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Abstract

Insects are mass-reared for release for biocontrol including the sterile insect technique. Insects
are usually reared at temperatures that maximize the number of animals produced, are chilled
for handling and transport, and released into the field, where temperatures may be consider-
ably different to those experienced previously. Insect thermal biology is phenotypically plastic
(i.e. flexible), which means that there may exist opportunities to increase the performance of
these programmes by modifying the temperature regimes during rearing, handling, and
release. Here we synthesize the literature on thermal plasticity in relation to the opportunities
to reduce temperature-related damage and increase the performance of released insects.
We summarize how and why temperature affects insect biology, and the types of plasticity
shown by insects. We specifically identify aspects of the production chain that might lead
to mismatches between the thermal acclimation of the insect and the temperatures it is
exposed to, and identify ways to harness physiological plasticity to reduce that potential mis-
match. We address some of the practical (especially engineering) challenges to implementing
some of the best-supported thermal regimes to maximize performance (e.g. fluctuating ther-
mal regimes), and acknowledge that a focus only on thermal performance may lead to
unwanted trade-offs with other traits that contribute to the success of the programme.
Together, it appears that thermal physiological plasticity is well-enough understood to
allow its implementation in release programmes.

Introduction

Insects are ectotherms and, as such, their body temperature reflects the temperature of their
environment. In nature, this has a range of profound effects, such that temperature is often
considered a ‘biological master factor’ for ectotherms (Clarke, 2017). During insect mass-
rearing, transport and release, the temperature is often tightly controlled to maximize product-
ivity and efficiency or to facilitate handling, storage, or synchronization (Chambers, 1977;
FAO/IAEA, 2017). These mass-reared insects are then transported to and released into the
field, where they may encounter very different thermal conditions to those experienced during
rearing, and where their performance can be acutely temperature-dependent (Chidawanyika
and Terblanche, 2011; Nyamukondiwa et al., 2013). However, although their body tempera-
tures are likely constrained by the ambient temperatures they encounter, insects are not passive
victims of temperature variation, but can behaviourally thermoregulate (Harrison et al., 2012)
and respond physiologically at several time scales (Chown and Nicolson, 2004; Harrison et al.,
2012). These plastic responses are reasonably well-understood (e.g. Cossins and Bowler, 1987;
Huey et al., 1999; Hoffmann et al., 2003; Denlinger and Lee, 2010) and can modify thermal
biology in a way that could be harnessed to improve the performance of field released insects.

Here, we briefly summarize insect thermal biology and its plasticity. We place this into the
context of ‘typical’ thermal profiles during rearing, handling, and release, and speculate on
how modifications of these thermal profiles could be used to improve outcomes. We also high-
light how these different stages (rearing, handling, and release) focus on different aspects of the
thermal performance curve and, consequently, are likely to be impacted by different physio-
logical mechanisms and processes. Although our focus here is on insects that are mass-reared
for use in the sterile insect technique (SIT), many of these principles also apply to mass-reared
insect biocontrol agents or even insects mass-reared for conservation purposes.

Thermal biology: its plasticity and consequences in insects – a brief guide

Temperature determines the rates of molecular interactions (i.e. biochemistry within cells), the
state and function of cellular components (e.g. the flexibility of membranes), the rate of signal
transduction (e.g. reaction time), and therefore almost all physiological processes in an
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ectotherm (Somero et al., 2017). In turn, this means that bio-
mechanics, behaviour, and digestion (among other things) are
temperature-dependent, and that the ultimate success of
ectotherms in the field will be determined by their responses to
the temperatures they encounter (Clarke, 2017). The relationship
between temperature and a measure of performance (usually a
rate process such as flight speed, mating success, or feeding
rate) can often be described by a thermal performance curve
(Angilletta, 2006). The complexities of the estimation and appli-
cation of thermal performance curves are many (see Sinclair
et al., 2016 for discussion), but the salient points here are: (1)
there are both upper and lower limits to performance (often
described by the critical thermal maximum, CTmax, and critical
thermal minimum, CTmin); (2) in the lower portion of the
curve, performance increases exponentially with temperature;
and (3) after a peak in performance (misleadingly named the
thermal optimum, Topt, in the literature), performance declines
rapidly with increasing temperature. Importantly, the shape (e.g.
asymmetry, concavity, inflection points) of the thermal perform-
ance curve can differ significantly among traits, so a temperature
that favours high performance in one trait (such as development
rate) may not necessarily favour high performance in another
(such as mating) (Sgro et al., 2016; Kellermann et al., 2019).

