variance is b2c. Thus,
for the fixed expectation E[Z] = 1, the variance is σ 2 = b and (23) becomes

λm(t) = λ0(t)

1 + σ 2
∫ t

0 λ0(u) du
,

which first appeared in Vaupel et al. (1979) in the context of demographics. This form allows
us to compare different mixtures for a fixed baseline distribution. We can see that, when the
variance of the mixing distribution increases, the mixture failure rate decreases.

Obviously, the asymptotic behavior of λm(t) can be explicitly analyzed. We consider two
specific cases. First, if the baseline distribution is Weibull with λ0 = λtβ , then the mixture
failure rate (23) is (see Gupta and Gupta (1996))

λm(t) = (β + 1)λbctβ

β + 1 + λbtβ+1 , (24)

which converges to 0 as t → ∞ and satisfies λm(t) ∼ (β + 1)ct−1, exactly as prescribed
by (19) (here c = α + 1). Second, if the baseline distribution is Gompertz with λ0(t) = µeβt ,
then simple transformations result in

λm(t) = βceβt

eβt + β/µb − 1
. (25)

If b = β/µ then λm(t) ≡ βc, if b > β/µ then λm(t) increases to β/µ, and if b < β/µ then
λm(t) decreases to β/µ.

Let us return to a discussion of the convergence of the mixture failure rate to the failure rate
of the strongest population in Example 1. It is reasonable to compare the asymptotic behaviors
in (24) and (25) for the same mixing distribution (22). For the Weibull CDF, the mixture failure
rate converges to 0. This means that within the framework of the multiplicative model (16),
where the family of failure rates is ordered in z, we still can speak in terms of convergence
to the failure rate of the strongest population, defining the case with z = 0 as having some
‘generalized’ (or formal) strongest failure rate, λ(t, 0) = 0. As was mentioned, 1 − e−A(zφ(t))
cannot be viewed as a CDF in this case, and this formally violates the general assumptions
we made in Section 2. However, the failure rate for a Gompertz CDF does not converge to
0; rather, it converges to a constant, thus violating the principle of convergence to the failure
rate of the strongest population, even formulated in a ‘generalized’ way. The reason – which
accords with our discussion in Example 1 – is the rapid increase of the function φ(t), which is
proportional to eβt in the case of a Gompertz CDF.

4.2. Accelerated life model

In conventional notation this model is written as

λ(t, z) = zλ0(tz), �(t, z) = �0(tz) =
∫ tz

0
λ0(u) du. (26)
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Although the definition of the accelerated life model is also very simple, the presence of a mixing
parameter, z, in the arguments makes analysis of the mixture failure rate more complex than in
the multiplicative case. Therefore, as was mentioned, this model has not been quantitatively
studied before. The mixture failure rate in this specific case is

λm(t) =
∫ ∞

0 zλ0(tz)e−�0(tz)π(z) dz∫ ∞
0 e−�0(tz)π(z) dz

.

The asymptotic behavior of λm(t) can be described as a specific case of Theorem 1 with
A(s) = �0(s), φ(t) = t , and ψ(t) ≡ 0.

Corollary 4. Assume that the mixing PDF π(z), z ∈ [0,∞), can be defined as π(z) =
zαπ1(z), whereα > 1 andπ1(z) is continuous at z = 0 and bounded on [0,∞), withπ1(0) 	= 0.
Let the baseline distribution with the cumulative failure rate �0(t) have a moment of order
α + 1. Then

λm(t) ∼ α + 1

t
(27)

as t → ∞.

The conditions of Corollary 4 are not very strong and are relatively natural. Most of the
widely used lifetime distributions have moments to all orders. The Pareto distribution will
be discussed in the next example. As was stated, the conditions on the mixing distribution
hold for, e.g. the Gamma and the Weibull distributions, which are commonly used as mixing
distributions.

Note that (27) is a surprising result, at least at first sight, as it does not depend on the baseline
distribution. It is also dramatically different from the multiplicative case (19). It follows from
Example 2 that the asymptotic results coincide in the case of the Weibull baseline distribution;
this should be obvious, as only for the Weibull distribution can the accelerated life model be
reparameterized to obtain a proportional hazards model, and vice versa.

