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Abstract
In our previous studies, veratric acid (VA) shows beneficial effect on hypertension and its associated dyslipidaemia. In continuation, this study
was designed to investigate the effect of VA, one of the major benzoic acid derivatives from vegetables and fruits, on cardiovascular
remodelling in hypertensive rats, primarily assessed by functional studies using Langendorff isolated heart system and organ bath system.
Hypertension was induced in male albino Wistar rats by oral administration of N ω-nitro-L-arginine methyl ester hydrochloride (L-NAME)
(40mg/kg body weight (b.w.)) in drinking water for 4 weeks. VA was orally administered at a dose of 40 mg/kg b.w. L-NAME-treated rats
showed impaired cardiac ventricular and vascular function, evaluated by Langendorff isolated heart system and organ bath studies,
respectively; a significant increase in the lipid peroxidation products such as thiobarbituric acid-reactive substances and lipid hydroperoxides
in aorta; and a significant decrease in the activities of superoxide dismutase, catalase, glutathione peroxidase and levels of GSH, vitamin C and
vitamin E in aorta. Fibrotic remodelling of the aorta and heart were assessed by Masson’s Trichrome staining and Van Gieson’s staining,
respectively. In addition, L-NAME rats showed increased heart fibronectin expression assessed by immunohistochemical analysis.
VA supplementation throughout the experimental period significantly normalised cardiovascular function, oxidative stress, antioxidant status
and fibrotic remodelling of tissues. These results of the present study conclude that VA acts as a protective agent against hypertension-
associated cardiovascular remodelling.
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CVD is the leading cause of death worldwide, and its major risk
factor is hypertension(1,2). Hypertension affects approximately
25 % of the adult population worldwide, and its prevalence is
predicted to increase by 60 % by 2025(3). The important role in
the pathophysiology of hypertensive disease was played by
myocardial remodelling(4). In addition, cardiac hypertrophy and
fibrosis that develop as an adaptive response to pressure
overload ends with progressive heart disease(5,6).
Oxidative stress had an important role in the pathogenesis

and development of CVD(7). Recent studies have shown that
systemic arterial hypertension was induced by chronic admin-
istration of L-arginine analogue such as N ω-nitro-L-arginine
methyl ester hydrochloride (L-NAME) to rats by blocking the
endothelial nitric oxide synthase (NOS) isoform and in turn

reducing the NO biosynthesis. This leads to endothelial
dysfunction followed by impaired vasodilation and inflamma-
tory phenotypic changes in the coronary vascular wall(8,9).
Earlier reports highlight the crucial role of vascular endothelial
cells in the pathogenesis of the arterial wall alterations and
hypertension(10). Inhibition of oxidative stress maintains
bioavailability of NO, and therefore the agents with antioxidant
properties can improve regulation of vascular tone by inacti-
vating free radicals and increasing NO bioavailability(11).

In recent years, increased consumption of dietary agents such
as fruits, vegetables, whole grains and fish has a crucial role in
the control of CVD including hypertension(12). The protective
effects of plant intake can be because of the presence of phenolic
compounds and flavonoids. Phenolic acids are hydroxylated
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derivatives of benzoic and cinnamic acids(13), and veratric acid
(VA) (Fig. 1), one of the major benzoic acid derivatives from
vegetables and fruits that occurs naturally in Tabebuia
impetiginosa, is reported to have antibacterial, antifungal, anti-
inflammatory, antispasmodic(14) and antioxidant activities(15).
Phenolic acids have a beneficial role in the prevention of many
human diseases, particularly atherosclerosis and cancer,
because of their antioxidant properties(16). In our previous
phase of experiments, we reported the antihypertensive,
free-radical-scavenging and anti-hyperlipidaemic effects of VA
in L-NAME-induced hypertensive rats(17,18). In this study,
we evaluated the effects of VA on ventricular function,
endothelium-dependent acetylcholine (ACh)-induced relaxa-
tion in aorta, oxidative stress, heart and aortic structural
remodelling in a rat model of arterial hypertension induced by
L-NAME.