Insect thermal biology is plastic. In general pre-conditioning at
(e.g.) a high temperature will lead to better high-temperature per-
formance, while low-temperature pre-conditioning will improve
low-temperature performance (Chown and Terblanche, 2007).
This plasticity can occur over a range of time scales, from harden-
ing responses induced after 30 min or less, to responses cued by
development at different temperatures, or even the thermal
experience of the mother days or weeks previously (table 1).
Not all kinds of thermal plasticity have the same underlying
mechanisms, which means that tolerance at one thermal extreme
does not necessarily trade off with tolerance at the other end of
the thermal range. For example, cold tolerance can be enhanced
(e.g. at low temperatures via rapid cold-hardening; Teets and
Denlinger, 2013) without significantly compromising high-
temperature tolerance (e.g. Thomson et al., 2001; Sørensen
et al., 2015). Nevertheless, cold-acclimated codling moths
(Cydia pomonella) are more likely to be recaptured under cold
field conditions than under warm field conditions
(Chidawanyika and Terblanche, 2011), which implies improved
performance (possibly survival) at low temperatures. Thus,
improved low-temperature performance can be at the expense
of high-temperature field performance and represent a classic
trade-off between performing well under some conditions, at
the expense of poorer performance under other conditions.
Induced plasticity can persist across life stages; for example,
exposing Drosophila to thermal perturbations as larvae affects
their thermal biology as adults (MacLean et al., 2017). It is unclear
how thermal tolerance mechanisms compare across life stages,
making it difficult to predict these across-stage effects (Freda
et al., 2019).

Within life stages, plasticity in insect thermal biology is some-
times irreversible (e.g. Sobek-Swant et al., 2012), while in other
cases, the plasticity (i.e. any induced response) is transient and
reversible. The scale of reversibility is trait-dependent. For
example, in Drosophila melanogaster, cold tolerance acquired dur-
ing development is lost more readily than developmentally-
induced heat tolerance (Slotsbo et al., 2016). Furthermore, the
timescale of reversibility of acquired thermal tolerance can
range from minutes to days (summarized by Weldon et al.,

2011), and depend on the magnitude of extreme temperature
events, their timing during the day, and how recently they were
applied (Xing et al., 2019; Zhao et al., 2019).

Both thermal tolerance and the plasticity of that tolerance can
evolve rapidly, leading to variation among populations (summarized
by Sinclair et al., 2012). For example, populations of the sugarcane
stalk borer Eldana saccharina (Lepidoptera: Pyralidae) from cool
locations remain active at lower temperatures than moths from
populations in nearby warmer locations. These populations also var-
ied in their ability to acclimate to low temperatures (Kleynhans
et al., 2014). However, E. saccharina in this study lost their thermal
plasticity after just two generations of laboratory rearing, suggesting
that selection in the field maintains this trait’s plasticity (Kleynhans
et al., 2014). This means that long-established laboratory popula-
tions may have lost some of the capacity to respond to treatments
that may otherwise induce physiological plasticity (see also
Terblanche and Chown, 2007; Hoffmann and Ross, 2018).
Thermal biology can evolve rapidly upon the release of insects
that can reproduce (e.g. in weed biocontrol applications). For
example, the water hyacinth control agent Eccritotarsus catarinensis
(Hemiptera: Miridae) readily established in sites initially thought to
be too cold to sustain viable populations likely as a result of a com-
bination of plasticity and genetic adaptation (Griffith et al., 2019).