The following example shows other possibilities for the asymptotic behavior of λm(t) when
one of the conditions of Corollary 4 does not hold.

Example 3. Consider the gamma mixing distribution π(z) = zαe−x/
(α + 1). Let the
baseline distribution be the Pareto distribution with density f0(t) = β/tβ+1, t ≥ 1, β > 0.

For β > α+1 both the conditions of Corollary 2 and (27) hold. Let β ≤ α+1, which means
that the baseline distribution does not have an (α + 1)th moment. Then one of the conditions
of Corollary 4 is violated. In this case, it can be shown by direct derivation (see Section 5) that
λm(t) ∼ β/t as t → ∞, whereas, for the general case,

λm(t) ∼ min(β, α + 1)

t
.

It can be shown that the same asymptotic relation holds not only for the gamma distribution,
but also for any other mixing distribution of the form π(z) = zαπ1(z). If β > α + 1 then the
function π1(z) should be bounded, with π1(0) 	= 0.

As A(s) = �0(s) and φ(t) = t , Theorem 3 simplifies as follows.

Corollary 5. Assume that the mixing PDF π(z), z ∈ [a,∞), is bounded, continuous at z = a,
and satisfies π(a) 	= 0. Let

λ′
0(t)

λ0(t)2
→ 0, tλ0(t) → ∞, (28)
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as t → ∞. Also assume that, for all b and c, b, c > 0, b < c, the quotient λ0(bx)/λ0(cx) is
bounded as x → ∞. Then, in accordance with (15), the mixture failure rate for the model (26)
has the following asymptotic behavior:

λm(t)− ψ ′(t) ∼ aλ0(at).

Conditions (28) are rather weak. For example, in the marginal case of the Pareto distribution
(with baseline failure rate of the form λ0(t) = ct−1, c > 0, t ≥ 1) (28) is not satisfied, but in
mixing we are primarily interested in baseline failure rates that increase, at least ultimately.

Owing to its simplicity, the asymptotic behavior of λm(t) in the additive hazards model (6)
does not deserve special attention. As A(s) ≡ s and φ(t) ≡ t , conditions (8) and (9) of
Theorem 1, for instance, hold and the asymptotic result (10) simplifies to

λm(t)− ψ ′(t) ∼ α + 1

t
.

5. Proofs

5.1. Proof of Theorem 1

We first need a simple lemma about Dirac sequences of functions.

Lemma 1. Let g(z) and h(z) be nonnegative, locally integrable functions on [0,∞) such that

∫ ∞

0
g(z) dz < ∞

and h(z) is bounded and continuous at z = 0. Then, as t → ∞,

t

∫ ∞

0
g(tz)h(z) dz → h(0)

∫ ∞

0
g(z) dz. (29)

Proof. By substituting u for tz, we have

t

∫ ∞

0
g(tz)h(z) dz =

∫ ∞

0
g(u)h(u/t) du.

The function h(u) is bounded and h(u/t) → 0 as t → ∞; thus, (29) holds by the dominated
convergence theorem.

The proof of Theorem 1 is straightforward, using Definition (1) and Lemma 1.
The survival function for the model (2) is

F̄ (t, z) = e−A(zφ(t))−ψ(t).

By taking into account the fact that φ(t) → ∞ as t → ∞, and applying Lemma 1 to the
function g(u) = e−A(u)uα , we obtain

∫ ∞

0
F̄ (t, z)π(z) dz =

∫ ∞

0
e−A(zφ(t))−ψ(t)zαπ1(z) dz

∼ e−ψ(t)π1(0)

φ(t)α+1

∫ ∞

0
e−A(s)sα ds, (30)
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where the integral is finite due to condition (9). The corresponding PDF is

f (t, z) = (A′(zφ(t))zφ′(t)+ ψ ′(t))e−A(zφ(t))−ψ(t)

= A′(zφ(t))zφ′(t)e−A(zφ(t))−ψ(t) + ψ ′(t)F̄ (t, z).

