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Abstract. We formulate a generalization ofGivental^Kim's quantum hyperplane principle.This
is applied to compute the quantum cohomologyofaCalabi^Yau 3-fold de¢ned as the rank 4 locus
of a general skew-symmetric 7� 7 matrix with coef¢cients in P6. The computation veri¢es the
mirror symmetry predictions of R�dland [25].
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0. Introduction

The rank 4 degeneracy locus of a general skew-symmetric 7� 7-matrix with
G�OP6 �1��-coef¢cients de¢nes a noncomplete intersection Calabi^Yau 3-fold M3

with h1;1 � 1. We recall some results of R�dland [25] on the mirror symmetry of
M3: a potential mirror family Wq is constructed as (a resolution of) the orbifold
M3

q=Z7, where M3
q is a one-parameter family of invariants of a natural Z7-action

on the space of all skew-symmetric 7� 7-matrices. It is shown that the Hodge
diamond of Wq mirrors the one of M3. Further, at a point of maximal unipotent
monodromy*, the Picard^Fuchs operator for the periods is computed to be (with
D � qd=dq):

�1ÿ 289qÿ 57q2 � q3��1ÿ 3q�2D4�
� 4q�3qÿ 1��143� 57qÿ 87q2 � 3q3�D3�
� 2q�ÿ212ÿ 473q� 725q2 ÿ 435q3 � 27q4�D2�
� 2q�ÿ69ÿ 481q� 159q2 ÿ 171q3 � 18q4�D
� q�ÿ17ÿ 202qÿ 8q2 ÿ 54q3 � 9q4� :

�1�

*There are two points with maximal unipotent monodromy. Remarkably, the Picard±Fuchs
equation at the other point is the one found in [2] for the mirror of the complete intersection
Calabi±Yau 3-fold in G�2; 7�.
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Mirror symmetry conjectures that this operator is equivalent to the operator

D2 1
K
D2; where K�q� � 14�

X
dX 1

ndd3 qd

1ÿ qd
; �2�

and nd , the instanton number of degree d rational curves on M3, is de¢ned [20] using
Gromov^Witten invariants by

hp; p; piM3

d �
X
kjd

k3nk:

We shall prove the conjecture.

THEOREM 1. The differential operators (1) and (2) are equivalent under mirror
transformations. That is:

Let I0; I1; I2; I3 be a basis of solutions to (1) with holomorphic solution
I0 � 1�PdX 1 adq

d and logarithmic solution I1 � ln�q�I0 �
P

dX 1 bdq
d. Then

I0
I0
;
I1
I0
;
I2
I0
;
I3
I0
;

is a basis of solutions for (2) after change of coordinates q � exp�I1=I0�.

Our approach follows closely the work of Givental [14, 15] for complete inter-
sections in toric manifolds, and Batyrev, Ciocan-Fontanine, Kim, Van Straten
[1, 2] for complete intersections in partial £ag manifolds. It builds on the following
three observations:

(i) Awell-known construction identi¢es the degeneracy locusM3 with the vanishing
locus of a section of a vector bundle on a Grassmannian manifold (see Section 2).
It is crucial, for us, that this vector bundle decomposes into a direct sum of vector
bundles E �H, where H is again a direct sum of line bundles.

(ii) The quantum hyperplane principle of B. Kim [18] extends to relate the
E-restricted quantum cohomology with the E �H-restricted one. This is for-
mulated as a general principle in Section 1.

(iii) The E-restricted quantum cohomology can be e¡ectively computed using
localization techniques and WDVV-relations. An application of the quantum
hyperplane principle then yields Theorem 1. The computations are carried
out in Section 2.

1. Gromov^Witten Theory

We begin by recalling some basic results on g � 0 Gromov^Witten invariants before
stating the quantum hyperplane principle. Our approach is the algebraic one
following [19]. We refer the reader to [7, 11] for a fuller account and references.
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1.1. FROBENIUS RINGS

Let X be a smooth projective variety over C. Unless otherwise speci¢ed, we only
consider even-dimensional cohomology with rational coef¢cients. In fact we will
work with a further restriction: if E is a vector bundle on X , and Y is the zero-set
of a regular section of E, then we are mainly interested in the cohomology classes
on Y that are pulled back from X . These are represented by the graded Frobenius
ring A��E� with

Ap�E�:� H2p�X ;Q�=ann�E0� �3�

and non-degenerate pairing hg1; g2iE :� RXeg1eg2E0, where E0 is the top Chern class of
E, and egi denotes a lift of gi to A��X �.