Methods

Animals and chemicals

Healthy male albino Wistar rats (180–220 g) were obtained from
the Central Animal House, Department of Experimental
Medicine, Rajah Muthiah Medical College and Hospital,
Annamalai University, India. They were housed (three rats per
cage) in polypropylene cages (47× 34× 20 cm) lined with husk,
renewed every 24 h and maintained in an air-conditioned room
(25 (SD 3)°C) with a 12 h light–12 h dark cycle. Animals received

the standard pellet diet (Kamadhenu Agencies) and water
ad libitum. The whole experiment was carried out according to
the guidelines of the Committee for the Purpose of Control and
Supervision of Experiments on Animals, New Delhi, India and
approved by the Institutional Animal Ethics Committee of Rajah
Muthiah Medical College and Hospital (Reg No. 160/1999/
CPCSEA, approval number: 747), Annamalai University,
Annamalainagar.

L-NAME and VA were purchased from Sigma-Aldrich. All
other chemicals used in this study were of analytical grade
obtained from Merck and HiMedia.

Animal model of Nω-nitro-L-arginine methyl ester
hydrochloride-induced hypertension and veratric acid
treatment

Animals were given L-NAME in drinking water at a dosage of
40 mg/kg body weight (b.w.) for 4 weeks. VA was dissolved in
5 % dimethyl sulfoxide (vehicle) and administered to rats orally
everyday using an intragastric tube for a period of 4 weeks.

Experimental protocol

On the basis of our previous study, the dosage of VA was fixed
as 40 mg/kg for this study(17). Each of the following groups
consisted of six animals – Group I: control; Group II: rats were
treated with VA (40 mg/kg b.w.); Group III: rats were given L-
NAME (40mg/kg b.w.); Group IV: rats were co-administered
with L-NAME (40mg/kg b.w.) and VA (40 mg/kg b.w.). Vehicle
alone was administered to control (Group I) and L-NAME con-
trol rats (Group III) orally using an intragastric tube daily for
4 weeks.

Preparation of tissue homogenates

After the completion of the experimental period, the rats were
anaesthetised and killed by cervical dislocation. Aortic tissues
were sliced into pieces and homogenised in 0·1 M-Tris-HCl
buffer in cold condition (pH 7·4) to give 20 % homogenate
(w/v). The homogenate was centrifuged at 560 g for 10 min at
4°C. The supernatant was separated and used for various
biochemical estimations.

Lipid peroxidation products and antioxidants

The levels of thiobarbituric acid-reactive substances (TBARS)
and lipid hydroperoxides (LOOH) in aorta were estimated by
the methods of Niehaus & Samuelsson(19) and Jiang et al.(20),
respectively. The activities of enzymatic antioxidants such as
superoxide dismutase (SOD), catalase (CAT) and glutathione
peroxidase (GPx) in aorta were estimated by the methods of
Kakkar et al.(21), Sinha(22) and Rotruck et al.(23), respectively.
The levels of non-enzymatic antioxidants such as GSH, vitamin
C and vitamin E in aorta were estimated by the methods of
Ellman(24), Roe & Kuether(25) and Baker et al.(26), respectively.

Langendorff isolated heart study

The left ventricular function of the rat heart was assessed using
the Langendorff isolated heart preparation. Briefly, after
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Fig. 1. Structure of veratric acid; the chemical structure was obtained from the
PubChem database (pubchem.ncbi.nlm.nih.gov).
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anaesthesia, the heart was excised and placed in cooled (4°C)
Krebs–Henseleit bicarbonate solution (composition (mM): 118
NaCl, 4·7 KCl, 1·2 MgSO4, 1·2 KH2PO4, 2·3 CaCl2, 25·0 NaHCO3

and 11·0 glucose). The heart was then attached to the cannula
through the aorta and retrogradely perfused with the Krebs
solution maintained at 37°C and continuously gassed with a
mixture of 95 % O2–5 % CO2. Perfusion pressure was kept
constant at 80 mmHg. An elastic water-filled balloon was
introduced into the left ventricle through a left atrial incision.
Isovolumetric recordings of the rate of pressure development
(+dp/dt) and rate of pressure decline (− dp/dt) were obtained
from the ventricular balloon connected via fluid-filled tubing to
a Pressure Transducer (ADInstruments) linked with a PowerLab
data acquisition unit (ADInstruments)(27).