Similarly, by applying Lemma 1, we find that
∫ ∞

0
f (t, z)π(z) dz− ψ ′(t)

∫ ∞

0
F̄ (t, z)π(z) dz

= φ′(t)e−ψ(t)
∫ ∞

0
A′(zφ(t))e−A(zφ(t))zα+1π1(z) dz

∼ φ′(t)e−ψ(t)π1(0)

φ(t)α+2

∫ ∞

0
A′(s)e−A(s)sα+1 ds. (31)

From condition (9) and the fact that A(s) is ultimately increasing, we have

e−A(s)sα+1 → 0 as s → ∞. (32)

Indeed, by the mean value theorem we have

∫ 2s

s

e−A(u)uα du = se−A(s1)sα1 ,

for some s1, s ≤ s1 ≤ 2s. The right-hand side of this equation tends to 0 as s tends to ∞.
For s larger than some s0 we have A(s1) > A(s); thus, the left-hand side is smaller than
2αsα+1e−A(s), from which we recover (32). Using it while integrating by parts yields

∫ ∞

0
A′(s)e−A(s)sα+1 ds = (α + 1)

∫ ∞

0
e−A(s)sα ds. (33)

Then, combining (30)–(33) finally gives
∫ ∞

0 f (t, z)π(z) dz∫ ∞
0 F̄ (t, z)π(z) dz

− ψ ′(t) ∼ (α + 1)
φ′(t)
φ(t)

.

5.2. Proof of Theorem 2

Lemma 2. Let {g(t, z), z ∈ [0,∞)} be a family of functions and h(z) a single function
satisfying the following conditions.

(i) For every z ∈ [0,∞) the function g(t, z) is integrable in t , and for every t ∈ [0,∞) it is
integrable in z.

(ii) There exists a function α(t) such that α(t) → 0 as t → ∞ and

∫ α(t)
0 g(t, z) dz∫ ∞
0 g(t, z) dz

→ 1 (34)

as t → ∞.

(iii) The function h(x) is locally integrable, bounded on [0,∞), and continuous at z = 0.
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Then, as t → ∞, ∫ ∞
0 g(t, z)h(z) dz∫ ∞

0 g(t, z) dz
→ h(0).

Proof. Let h(z) ≤ M, z ∈ [0,∞), where M is a positive constant. Then
∫ ∞

0 g(t, z)h(z) dz∫ ∞
0 g(t, z) dz

=
∫ α(t)

0 g(t, z)h(z) dz∫ ∞
0 g(t, z) dz

+
∫ ∞
α(t)

g(t, z)h(z) dz∫ ∞
0 g(t, z) dz

.

The second term is majorized by

M

∫ ∞
α(t)

g(t, z) dz∫ ∞
0 g(t, z) dz

,

by condition (34). The first term converges to h(0), due to the same condition and the fact that
h(z) is continuous at z = 0.

To prove Theorem 2 we first show, in a direct way, that for F̄ (t, z) there holds a condition
similar to (11). For every ε > 0, we choose a tε such that, for u > tε, the function α(u)
decreases and ∫ α(u)

0
f (u, z)π(z) dz > (1 − ε)

∫ ∞

0
f (u, z)π(z) dz.

Since α(t) decreases, we have∫ α(t)

0
f (u, z)π(z) dz >

∫ α(u)

0
f (u, z)π(z) dz

for u > t > tε. Thus,∫ α(t)

0
F̄ (t, z)π(z) dz =

∫ α(t)

0

∫ ∞

t

f (u, z) duπ(z) dz

=
∫ ∞

t

∫ α(t)

0
f (u, z)π(z) dz du

>

∫ ∞

t

∫ α(u)

0
f (u, z)π(z) dz du

> (1 − ε)

∫ ∞

t

∫ ∞

0
f (u, z)π(z) dz du

= (1 − ε)

∫ ∞

0
F̄ (t, z)π(z) dz.

Now we apply Lemma 2 with h(z) = π1(z)/π(z) and g(t, z) = f (t, z)π(z), which yields∫ ∞
0 f (t, z)ρ(z) dz∫ ∞
0 f (t, z)ρ(z) dz

→ h(0).