In addition to thermal tolerances, other aspects of environ-
mental physiology are plastic, for example water loss rates (e.g.
Bazinet et al., 2010), metabolic rate (e.g. Kivelä et al., 2019),
anoxia resistance (e.g. Visser et al., 2018), and accumulation of
energy stores (e.g. Hahn and Denlinger, 2011). In some cases,
this plasticity has overarching effects on physiology, such that
improved tolerance to one stress changes tolerance to others
(e.g. Weldon et al., 2011). This is generally encompassed by the
concept of hormesis (e.g. Lopez-Martinez and Hahn, 2012),
which can include interactions between thermal tolerance and
irradiation effectiveness. The mechanisms underlying hormesis
are not well-understood, but may arise from underlying similar-
ities in the mechanisms underpinning tolerance to both stressors
(‘cross-tolerance’) or because similar response pathways activate a
suite of protective mechanisms (‘cross-talk’; see Sinclair et al.,
2013). Thus, non-thermal conditions can affect thermal biology,
and, conversely, temperature treatments have the potential to
modify responses to other process-critical tolerances (Rodrigues
and Beldade, 2020). Unfortunately, there is not currently a strong
understanding of how these interactions work, such that there is
no general predictive framework available (see Kaunisto et al.,
2016, for how this may be developed).

Currently, the mechanisms underlying plasticity (and return to
the pre-acclimation physiological state) are not well-understood.
Although there is a robust theory about how cells and whole
insects modify performance at a given temperature (e.g. by chan-
ging membrane composition; Somero et al., 2017), there is clearly
considerable variation among species in the extent, cues, and
underlying mechanisms for plasticity, such that there are no
definitive rules. In some cases, the induction of a plastic response
is restricted to a very precise set of conditions. For example, rapid
cold-hardening is induced in Afrinus beetles immediately after a
2 h exposure to −2 °C, but rapid cold-hardening is only induced
by a 0 °C exposure if it is followed by 30 min recovery at room
temperature (Sinclair and Chown, 2006). Indeed, even for well-
known species, it is important to recognize that although the rela-
tive effects of treatments may be consistent among facilities, the
magnitude of those effects can vary (Hoffmann and Sgrò,
2018). Most mass-rearing programmes focus on one (or a few)

442 Brent J. Sinclair et al.

https://doi.org/10.1017/S0007485321000791 Published online by Cambridge University Press

https://doi.org/10.1017/S0007485321000791


species, so gathering data on thermal biology and plasticity to
understand the possibilities and constraints within a given system
is achievable. Thus, we envisage that it may be possible to adjust
rearing or holding conditions within existing mass-rearing pro-
grammes to achieve specific thermal biology goals in the targeted
manipulation of performance for released insects.

Fluctuating temperatures

Most insect rearing – both at research and industrial scales – is
done under constant temperatures. If there are fluctuations in
temperature, they are within engineered limits (often less than

1 °C), or because of process constraints, which we discuss
below. However, insects in nature may be exposed to temperatures
that fluctuate considerably, and there is mounting evidence that
these fluctuations can have profound biological effects. For
example, insects can have very different thermal tolerances at dif-
ferent times of day (Kelty and Lee, 2001; Worland and Convey,
2001; Sinclair et al., 2003; Overgaard and Sørensen, 2008), indi-
cating a nimble repositioning of thermal biology in response to
diel fluctuations in temperature (but see Nyamukondiwa et al.,
2013 for an example where there is no temporal variation in ther-
mal tolerance). Because the ambient temperature that an insect
experiences is determined by both solar radiation and ambient

Table 1. Examples of the cues and treatments that induce thermal plasticity in insects.

Treatment Description Time-frame Example(s)

Rearing temperature Different rearing temperatures yield
different phenotypes

Duration of
rearing

Superior predation efficiency of Adalia bipunctata when
tested at their developmental temperature (Sørensen
et al., 2013)
Positive association between acclimation temperature
and field recapture rates at ambient temperatures in
Cydia pomonella (Chidawanyika and Terblanche, 2011)

Acclimation Exposure to high or low
temperatures (generally) improves
performance under similar
conditions

Days to weeks Cold acclimation increases cold- and starvation-tolerance
at the expense of predation rate and reproduction in
Gaeolaelaps aculeifer (Jensen et al., 2017)
Water loss rates of Glossina puparia are reduced by
acclimation to low humidity (Terblanche and Kleynhans,
2009)

Hardening Brief exposure to a mild extreme
temperature improves performance
at more extreme temperatures

Minutes to hours Survival of Psacothea hilaris eggs exposed to extremely
low temperature is improved by rapid cold-hardening
(Shintani and Ishikawa, 2007)

Fluctuating temperatures –
temperature interruptions

Brief rewarming extends tolerance to
extended exposure to low
temperatures

1–2 h
interruptions,
daily

Long term survival of Megachile rotundata is improved
under fluctuating temperatures (Rinehart et al., 2013)