Tension recording: organ bath study

After anaesthesia, the thoracic aortas were carefully removed
and transferred to cold modified Krebs–Henseleit solution
(MKHS) of the following composition (mM): 118 NaCl, 4·7 KCl,
1·2 MgSO4, 1·2 KH2PO4, 11·1 D-glucose, 11·9 NaHCO3 and 2·5
CaCl2, pH 7·4. Aortas were cleared of connective tissue and cut
into rings of about 2–3mm length. The aortic ring segments
were mounted on two stainless steel hooks and suspended in
10ml organ baths containing MKHS, maintained at 37°C and
aerated continuously with 95 % O2–5 % CO2 mixture. A passive
tension of 1·5 g was applied during the equilibration period of
90 min, during which the bath solution was changed every
15min. Tension was continuously recorded using a high-
sensitivity force transducer and recorded in a computer using a
Chart version 5.4.1 software programme (PowerLab).
After the equilibration period, tissue viability was examined by

recording the contraction to high K+ (80mM)-depolarising solu-
tion, in which part of the NaCl in the MKHS was replaced with an
equimolar concentration of KCl. Cumulative concentration–
response curves to relaxants were elicited in arterial segments
pre-contracted with 1–3 μM-phenylephrine. Endothelial integrity
was examined by adding 3 μM-ACh at the plateau phase of phe-
nylephrine contraction. In endothelium-intact rings, ACh (3 μM)
caused 80% relaxation. To examine the influence of membrane
depolarisation on the vasodilator responses to ACh, arterial rings
were pre-contracted with K+ (40mM)-depolarising solution.
Separate arterial rings were used for control and treatment groups
for the assessment of vasodilator responses to ACh.

Histopathology of heart and aorta

The heart and aorta samples obtained from all experimental groups
were cleared of blood and immediately fixed in 10% buffered
neutral formalin. Heart and aorta sections (5 μm) were prepared
from processed paraffin-embedded samples. Aortic sections were
stained with Masson’s Trichrome. Heart sections were stained with
Van Gieson’s staining. Tissue sections were examined under a light
microscope and photomicrographs were taken.

Immunohistochemistry

Paraffin-embedded tissue sections were dewaxed and rehy-
drated through grade ethanol to distilled water. Endogenous

peroxidase was blocked by incubation with 3 % H2O2 in
methanol for 10 min. The antigen retrieval was achieved by
microwave in citrate buffer solution (2·1 g citric acid/l D.H2O;
0·37 g EDTA/l D.H2O; 0·2 g trypsin) (pH 6·0) for 10 min,
followed by washing step with Tris-buffered saline (8 g NaCl;
0·605 g Tris) (pH 7·6). The tissue sections were then incubated
with blocking reagent for 15 min at room temperature to block
non-specific binding sites. The tissue sections were then incu-
bated with the polyclonal anti-fibronectin antibody with 1:500
dilution overnight at 4°C. The bound primary antibody was
detected by incubation with the secondary antibody conjugated
with horseradish peroxidase for 30 min at room temperature.
After rinsing with Tris-buffered saline, the antigen–antibody
complex was detected using 3,3′-diaminobenzidine, the sub-
strate of horseradish peroxidase. Each slide was microscopically
analysed, and the percentage of the positively stained area was
enumerated semi-quantitatively. The percentage of positive
area was scored as follows: 3 += strong staining, >50 % of area
was stained; 2 +=moderate staining, between 20 and 50 % of
area was stained; 1 +=weak staining, between 1 and 20 % of
area was stained; 0= negative, <1 % of area was stained(28).

Statistical analysis

Data were analysed by one-way ANOVA followed by Duncan’s
multiple-range test using SPSS version 20.0. For aortic relaxa-
tion, data were analysed by two-way ANOVA followed by
Bonferroni’s post hoc test. Values are represented as mean
values and standard deviations of six animals in each group.
Values were considered significant when P< 0·05.