Similarly, with g(t, z) = F̄ (t, z)π(z) and the same h(z), we have∫ ∞
0 F̄ (t, z)ρ(z) dz∫ ∞
0 F̄ (t, z)ρ(z) dz

→ h(0)

as t → ∞, and (12) follows immediately.

https://doi.org/10.1239/aap/1143936149 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1143936149


Asymptotic behavior of mixture failure rates 257

5.3. Proof of Theorem 3

This theorem is rather technical and we must first prove three supplementary lemmas that
present consecutive steps on the way to deriving the asymptotic relation (15).

Lemma 3. Let h(x) be a twice-differentiable function with an ultimately positive derivative,
such that ∫ ∞

0
e−h(y) dy < ∞. (35)

Also let h′′(x)/h′(x)2 → 0 as x → ∞. Then
∫ ∞

x

e−h(y) dy ∼ e−h(x) 1

h′(x)
as x → ∞.

Proof. Let x0 be such that h′(x) > 0 for x > x0. By (35), h(x) → ∞ as x → ∞. Thus,
there exists an inverse function, g(x), defined on [x0,∞): g(h(x)) := h(g(x)) ≡ x. The
function g(x) is also twice differentiable, and satisfies g′(x) = 1/h′(g(x)). Integrating by
parts for x > x0 yields

∫ ∞

x

e−h(y) dy =
∫ ∞

h(x)

e−ug′(u) du

= e−h(x)g′(h(x))+
∫ ∞

h(x)

e−ug′′(u) du. (36)

Since
g′′(u)
g′(u)

= − h′′(g(u))
h′(g(u))2

→ 0

as u → ∞, the integral on the right-hand side of (36) vanishes in comparison with the one on
the left-hand side. Therefore, after some simple algebra,

∫ ∞

x

e−h(y) dy ∼ e−h(x)g′(h(x)) = e−h(x) 1

h′(x)
.

Lemma 4. Let the assumptions of Lemma 3 hold. Assume additionally that, as x → ∞,

xh′(x) → ∞, (37)

and that, for any b and c, b, c ≥ a, b < c, the quotient h′(bx)/h′(cx) is bounded on [0,∞).
Now let µ(u) be a positive, bounded, locally integrable function defined on [a,∞), continuous
at u = a, and satisfying µ(a) 	= 0. Then

∫ ∞

a

e−h(ux)µ(u) du ∼ µ(a)e−h(ax)

xh′(ax)
as x → ∞.

Proof. As the first step we prove that

I (x) :=
∫ ∞

a

e−h(ux)µ(u) du ∼ µ(a)

∫ ∞

a

e−h(ux) du.
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As µ(u) is continuous at u = a, for ε > 0 there exists a δ such that |µ(u) − µ(a)| < ε if
|u − a| < δ. The function µ(u) is bounded; therefore, µ(u) < M for all u ∈ [a,∞) and for
some positive M > µ(a). Thus, writing

I (x) =
∫ a+δ

a

e−h(ux)µ(u) du+
∫ ∞

a+δ
e−h(ux)µ(u) du,

we have
∣∣∣∣I (x)− µ(a)

∫ ∞

a

e−h(ux) du

∣∣∣∣ < ε

∫ a+δ

a

e−h(ux) du+ (M − µ(a))

∫ ∞

a+δ
e−h(ux) du

= ε

∫ ∞

a

e−h(ux) du+ (M − µ(a)− ε)

∫ ∞

a+δ
e−h(ux) du,

whence
∣∣∣∣ I (x)

µ(a)
∫ ∞
a

e−h(ux) du
− 1

∣∣∣∣ < ε

µ(a)
+ M − µ(a)− ε

µ(a)

∫ ∞
a+δ e−h(ux) du∫ ∞
a

e−h(ux) du
. (38)

Lemma 3 yields
∫ ∞
a+δ e−h(ux) du∫ ∞
a

e−h(ux) du
=

∫ ∞
ax+δx e−h(u) du∫ ∞
ax

e−h(u) du
∼ h′(ax)
h′(ax + δx)

e−(h(ax+δx)−h(ax)).