Fluctuating temperatures –
temperature cycles

Daily cycles of warm and cool
temperatures can improve a range
of performance metrics

Days to weeks Survival, fecundity and voracity of Hippodamia variegata
is affected by cold storage at low constant temperatures,
but not at a milder constant of fluctuating temperatures
(Sakaki et al., 2019)
Drosophila simulans develop improved heat tolerance
only if fluctuating temperatures are predictable (Manenti
et al., 2014)

Rate of temperature change Slower or faster warming or cooling
can change thermal performance

Hours Estimates of critical thermal limits are species-specific
(Drosophila melanogaster & Linepithema humile) and
depend on methodological context (Chown et al., 2009)

Modified atmospheres Modifying the atmosphere can alter
the performance

Hours to days Both chilling and hypoxia induce resistance to
subsequent low-temperature exposure in Thaumatotibia
leucotreta (Boardman et al., 2015)
Anoxic conditioning boosts antioxidant defences, lowers
oxidative damage following irradiation and enhances
male sexual performance in Anastrepha suspensa
(Lopez-Martinez and Hahn, 2012)

Diet Modifying the diet can alter the
performance

Days to weeks Proline supplementation induces freeze tolerance in
drosophilid flies (Koštál et al., 2011; Koštál et al., 2012)
Cholesterol supplementation increases cold tolerance of
Drosophila larvae (Shreve et al., 2007)

Microbiome Manipulating gut microbes can alter
the performance

Hours to weeks Some species of live gut yeasts reduce chill coma
recovery time in Drosophila melanogaster (Jiménez
Padilla, 2016)

Photoperiod Long or short photoperiods yield
different phenotypes

Days to weeks Photoperiod and heat pre-treatment affect the
ventilatory rate, time-to-failure and time-to-recovery in
heat-shocked locusts (Rodgers et al., 2006)

Trans-generational plasticity Thermal experience of the parental
generation affects the thermal
performance of offspring

One generation Parental exposure to 38.5 °C in bed bugs significantly
lowered the heat tolerance of their offspring (Rukke et al.,
2015)
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air temperature, even insects living in apparently stable thermal
environments can experience large fluctuations in body tempera-
ture (Potter et al., 2013).

Temperatures that fluctuate within a non-harmful temperature
range can have profound, and usually positive, effects on insects
(Fischer et al., 2011; Colinet et al., 2015). These can include faster
development (e.g. Carrington et al., 2013), increased longevity
(e.g. Economos and Lints, 1986), increased reproductive output
(e.g. Nyamukondiwa et al., 2010), and improved thermal toler-
ances (e.g. Fischer et al., 2011). However, these positive effects
are not universal, although most negative consequences appear
to be associated with fluctuations that expose the insect to poten-
tially deleterious conditions (e.g. Colinet et al., 2006). Because
growth and development rates increase exponentially with
increasing temperature, high temperatures disproportionately
increase these rates (a mathematical property called Jensen’s
Inequality; Ruel and Ayres, 1999; Denny, 2017). However, pro-
longed exposure to high temperatures can be detrimental
(González-Tokman et al., 2020). Thus, fluctuating temperatures
can allow access to the benefits of high temperatures, without
the penalties of prolonged exposure. In the context of insect mass-
rearing and release, we might expect that these positive effects
could yield faster development and adults that are better equipped
to perform under the fluctuating temperatures in the field upon
release.

At the other end of the temperature scale, fluctuating thermal
regimes can significantly improve survival during prolonged cold
storage. In these regimes, exposure to constant low temperatures
is punctuated with brief (often only 1–2 h per day) exposures to
warmer temperatures. These regimes can considerably increase
the storage time for viable dormant insects. For example, the stor-
age time of viable Megachile rotundata increases from 15 to 23
months using this strategy (Rinehart et al., 2013). Thus, fluctuat-
ing temperatures are not only ecologically relevant, but also
potentially valuable for increasing insect production, storing
mass-reared insects, and improving the quality of released
animals.

