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1. Introduction

It is well known that sufficient conditions for the existence of a positive
vector u which satisfies the matrix equation Au = Xu are that A should be non-
negative and irreducible. This result, the qualitative part of the Perron-
Frobenius theorem, has been proved in a variety of ways, one of the most
attractive of which is that given by Alexandroff and Hopf in their treatise
" Topologie ". The aim of this note is to show how their method can be
adapted to deal with the generalised eigenvalue problem defined by Au = XBu
where A and B are square matrices.

The simplest non-trivial conditions for a positive solution of the more
general problem are that A and B should each be non-negative and irreducible
and that AB = BA. In this case we have for each matrix separately a positive
eigenvector, and it is easily shown that if A and B commute then these eigen-
vectors are in fact precisely the same vector and consequently this vector
provides a solution for the general problem.

(The conditions on A and B separately are not sufficient to guarantee a

positive solution; for example if A = 2 , B = \ then the eigen-

vectors are complex.)
In a recent note (1) Mangasarian has given sufficient conditions for the

existence of a positive solution of the problem when A and B are not necessarily
square. We confine our attention to the case of square matrices, and prove an
analogue of Perron's theorem. We also indicate how the proof can be adapted
to obtain an analogue of Frobenius' theorem when an appropriate definition of
reducibility is made. These analogues are concerned only with the qualitative
properties of the eigenvalue and eigenvector (see Section 5, Remark 4).

2. Preliminaries

A, B, ... will denote real square matrices of some fixed but arbitrary order
nxn. A vector x is said to be positive, x>0, if x ;>0; x is non-negative, x ^ 0,
if xt ^ 0. (Here, as elsewhere unless otherwise stated, the range of the suffixes
is 1, 2, ..., n.) A matrix is positive if all its components are positive.

https://doi.org/10.1017/S0013091500010051 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500010051


282 D. KERSHAW

We define/(x) = Exp; then/(Ax) = Z(Ax)p = Zxqaq(A) where

let a(A, B) = max aq(A)l<jq(B).

Definition. If Au = XBu then the eigenvalue X is defective if there exists a
vector v such that Ac = XBv + Bu. If no such vector » exists then X is no/
defective.

3. Perron

We prove here an analogue of Perron's theorem for the eigenvalue problem
defined by Au = XBu.

Theorem 1. If oq(A), aq(B)>0 and a-^b^A, B) for i =j= j then there is
a positive eigenvalue X to which corresponds a unique positive eigenvector u such
that Au = XBu.

Moreover if <rq(A
T), aq(B

T)>0 and aij>biJa(AT, BT) then this eigenvalue is
not defective.

Proof. Let S = {x e R": x ^ 0,/(x) = 1}, so that S is a closed bounded
convex set in R". Define T: Rn->R" by

Tx = x + <x[Axf(Bx)-Bxf(Ax)~\

where a is a scalar which satisfies

0 <a <min 1/| buaq(A)- a,;a,,(£) |. (1)

Clearly/(x) = l=>/(Tx) = 1. Moreover

(Tx% =

1 + a a a bu bij (2)
aq(A) aq(l

For any positive a the second term is always non-negative if x e S, and if a
satisfies (1) then the first term in (2) is also non-negative. Consequently TScS,
and since T is obviously continuous it follows from Brouwer's fixed point
theorem that there exists a vector u e S such that u = Tu. Thus u satisfies
Auf(Bu) = Buf(Au). Since <Jq(A), oq(B)>0 it follows that neither f(Au) nor
f(Bu) can vanish. Thus u is an eigenvector of the generalised problem; the
corresponding eigenvalue is given by f(Au)/f(Bu). We now show that «>0.
Suppose otherwise; then for at least one index k we would have uk = 0 whilst
the remaining components of u are non-negative and not all zero. It would
follow from (2) with x = u that

E ,, v1.. kj ki n ti\
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which, since each of the determinants is positive and u ^ 0, u 4= 0, cannot hold.
Thus we conclude that u > 0.

In a similar fashion we can show that w is the only eigenvector which corres-
ponds to X, for if there were another vector v then z = tu — v would also be an
eigenvector for any scalar t. Choose / = max vjui, then z ^ 0 and at least one
component of z is zero. It follows as in the proof of the positivity of u that
z = 0. Consequently u is unique.