Results

Effect of veratric acid on lipid peroxidation and
antioxidants

Table 1 shows the effect of VA on the levels of TBARS and
LOOH in the aortic tissues of L-NAME-induced hypertensive
rats. The L-NAME rats exhibited a significant increase in the
levels of TBARS and LOOH. The administration of VA reduced
the levels of TBARS and LOOH significantly (P< 0·05).

Table 1 illustrates the effect of VA on the activities of SOD,
CAT and GPx in the aortic tissues of L-NAME hypertensive rats.
The activities of SOD, CAT and GPx decreased significantly
(P< 0·05) in L-NAME rats, and the administration of VA
significantly increased these enzymatic antioxidants.

Table 1 portrays the effect of VA on the levels of vitamin C,
vitamin E and GSH in the aortic tissues of control and L-NAME-
induced hypertensive rats. The levels of GSH, vitamin C and
vitamin E decreased significantly in L-NAME rats, and adminis-
tration of VA significantly (P< 0·05) increased the levels of
these non-enzymatic antioxidants.

Effect of veratric acid on cardiac function: Langendorff study

The systolic contractility of the isolated heart was measured by the
first temporal derivative of the left ventricular pressure (LVP)
positive development (+dp/dt, mmHg/s), and the isovolumetric
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relaxation was measured by the first temporal derivative of the
LVP negative development (−dp/dt, mmHg/s). In the heart of
L-NAME rats, the rate of LVP rise ( +dp/dt, mmHg/s) and the rate
of LVP decline (−dp/dt, mmHg/s) were significantly (P<0·05)
reduced. VA treatment significantly (P< 0·05) promoted
ventricular function in L-NAME rats (Fig. 2).

Effect of veratric acid on vascular function: organ bath study

Fig. 3 and Table 2 show concentration-dependent relaxation to
ACh in phenylephrine pre-contracted endothelium-intact rings
from aorta of experimental rats. Sensitivity of the aortic rings to
ACh from rats given L-NAME was significantly (P< 0·05)
reduced. When aortic tissues from L-NAME rats given VA were
challenged with ACh, the vasodilation was almost restored.

Masson’s Trichrome-stained histopathology of aorta

Fig. 4(a)–(d) illustrates photomicrographs of Masson’s Trichrome
staining of the thoracic aorta of control and L-NAME-administered

rats. Aorta from control rats showed normal architecture
(Fig. 4(a)). Control group treated with VA also showed normal
thoracic aorta (Fig. 4(b)). Fig. 4(c) showed that L-NAME-treated
rats exhibited increased endothelial cells and interstitial
collagen accumulation (stained blue). VA administered to
L-NAME rats revealed reduced collagen accumulation (stained
blue) as compared with the L-NAME rats (Fig. 4(d)).

Van Gieson’s stained histopathology of the heart

Fig. 5(a)–(d) demonstrates the Van Gieson’s staining of the
heart. L-NAME hypertensive rats exhibited increase in the
interstitial collagen accumulation and fibrosis stained red
(Fig. 5(c)). VA supplementation (40 mg/kg) in L-NAME rats
showed reduction in the collagen accumulation (Fig. 5(d)).
Control and control treated with VA showed normal cardiac
architecture without any pathological changes (Fig. 5(a)
and (b)).

Table 1. Effect of veratric acid (VA) on lipid peroxidation and antioxidants in the aorta of experimental hypertensive rats
(Mean values and standard deviations; six animals)

Control Control +VA (40mg/kg) L-NAME (40mg/kg) L-NAME+VA (40mg/kg)

Parameters Mean SD Mean SD Mean SD Mean SD

TBARS (mM/100 g wet tissue) 0·40 0·04 0·38 0·03 1·90* 0·10 0·73† 0·52
LOOH (mM/100 g wet tissue) 73·25 5·25 71·12 4·32 115·51* 8·03 84·23† 8·12
Superoxide dismutase (Ua/mg protein) 13·46 1·25 12·36 2·84 5·98* 0·45 8·96† 0·47
Catalase (Ub/mg protein) 56·82 5·32 54·42 5·12 30·32* 2·43 50·34† 3·83
Glutathione peroxidase (Uc/mg protein) 9·34 2·59 10·83 1·9 3·05* 1·72 7·72† 3·02
Vitamin C (µg/mg protein) 0·60 0·12 0·61 0·08 0·25* 0·07 0·57† 0·081
Vitamin E (µg/mg protein) 4·59 0·39 4·60 0·34 1·31* 0·36 3·76† 0·53
GSH (µg/mg protein) 8·87 1·46 8·88 1·40 3·67* 1·38 7·76† 0·95