Finally, aside from the advantages we discuss here, fluctuating
environments may be generally advantageous in mass-rearing by
reducing lab adaptation or domestication. Long-term rearing in
near-constant, predictable environments can homogenize geno-
types and (in some cases) reduce quality (Ochieng’-Odero,
1994; Hoffmann and Ross, 2018). Although cryopreservation is
the most-commonly used means to maintain genetic diversity
by continuously re-introducing genetic variation (Leopold and
Rinehart, 2010), variation in rearing conditions (primarily diet)
has also been mooted as a method to prevent unidirectional selec-
tion (Leppla et al., 1983; Hoffmann and Ross, 2018). We speculate
that fluctuating thermal conditions during rearing could not only
improve performance upon release through physiological condi-
tioning, but that these fluctuating conditions could also help to
maintain the genetic diversity that allows the success of indivi-
duals in variable field environments.

Effects of temperature on release performance of insects

In the context of insect mass-rearing for release, our take-home
message is that the thermal biology of the insect at the point of
release will be a product of the thermal environment throughout
its rearing, handling, and transport. The impact of that thermal
biology will depend on whether the thermal performance is a
meaningful match with release conditions (fig. 1). In the field,

there is an approximately linear increase in the number of
released moths caught as a function of air temperature
(Chidawanyika and Terblanche, 2011; Terblanche, 2014;
Boersma et al., 2019). However, field dispersal could be mediated
by other factors, for example, dispersal behaviour itself can be
thermally plastic (Fasolo and Krebs, 2004). However, the activity
patterns of many insects can be temperature-dependent in more
complicated ways (Dell et al., 2011).

Thermal preconditioning can mitigate low recapture rates under
adverse environmental conditions. For example, warm-acclimated
codling moths are twice as likely to be recaptured as their
cold-acclimated counterparts under warm conditions and vice
versa (i.e. cold-acclimated moths do well in cold but not heat)

Figure 1. Plasticity can reduce mismatches between insect thermal performance and
temperatures experienced during (a) mass rearing, (b) handling, and (c) release. Lines
represent hypothetical thermal performance curves (TPCs) of insects being reared;
histograms indicate the frequency distribution of ambient temperatures likely experi-
enced during this process. (a) During rearing, temperatures are generally constant
(i.e. temperature distribution is very narrow) and (because growth rate has been opti-
mized) near the temperature where performance is maximized (often referred to as
the TOPT). (b) During chilling for handling and transport, the temperatures are well
below the normal range of the TPC (solid line), but the process of chilling may
lead to plasticity (i.e. an acclimation response; dashed line), leading to a better
match between TPC and ambient temperatures. (c) Upon or after release in the
field, the temperature distributions will be significantly broader. They may also
vary, for example by season or between day and night, such that different TPCs
will maximize performance under different circumstances. Thus, a preconditioning
treatment that matches the TPC to the expected ambient temperatures (e.g. dashed
line to hatched histogram) will maximize performance, whereas release of animals
that have, for example, been cold-acclimated (dashed TPC), will result in low per-
formance if the ambient temperatures are more similar to the solid histogram.
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(Chidawanyika and Terblanche, 2011). This effect is even greater in
Drosophila (Kristensen et al., 2008), but does not appear to apply to
C. capitata (Steyn et al., 2022). Thus, inducing physiological adjust-
ments in key thermal traits has the potential to increase the per-
formance of (some) insects when released in the field. We note,
however, that released control agents act in interaction with the
species or population it is intended to control. Differences in plas-
ticity may affect the interaction between species or populations, and
the net outcome of a release cannot be evaluated on the perform-
ance of the mass-reared insect alone. For example, laboratory ther-
mal acclimation suggests that the sugarcane stemborer Chilo
partellus expresses higher degrees of thermal plasticity than its lar-
val endoparasitoid Cotesia flavipes, which could compromise con-
trol efficiency under certain thermal conditions (Mutamiswa
et al., 2018).