It follows from condition (37) and the mean value theorem that

h(ax + δx)− h(ax) = δxh′(s) > sh′(s) δ

a + δ
(39)

for some s, ax < s < ax + δx. Thus, h(ax + δx) − h(ax) → ∞ as x → ∞, the quotient
h′(ax)/h′(ax + δx) is bounded, and, therefore, the second summand on the right-hand side
of (38) tends to 0, whereas the first summand can be made arbitrarily small. This yields

I (x) ∼ µ(a)

∫ ∞

a

e−h(ux) du

as x → ∞. Applying Lemma 3 completes the proof.

Lemma 5. Under the assumptions of Lemma 4, the following asymptotic relation holds as
x → ∞: ∫ ∞

a

h′(ux)e−h(ux)uµ(u) du ∼ aµ(a)

x
e−h(ax).

Proof. We first show that
∫ ∞

a

h′(ux)e−h(ux)u du ∼ a

x
e−h(ax). (40)

Simple calculations give

x2
∫ ∞

a

h′(ux)e−h(ux)u du =
∫ ∞

ax

h′(u)e−h(u)u du = axe−h(ax) +
∫ ∞

ax

e−h(u) du.
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By Lemma 4, we have ∫ ∞

ax

e−h(u) du ∼ e−h(ax) 1

h′(ax)
.

We have assumed that axh′(ax) → ∞ as x → ∞; thus, 1/h′(ax) = o(ax) and

x2
∫ ∞

0
h′(ux)e−h(ux)u du ∼ axe−h(ax),

which is the same as (40).
The next step is to prove that

∫ ∞

a

h′(ux)e−h(ux)uµ(u) du ∼ µ(a)

∫ ∞

a

h′(ux)e−h(ux)u du. (41)

We use the same ε, δ, and M as in Lemma 4, and similar reasoning, to obtain

∣∣∣∣
∫ ∞
a
h′(ux)e−h(ux)uµ(u) du

µ(a)
∫ ∞
a
h′(ux)e−h(ux)u du

− 1

∣∣∣∣ < ε

µ(a)
+ M̃

µ(a)

∫ ∞
a+δ h

′(ux)e−h(ux)u du∫ ∞
a
h′(ux)e−h(ux)u du

,

where M̃ = M − µ(a)− ε. By applying (40) and using (39) we obtain

∫ ∞
a+δ h

′(ux)e−h(ux)u du∫ ∞
a
h′(ux)e−h(ux)u du

∼ a + δ

a
e−(h(ax+δx)−h(ax)) → 0

as x → ∞. Again ε/µ(a) can be made arbitrarily small, which gives (41). Combining it
with (40) completes the proof.

Now we are ready to prove Theorem 3 itself. Applying Lemma 4 as t → ∞ results in

∫ ∞

a

F̄ (t, z)π(z) dz =
∫ ∞

a

e−A(zφ(t))−ψ(t)π(z) dz

= e−ψ(t)
∫ ∞

a

e−A(zφ(t))π(z) dz

∼ π(a)e−ψ(t)

φ(t)A′(aφ(t))
e−A(aφ(t)).

In analogy to the corresponding step in the proof of Theorem 1, we have

∫ ∞

a

f (t, z)π(z) dz− ψ ′(t)
∫ ∞

a

F̄ (t, z)π(z) dz

= φ′(t)e−ψ(t)
∫ ∞

a

A′(zφ(t))e−A(zφ(t))zπ(z) dz.

Using Lemma 5 yields

∫ ∞

a

A′(zφ(t))e−A(zφ(t))zπ(z) dz ∼ aπ(a)

φ(t)
e−A(aφ(t)).
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By combining the last three statements we arrive at (15):

λm(t)− ψ ′(t) =
∫ ∞
a
f (t, z)π(z) dz∫ ∞

a
F̄ (t, z)π(z) dz

− ψ ′(t)

∼ φ′(t)e−ψ(t)aπ(a)e−A(aφ(t))

φ(t)

A′(aφ(t))φ(t)
π(a)e−ψ(t)e−A(aφ(t))

= aφ′(t)A′(aφ(t)).