L-NAME, Nω-nitro-L-arginine methyl ester hydrochloride; TBARS, thiobarbituric acid-reactive substances; LOOH, lipid hydroperoxides; Ua, enzyme concentration required to inhibit
the chromogen produced by 50% in 1min under standard condition; Ub, micromoles of H2O2 consumed per minute; Uc, micrograms of GSH utilised per minute.

* Mean values were significantly different compared with control (P<0·05; Duncan’s multiple-range test).
† Mean values were significantly different compared with L-NAME (P<0·05; Duncan’s multiple-range test).
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Fig. 2. Veratric acid improved cardiac ventricular function in experimental
hypertensive rats. Values are means (six animals), and standard deviations
represented by vertical bars. * Mean values were significantly different compared
with control (P<0·05; Duncan’s multiple-range test). † Mean values were
significantly different compared with Nω-nitro-L-arginine methyl ester
hydrochloride (L-NAME) (P<0·05; Duncan’s multiple-range test). , Control;

, control + veratric acid; , L-NAME; , L-NAME+veratric acid.
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Fig. 3. Veratric acid recovered vascular function in experimental hypertensive
rats. Values are means (six animals), and standard deviations. * Mean values
were significantly different compared with control (P< 0·05; Bonferroni’s post
hoc test). † Mean values were significantly different compared with Nω-nitro-L-
arginine methyl ester hydrochloride (L-NAME) (P< 0·05; Bonferroni’s post hoc
test). ACh, acetylcholine; ■ , control; , control + veratric acid; , l-NAME;

, L-NAME+ veratric acid.
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Effect of veratric acid on fibronectin expression:
immunohistochemical analysis

In L-NAME-induced hypertensive rats, the expression of heart
fibronectin (FN) was higher when compared with control rats
(Fig. 6). Treatment with VA (40 mg/kg) decreased the expres-
sion of heart FN in L-NAME-induced hypertensive rats.

Discussion

NO participates in the modulation of vascular tone, and it is
synthesised and released by endothelial cells(29). In addition,
NO is important in cellular events such as vascular smooth
muscle cell proliferation(8). It is well established that arterial
hypertension was caused by the chronic inhibition of NO
biosynthesis by administration of L-NAME, an L-arginine
analogue(30), characterised by cardiac remodelling(31),
dysfunction of endothelial-dependent relaxation(32) and renal
function changes(33). L-NAME-induced hypertension is a well-
established model of experimental hypertension(34).

Oxidative stress has an important role in the development of
hypertension, originated through excessive production of
reactive oxygen species (ROS)(35). Hypertension results in
the production of large amounts of ROS such as superoxide,
hydrogen peroxide and hydroxyl radicals(13). Our results
showed that the lipid peroxidation products, measured as
TBARS and LOOH, were increased in the aortic tissues of
L-NAME-induced hypertensive rats. Lipid peroxidation is an
important pathogenic event in hypertension, and its complica-
tions were associated with the accumulation of LOOH(13).

Table 2. Effect of veratric acid (VA) on acetylcholine-induced relaxations
in endothelium-intact aorta of experimental hypertensive rats
(Mean values and standard deviations; six animals)

pD2 Emax (%)

Groups Mean SD Mean SD

Control 7·76 0·09 98·40 3·02
Control +VA (40 mg/kg) 7·69 0·09 94·54 2·80
L-NAME 7·27* 0·11 60·29* 2·54
L-NAME+VA (40mg/kg) 7·52† 0·10 88·25† 3·50

L-NAME, N ω-nitro-L-arginine methyl ester hydrochloride.
* Mean values were significantly different compared with control (P<0·05; Bonferroni’s

post hoc test).
† Mean valueswere significantly different compared with L-NAME (P<0·05; Bonferroni’s

post hoc test).