Temperatures experienced by mass-reared insects during
rearing, transport, and release

Mass-reared insects are usually held at constant temperatures,
which are often fairly warm (typically 25–27 °C). This maximizes
the growth rate and therefore the number of animals produced
(Sørensen et al., 2012; Mamai et al., 2018). We do note that
these temperatures are almost always set at the room level –
high densities of larvae or eggs in an insulative rearing medium
can elevate colony temperatures considerably above the set
room temperature (e.g. Paz et al., 2015). In several SIT protocols,
temperature-sensitive mutants are used to sex-select the animals
due for release; this usually takes the form of a brief pulse of
high temperature applied to the embryos: >28 °C in the case of
C. capitata (Franz, 2005). Although insects are exposed to intense
energy during irradiation, the actual increase in temperature dur-
ing irradiation is on the order of a few degrees (R. Pereira, pers.
comm; see also Sinclair et al., 2009), and unlikely to elicit a
heat shock response. Insects are usually chilled prior to handling
and irradiation, as well as for packing and shipping (Dyck et al.,
2005), and sometimes chilled specifically to aid dispersal (e.g.
Mirieri et al., 2020). In most cases, a departure from chilling tem-
peratures is because of inaccuracy in temperature maintenance
rather than because of deliberately variable temperature condi-
tions, which we discuss below.

We contend that mass-rearing insects provide both opportun-
ities to control the thermal experience to maximize performance,
and practical challenges because temperature control is usually
optimized for the equipment and the process rather than to maxi-
mize insect performance. To begin addressing this, we examine
the thermal experiences of mass-reared insects from two different
SIT programmes focused on Lepidoptera in South Africa and
Canada. We view these case studies through the lens of the
kinds of temperatures experienced, the order in which they are
experienced, and the contrasts between temperatures experienced
during production with those experienced upon release.
We follow-up with an examination of a dipteran release pro-
gramme in Australia which benefits from an extensive body of
thermal biology research.

False codling moth (Western Cape, South Africa)

False codling moth (Thaumatotibia leucotreta, Tortricidae) is a
polyphagous pest of crops including macadamia nuts, citrus
and cotton (Prinsloo and Uys, 2015). It is suppressed in the
Western and Eastern Cape regions of South Africa by an area-

wide SIT programme mainly focused on citrus-producing areas.
Insects are reared in Citrusdal, South Africa, and transported in
a cooled vehicle to the target area for release either by hand or
from a helicopter. In both cases, they are re-warmed to ambient
conditions for c. 1 h before release. Moths are reared through
their larval and pupal stages at 25–27 °C, before 1–2 day-old
adults are transferred to 6–8 °C for handling and irradiation,
and shipped between 6 and 8 °C (Nevill Boersma, XSIT, pers.
comm.). If the temperature exceeds 15 °C during the process,
moths are not re-cooled to avoid decreased performance asso-
ciated with repeated cold exposure, and are instead kept at
8–10 °C before release. They are released only if the orchard air
temperature exceeds 12 °C, because moths typically are not cap-
able of dispersing or being recaptured at cooler temperatures
(Boersma et al., 2019). False codling moths are typically released
during the peak citrus growing season that coincides with low-
temperature field conditions (in the morning, temperatures are
often <15 °C) but field temperatures can exceed 30 °C.

Thus, in this system, rearing is at 27 °C, which is considerably
warmer than field release conditions, and moths are typically
handled for 12–24 h below 12 °C prior to release. The cold
chain tolerances used in this system are based on a wealth of
laboratory and field data specifically gathered for T. leucotreta
(e.g. Blomefield and Giliomee, 2011; Boardman et al., 2012;
Boersma et al., 2019; Karsten et al., 2019). This is an excellent
example of an outcome of a sustained research effort spanning
several partnerships between researchers and the facility.

Codling moth (British Columbia, Canada)

Codling moth (Cydia pomonella Lepidoptera: Torticidae) is a pest
of apples and pears. It is suppressed in the Okanagan Valley,
British Columbia, Canada, via area-wide release of sterile adults.
Insects are reared in a facility in Osoyoos, BC (Dyck et al.,
1993; Sterile Insect Release Program, 2016). Freshly-laid eggs
are stored for 2–5 days at 2 °C, before hatching and rearing to
adulthood at near-constant 27 °C. Adults are collected and held
at 2 °C before irradiation 8–21 days after emergence.
Post-irradiation, they are maintained at 2–4 °C during transport
(2–4 h) and depot storage (an additional 0.5–4 h). Moths are
transferred to all-terrain vehicles in coolers, and released in orch-
ards at near ground-level via a blower mechanism. The goal for
the release conditions is to maintain the moths at 2–4 °C, but
this is anecdotally the most challenging part of the supply
chain: release runs can last 0.5 to 6 h, and towards the end of a
long run, moths are often at temperatures above 4 °C (Evan
Esch pers comm.). Release temperatures are dependent on the
date during the season and the time of day, and can range from
10–40 °C. Although there has been some concern that chilling
might affect field performance and/or activity (Bloem et al.,
2006; Judd et al., 2012), flight mill studies suggest that chilling
doesn’t affect overall flight performance (Matveev et al., 2017).
Nevertheless, there is a documented trade-off in this species:
the physiological response to cold reduces performance at high
temperatures (Chidawanyika and Terblanche, 2011) which
means that there may be hidden compromises in the distribution
process on hot days. Altogether, the adult moths may have been
held anywhere between 11 and 35 h (at the extremes, although
this upper bound is usually avoided) in the cold, prior to release.