To prove that X is not defective we use the last assumption stated in the
theorem. This clearly implies that there is a unique positive vector w which
satisfies wrA = nwTB. Furthermore wTAu = XwrBu — nwrBu and so
(X — fi)wT£u — 0. However

wrBu = Z WP Z bpquq
p i

= Z M * Z bP^P
9 P

^ Z U<Pq(B) • m i n Op).

and so wrBu # 0, which implies that X — ft.

Suppose now that X is defective, then there will exist v such that

Av = XBv + Bu,

and so wTAv = XwTBv + wrBu. But wTAv = XwTBv hence wTBu = 0 which
has been seen to be untrue. This contradiction shows that the hypothesis that
X is defective is false. In conclusion we note that

X =f(Au)/f(Bu) = X<rq(A)uJi:cTq(B)uq,

and so a{B, A) <, X ^ a{A, B), thus proving that X is positive.

4. Frobenius

The extension by Frobenius of the usual form of Perron's theorem is made
by the weakening of the condition of the positivity of the matrix to the require-
ment that it should be non-negative and irreducible.

Definition. The matrices A and B are mutually reducible (/) if there is a
permutation matrix II such that is C = n ^ n T and D = ITi?nT then an index r
exists so that

rq(Q oq{D)
If no such matrix II exists then A and B are mutually irreducible (/).
Alternatively A and B are mutually reducible (/) if there exist two disjoint

sets of integers / and J where IKJJ = {1, 2, ...,«} such that

Q<\\ b,'L =0for iel and jeJ.

When B is the unit matrix this becomes the usual definition of reducibility.

= 0 for 1 g i ^ r,
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Theorem 2. Let oq(A), aq(B)>0, aiS ^ bXia{A, B)for i * j and let A and B
be mutually irreducible (J). Then there exists a positive eigenvalue X to which
corresponds a unique positive eigenvector u such that Au = XBu.

Ifcrq(A
T), (Tq(B

T)>0, a{j ^ bij(r(AT, BT) and AT and BT are mutually irre-
ducible (/) then the eigenvalue X is not defective.

Proof. The proof of the existence of a non-negative eigenvector u which
satisfies Au = IBu follows precisely the same lines as that of the corresponding
one in the previous theorem. In order to show that this vector is in fact positive
we again suppose the contrary. Let II be a permutation matrix such that if
v = Uu then i^ = v2 = ... = vr = 0 whilst the remaining components of p
are strictly positive. Let C = IL4IIT and D = 11511T then

Cv = XDv,
which can be written

Cvf(Dv) = Dvf(Cv).
It follows that

£ c,jVjf(Dv)= £ d,jVjf(,Cv), i = l, 2, .... r.
j = r+l j = r+l

This equation can also be written in the form

j
E = 0, i = l ,2 r. (4)

However vr+1, vr+2, ..., vn are strictly positive, and since A and B are mutually
irreducible (/) the determinants in (4) are strictly positive. Hence (4) cannot
hold and so the supposition that « has zero components is false.

The proofs of the remaining propositions in Theorem 2 follow in a similar
fashion to those of Theorem 1.

5. Remarks

We shall confine the remarks to the analogue of Perron's theorem.
1. When B = I the conditions become aq{A')>0, a y >0, / + / These

apparently extend the usual condition for the truth of Perron's theorem.
However, on closer examination this will be found to be false since we can add a
multiple of the identity matrix to any matrix with positive off diagonal elements
to obtain a matrix with all its elements positive which has the same eigenvectors
as the original matrix.

2. The choice o f /was made for simplicity of presentation; in fact any
positive linear functional on R" can be used so long as the ancilliary conditions
on A and B are satisfied with that functional.

3. The roles of A and B can be reversed to give similar results for the eigen-
value problem XAu = Bu.

4. The Perron-Frobenius theorem contains the quantitative statement that
the positive eigenvalue is equal to the spectral radius. The following example
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shows that such a result does not necessarily hold with the type of conditions
which were considered here. If

-; -3 - - [ ; ?A =

then the eigensystem is —3,
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