(d)

(a) (b)

(c)

Fig. 4. Photomicrographs of Masson’s Trichrome-stained sections of thoracic aorta from control and N ω-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced
hypertensive rats (40×). (a) Control rats showing normal pathological staining. (b) Control + veratric acid (VA) (40mg/kg)-treated rats showing negative staining
without any pathological alterations. (c) L-NAME-induced hypertensive rats showing increased endothelial cells and interstitial collagen accumulation (stained blue).
(d) L-NAME+VA (40mg/kg) revealed reduced collagen accumulation (stained blue) as compared with the hypertensive rats.
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L-NAME rats show increased levels of lipid peroxides, which
might be because of free-radical-mediated membrane damage.
Oral administration with VA (40mg/kg) significantly decreased
the levels of TBARS and LOOH in L-NAME-treated rats. This
reveals the anti-lipidperoxidative role of VA that is probably
mediated by its ability to scavenge free radicals(17).
The first line of cellular defence against oxidative injury was

offered by free-radical-scavenging enzymes such as SOD, CAT
and GPx, decomposing superoxide and hydrogen peroxide,
otherwise interacting to form the more reactive hydroxyl
radical(36). The important process responsible for the effective
removal of oxidative stress in intracellular organelles is the
equilibrium between the enzymatic antioxidants and free
radicals(37). Our previous study suggested that the activities of
antioxidant enzymes SOD, CAT and GPx were significantly
decreased in the erythrocytes and tissues of L-NAME-induced
hypertensive rats and increased after treatment with VA(17).
The result of the present study is parallel with our previous
report showing that VA administration significantly improved
the activities of SOD, CAT and GPx in the aortic tissue.

The increased activities of these enzymes in VA-treated rats
might be because of its free-radical-scavenging ability(17).

The residual free radicals escaping from decomposition
enzymes were scavenged by the non-enzymatic antioxidants,
namely vitamin C, vitamin E and GSH(38). Vitamin C present in the
aqueous environment reduces free radicals present on the surface
of the membrane owing to its multiple antioxidant properties(39).
The most effective lipid-soluble antioxidant in the biological
system is vitamin E. GSH is directly involved in the removal of
superoxide radicals, peroxyl radicals and singlet oxygen(40).

In the current study, the levels of non-enzymatic antioxidants
were declined in L-NAME rats. Increased use of these non-
enzymatic antioxidants for the neutralisation of free radicals
might be the reason for its decreased levels(41). Our previous
report explored the protective effect of VA on non-enzymatic
antioxidant system(17). Consistent with the previous report, in
this study VA treatment enhanced the levels of non-enzymatic
antioxidants, which suggests that this compound might be
potentially useful in counteracting free-radical-mediated
oxidative stress caused by lipid peroxidation(17).

(a) (b)

(c) (d)

Fig. 5. Photomicrographs of Van Gieson’s stained sections of heart from control and N ω-nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced hypertensive
rats (40×). (a) Control rats showing normal pathological staining. (b) Control + veratric acid (VA) (40mg/kg)-treated rat showing negative staining without any
pathological alterations. (c) L-NAME-induced hypertensive rats showing pathological alteration with positive staining (fibrosis and collagen deposition).
(d) L-NAME+VA (40mg/kg) rats showing reduced positive staining.
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Hiremath et al.(42) indicated that fibrosis was induced by
oxidative stress generated during hypertensive condition. The
exaggeration in the rate of synthesis and stabilisation of matrix
and/or decrease in the capacity of degradation lead to the
development of fibrosis(43). The accumulation of collagen in the
heart wall, an adaptive-compensatory mechanism to increased
haemodynamic load, leads to a loss of wall compliance, and
eventually to heart failure(44). There are early reports of
increased collagen synthesis in the arterial wall in hypertension
that occurred globally in L-NAME hypertensive rats(45,46). In this
study, Masson’s Trichrome staining of the thoracic aorta and
Van Gieson’s staining of the heart of L-NAME hypertensive rats
showed collagen accumulation. VA supplementation through-
out the experimental period considerably reduced the collagen
deposition in L-NAME rats. These histological observations
exhibited the protective role of VA in tissues of L-NAME
hypertensive rats with its antioxidant property(17).
Mulvany et al.(47) reported that arterial hypertension can