Recently, OKSIR (the organization that runs the Okanagan
Valley Sterile Insect Release Program) has been trialling shipment
of sterile moths to New Zealand, which entails a flight of >13 h
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at low temperatures, and a total time of c. 32 h from the factory to
release. Notably, time from irradiation to release is within the
bounds of the supply chain in BC (which includes extensive trans-
port by road), and the release temperatures in New Zealand do not
reach the upper extremes seen in BC (Evan Esch, pers. comm.).

Queensland fruit fly (Queensland, Australia)

TheQueensland fruit fly,B. tryoni, is a tropical and subtropical pest of
fruits and vegetables in Australia and some Pacific Islands (Clarke
et al., 2011),with thepotential to spread intomore temperate climates
(Merkel et al., 2019; Popa-Báez et al., 2021). Bactrocera tryoni are
mass-reared, sterilized with irradiation, and released as part of area-
wide Sterile Insect Technique control programmes (Jessup et al.,
2008). Here we wish to highlight a body of knowledge that leaves
this programme primed to leverage the plasticity of thermal biology.
There is a long history of investigation into thermal biology and the
plasticity thereof for B. tryoni, in Australia (e.g. Meats, 1973, 1976a,
1976b, 1976c; Meats and Fay, 1976; Meats, 1983; Meats and Kelly,
2008). Already in the 1970s, Meats and colleagues were exploring
the viability of thermal preconditioning for field releases. The SIT
programme had mixed success, perhaps partly due to the diversity
of field conditions encountered post-release (e.g. Meats and Fay,
1977; Fay and Meats, 1987a). One tantalizing result suggests that
cold-acclimated sterile flies survived better than warm-acclimated
flies, and the former survived at similar levels to the wild flies over
a few weeks in early spring (Fay and Meats, 1987b). Recently, the
use of stage-specific thermal treatment has been explored inB. tryoni
production, largely tomanage production schedules by delaying and
synchronizing development (Benelli et al., 2019a, 2019b). Thus, there
is a large existing body of knowledge available for fine-tuning the
thermal biology of this species during rearing and release.

Manipulating the thermal biology of released insects –
opportunities and challenges

We make several observations from our case studies. First, post-
hatch rearing is primarily at constant benign warm conditions,
but handling, storage, and distribution largely under near-

constant cold conditions. Second, most animals are released
after several (or many) hours of chilling. In Canada, this could
lead to a substantial mismatch between (cold) transport condi-
tions and the temperatures they encounter in the field. By con-
trast, in South Africa it may serve to pre-condition the animals
for cool release conditions, although this is a fortuitous conse-
quence of the production and release chain, not an explicit
attempt to pre-condition the moths. Third, there is within-
programme variation in the timing of transport and release
which is driven by logistics and likely unavoidable. However,
the relationship between increasing exposure duration and dele-
terious effects on insects is well-described (Overgaard and
Macmillan, 2017). Thus, supply-chain management to reduce
chilling time or adoption of fluctuating thermal regimes to miti-
gate accumulated chilling injury could make the performance of
released insects more consistent. Finally, to our knowledge,
none of these programmes is deliberately harnessing phenotypic
plasticity to improve performance.

In table 2, we summarize what we perceive as the opportunities
to modify release performance or to mitigate mismatches between
rearing and release conditions. Many of these lie within a general
framework of hormesis (Costantini et al., 2010), whereby mild
stress exposure increases tolerance to other stresses, for example,
brief stressful anoxia improves tolerance to radiation in
Anastrepha suspensa (Lopez-Martinez and Hahn, 2012).
One might argue that the simplest of these conditioning treat-
ments is a non-stressful fluctuating temperature regime, which
has the potential to improve many relevant performance metrics
after chilling and release (even if applied to earlier life stages, see
MacLean et al., 2017). However, we acknowledge that there are
challenges to implementing any kind of temperature-based plasti-
city in a mass-rearing situation.