5.4. Proof of Theorem 4

As in Theorem 1, we consider the numerator and the denominator in (17) separately. By
changing variables and applying Lemma 1, we obtain∫ ∞

0
F̄ (tz)π(z) dz =

∫ ∞

a

e−z�0(t)(z− a)απ1(z− a) dz

= e−a�0(t)

∫ ∞

0
e−z�0(t)zαπ1(z) dz

∼ e−a�0(t)π1(0)
(α + 1)

�0(t)α+1 . (42)

Similarly, ∫ ∞

0
zf (tz)π(z) dz = λ0(t)

∫ ∞

a

ze−z�0(t)(z− a)απ1(z− a) dz

= λ0(t)e
−a�0(t)

∫ ∞

0
e−z�0(t)zα+1π1(z) dz

+ aλ0(t)e
−a�0(t)

∫ ∞

0
e−z�0(t)zαπ1(z) dz.

As t → ∞, the first integral on the right-hand side is equivalent to π1(0)
(α + 2)�0(t)
−α−2

and the second to π1(0)
(α+ 1)�0(t)
−α−1, which decreases more slowly than the first. Thus,

∫ ∞

0
zf (tz)π(z) dz ∼ aπ1(0)
(α + 1)λ0(t)

e−a�0(t)

�0(t)α+1 . (43)

Finally, by using (42) and (43) in (17), we arrive at (21).

5.5. Proof of Example 3

By direct calculation, we obtain∫ ∞

0
f0(tz)zπ(z) dz =

∫ ∞

1/t

βz

tβ+1zβ+1

1


(α + 1)
e−zzα dz

= β


(α + 1)tβ+1

∫ ∞

1/t
zα−βe−z dz

∼ 
(α − β + 1)β


(α + 1)tβ+1

and ∫ ∞

0
F̄0(tz)π(z) dz =

∫ 1/t

0

e−zzα


(α + 1)
dz+

∫ ∞

1/t

1

tβzβ

e−zzα


(α + 1)
dz.
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As t → ∞ the first integral on the right-hand side is equivalent to

1


(α + 1)

∫ 1/t

0
zα dz = 1

tα+1
(α + 2)

and the second is equivalent to
(α−β+1)/
(α+1)tβ , which forβ ≤ α decreases more slowly
than the first; therefore, the sum of the two integrals is equivalent to 
(α−β+1)/
(α+1)tβ .
After some simple algebra, we obtain

λm(t) ∼ 
(α − β + 1)β


(α + 1)tβ+1


(α + 1)tβ


(α − β + 1)
= β

t
.

If β = α + 1 then∫ ∞

0
zf0(tz)π(z) dz = α + 1


(α + 1)tα+2

∫ ∞

1/t
z−1e−z dz,

and, since ∫ 1/t

0
zα dz = o

(
t−α−1

∫ ∞

1/t
z−1e−z dz

)
,

we obtain∫ ∞

0
F̄0(tz)π(z) dz ∼

∫ ∞

1/t

1

tα+1z

e−z


(α + 1)
dz = 1

tα+1
(α + 1)

∫ ∞

1/t
z−1e−z dz.

Therefore,

λm(t) ∼ α + 1

t
= β

t
.

6. Concluding remarks

Typically two types of result on mixture failure rate modeling have been considered in the
literature: on the one hand the general asymptotic results of Clarotti and Spizzichino (1990),
Block and Joe (1997), and Block et al. (1993), obtained under rather stringent conditions;
and on the other hand specific proportional or additive hazards-type models of Gurland and
Sethuraman (1995), Lynn and Singpurwalla (1997), and Finkelstein and Esaulova (2001a),
to name a few, wherein some more detailed convergence properties have been described. It is
worth noting, however, that the asymptotic behavior of the mixture failure rate in the accelerated
life model has not been studied before, as the approaches used for proportional hazards and
additive hazards models do not work in that case.

The survival model (2) of this paper generalizes all three conventional models and raises
the possibility of deriving explicit asymptotic results. For example, Theorem 1 defines the
asymptotic mixture failure rate in the case in which the mixing variable is defined on [0,∞),
whereas Theorem 3 does so for [a,∞), a > 0.

Some of the results obtained can be generalized to a wider class of lifetime distribution
than (2), but it seems as if the considered class is, in a way, ‘optimal’ in terms of the trade-off
between the complexity of the model and the tractability (or applicability) of the results.
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