reduce vessel and cardiac lumen size through hypertrophy,
with wall thickening, and remodelling, with an increase in the

thickness of the arterioles. Left ventricular hypertrophy and
remodelling are frequently seen in hypertensive subjects(48).
Cardiac contractile function impairment is one of the major
pathogenic features of cardiac remodelling. Hypertension-
induced ventricular dysfunction was assessed by the Langen-
dorff isolated heart study. It was previously known that
enhanced stiffness of the myocardium impedes ventricular
contraction and relaxation caused by excess production and
accumulation of extracellular matrix (ECM) structural proteins,
or fibrosis, leading to distorted architecture and diastolic and
systolic dysfunction of the heart(49,50). From the antioxidant
point of view, Mapanga et al.(51) explored that oleanolic acid,
an antioxidant agent, blunts hyperglycaemia-induced con-
tractile dysfunction. Comparable with the previous report, in
this study, L-NAME induction impairs the contractile function of
the heart and VA treatment restores the ventricular function
with its antioxidant property(17).

Reduced production or activity of NO contributes to several
human diseases, especially hypertension(52,53). A previous
report showed that L-NAME treatment causes deficiency in NO

(a) (b)

(c) (d)

Fig. 6. Representative photomicrographs of immunohistochemistry for fibronectin in heart of control and N ω-nitro-L-arginine methyl ester hydrochloride
(L-NAME)-induced hypertensive rats (40×). (a) Control rats showing normal architecture without any pathological alterations (0= negative, <1% of area staining).
(b) Control + veratric acid (VA) (40mg/kg)-treated rats showing near normal architecture (0= negative, <1% of area staining). (c) L-NAME hypertensive rats showing
increased fibronectin-positive staining (2 +=moderate staining, between 20 and 50% of area was stained). (d) L-NAME+VA (40 mg/kg)-treated rat showing
diminished fibronectin expression (1 +=weak staining, between 1 and 20% of area was stained).
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production, which leads to the development of hypertension(8).
In the aorta of L-NAME-induced hypertensive rats, the
endothelium-dependent relaxant response to ACh was mark-
edly blunted(54). Long-term inhibition of NOS results in
decreased production of NO, and an increased release of
vasoconstrictors in endothelial cells eventually leads to endo-
thelial dysfunction(55). In the present work, the ACh-induced
relaxation in endothelium-intact aorta was significantly
augmented in the rats treated with VA when compared with that
of the L-NAME-treated rats. It shows that VA, to an extent,
preserves the functional capacity of the endothelium owing to
its antioxidant capacity(17).
In hypertensive heart disease, increased FN expression could

contribute to ECM cell attachment and promote collagen
deposition, as well as elevated gelatinase levels, leading to
reactive myocardial fibrosis, which increases myocardial stiff-
ness and reduces compliance(56). It was already explored that,
in deoxycorticosterone acetate plus salt rats with endothelin-
dependent hypertension, the cardiac extracellular remodelling
was associated with increased FN, matrix metalloproteinase
activity and up-regulation of inflammatory mediators(57).
Moreover, in the models of pressure overload, the cardiac FN
expression is elevated, and hypertrophy is caused by FN
expression in the cultured cardiac myocytes(58). In this study,
immunohistochemical analysis explored that VA administration
decreased the expression of FN in the heart of hypertensive
rats, which might be because of the free-radical-scavenging
ability of VA(17), which could exert a beneficial action against
pathophysiological alterations caused by free radicals.
Oxidative stress has been identified as one unifying

mechanism in the pathogenesis of CVD. Antioxidants may need
to be given as a pharmacotherapy, with the aim of reducing the
burden of CVD. In conclusion, major findings from the present
study demonstrated that VA supplementation could effectively
prevent the cardiovascular dysfunction, lipid peroxidation,

cardiac fibrosis, aortic fibrosis and FN expression. Further,
VA has the potential to modulate alteration at the antioxidant
level in L-NAME rats (Fig. 7). Our findings illustrate that in future
VA may be used as a beneficial molecule in the treatment of
hypertension-associated cardiovascular remodelling.
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