Performance metrics vary among programmes and among
components within programmes. In particular, the number of
insects produced is often used as a primary performance charac-
teristic for a production facility (Sørensen et al., 2012), with per-
formance of the animals often assessed at the time they leave the
factory or arrive at the release site, rather than when they are
released. Modifying the temperature, especially during

Table 2. A summary of the potential effects of temperature at different stages in the production and distribution of mass-reared insects, evidence-based
modifications that address those effects, and the potential biological consequences and trade-offs of those modifications

Temperature effects Modifications Potential consequences and trade-offs

Rearing

Constant temperatures reduce
performance

Use fluctuating thermal regimes Increased performance may reduce output

Developmental plasticity can be
irreversible

Match rearing and release temperatures Decreased numbers or development rate

Temperature-size rule Lower temperatures yield larger insects Increased body size, but slower development

Chilling during handling and transport

Increasing cold tolerance decreases
heat tolerance

Insects with reduced performance under field conditions;
damage if animals not in chill coma

Costs of chilling injury or cold
acclimation

Fluctuating thermal regimes Increased storage time, decreased chill injury

Field release

Potential mismatch in thermal
biology

Plasticity (acclimation, RCH, etc.);
Change rewarming rate

Increased performance, reduced loss
Possible trade-offs between thermal performance and (e.g.)
mating performance
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development, could lead to higher-quality individuals, but poten-
tially in lower numbers or at a slower rate. Currently, most facil-
ities produce ‘one size fits all’ insects, so the relationship between
measurements of insect quality and release performance may vary
seasonally. In situations where there is high variance in the per-
formance of released insects, there may be considerable merit to
understanding which quality metrics are associated with release
performance, and how these change with different release condi-
tions. Thus, identifying meaningful quality and performance
metrics that allow the selection of individuals that will perform
well in specific release conditions is a research priority.

The challenges to implementing these approaches may be sim-
ple engineering problems. For example, it can be difficult to con-
trol temperature precisely during aspects of transport (for
example in the transport of moths during a long day of releases
in the BC codling moth releases). Similarly, although fluctuating
temperatures may be desirable, fluctuating temperatures are anec-
dotally much more challenging for temperature control systems
and can reduce the lifespan of expensive refrigeration equipment
(but see Greenspan et al., 2016). The simplest form of fluctuating
temperatures (brief interruptions of constant cold) can be effected
by simply moving animals from one space to another for a brief
period. In a research context, this involves removing them from
the fridge and placing them on the bench, but we recognize
that this may require retooling infrastructure in an industrial facil-
ity. Alternatively, one could move insects between climate-
controlled rooms set to different temperatures, or make use of
existing spatial variability in conditions within a facility (e.g.
cool on the ground, warm at the ceiling). However, it is also
important to recognize that chilling is an important component
in mass-rearing, to prevent mating in mixed-sex releases, prevent
damage, and reduce aging, so a thermal interruption that allows
animals to recover from chill coma and mate could be undesir-
able. Thus, instituting controlled fluctuating temperatures during
transport may be impractical, but we propose that fluctuating
temperatures could significantly increase storage time at a facility.

Conclusions

In conclusion, the temperature is probably the most easily
manipulated environmental variable that has large, and in many
cases well-documented, phenotypic effects. Because of the possi-
bility of generating mismatches between rearing and release con-
ditions, these effects may have a negative impact on the
performance of released insects. However, there are a variety of
ways to manipulate thermal biology to better match animals to
their release conditions, and/or reverse the negative impacts of
transport or handling conditions. We believe that the challenges
to harnessing plasticity to reduce negative impacts are practical,
not intellectual. Determining how to optimize thermal perform-
ance is straightforward, and many exemplar studies that optimize
thermal performance for a specific species already exist. However,
we do caution that the possibility of performance-reducing trade-
offs needs to be carefully explored. Regardless, the nature of
infrastructure and the constraints of the distribution and release
supply chain mean that there are nevertheless significant
practical/engineering constraints to overcome.
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