Let A1�E;Z� be the dual of A1�E;Z�=torsion. We will identify A1�E;Z� with the
image of the natural inclusion

A1�E;Z� ! A1�X ;Z�: �4�

1.2. MODULI SPACE OF STABLE MAPS [11, 20]

Let �C; s1; . . . ; sn� be an algebraic curve of arithmetic genus 0 with at worst nodal
singularities and n nonsingular marked points. A map f :C ! X is stable if all con-
tracted components are stable (i.e. each irreducible component contains at least three
special points, where special means marked or singular). For d 2 A1�X ;Z�, let Xn;d

denote the coarse moduli space (or Deligne-Mumford stack) of stable maps with
f��C� � d. If X is convex, that is H1�C; f �TX � � 0 for all stable maps, then Xn;d

is an orbifold (only quotient singularities) of complex dimension

dimC X �
Z
d
c1�X � � nÿ 3 : �5�

Of great importance to the theory are some natural maps on the moduli space of
stable maps. For i � 1; . . . ; n, let ei:Xn;d ! X be the map obtained by evaluating
stable maps at si, and let pi:Xn;d ! Xnÿ1;d be the map which forgets the marked
point si. Also of signi¢cance are certain gluing maps which stratify the boundaries
of the moduli spaces. In the stack theoretic framework, the diagram

Xn�1;d ÿ!
en�1

X

pn�1
??y

Xn;d

�6�

along with sections si:Xn;d ! Xn�1;d de¢ned by requiring ei � en�1 � si, is identical to
the universal stable map.
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1.3. GROMOV^WITTEN INVARIANTS [4, 5, 19, 21, 24, 27]

Suppose E is a convex vector bundle (i.e H1�C; f �E� � 0 for all stable maps). Base
change theorems in [16] imply that pn�1�e�n�1E is a vector bundle on Xn;d with ¢bers
H0�C; f �E�. Let En;d denote the top Chern class of pn�1�e�n�1E and let ci denote
the ¢rst Chern class of the line bundle s�i opn�1 on Xn;d , where opn�1 is the relative
sheaf of differentials. Let c be an indeterminate.

A system of E-restricted Gromov^Witten invariants for X is the family of
multilinear functions h iEd on A��E���c��
n, de¢ned for all nX 0 and d 2 A1�E;Z� by

hP1g1; . . . ;PngniEd :�
Z
�Xn;d �

Yn
i�1

Pi�ci�e�i �egi�En;d ; �7�

where gi 2 A��E�, Pi 2 Q��c��, and �Xn;d � is the virtual fundamental class of dimension
(5).

There is an exact sequence of vector bundles

0! ker! pn�1�e
�
n�1E ! e�i E ! 0; �8�

where the right-hand map is obtained by evaluating sections at the ith marked point.
This implies that En;d is divisible by E0 in A��Xn;d �, hence the invariants (7) are inde-
pendent of the chosen liftsegi.

When X is convex, then �Xn;d � is simply the fundamental class of Xn;d . If Y � X is
cut out by a regular section of E, then

j�
X
i�d 0�d
�Yn;d 0 � � En;d � �Xn;d � ; �9�

where the map j:Yn;d 0 ! Xn;d is induced from the inclusion map i:Y ! X .
Let fDig, fDig denote a pair of homogeneous bases ofA��E� such that hDi;D

jiE � dji ,
and let Ti 2 A��E���c��. The natural maps on the moduli space of stable maps respect
the virtual classes, hence induce important relations on GW-invariants. Among
these are:

Divisor equation. For p 2 A1�E� we have

hp;T1; . . . ;TniEd
�

Z
d
ep� �
hT1; . . . ;TniEd �

Xn
i�1
hT1; . . . ; pTi=c; . . . ;TniEd :

WDVV-relation. Denote*�T1

T2
iÿhT4

T3

�
d
:�

X
d1�d2�d

hT1;T2;DiiEd1hDi;T3;T4iEd2 :

*We use the Einstein summation convention.
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Then,�T1

T2
iÿhT4

T3

�
d
�
�T1

T2
iÿhT4

T3

�
d
:

Topological recursion relation (TRR).

hT1;T2;T3iEd �
X

d1�d2�d
hT1=c;DiiEd1hDi;T2;T3iEd2 :

The above equations are subject to some restrictions: If d � 0 we must assume that
nX 3 in the divisor equation. Further, all unde¢ned correlators appearing above are
set to 0, except for g1; g2 2 A��E� we de¢ne

hg1=c; g2iE0 :� hg1; g2iE :

Let fpig be a nef (i.e. pairs nonnegatively with all effective curve classes inA1�E;Z�)
basis for A1�E;Z�=torsion, and let fqig be formal homogeneous parameters such thatP

i deg�qi�pi � c1�X � ÿ c1�E� modulo ann�E0�. The WDVV-relations imply the
associativity of the quantum product de¢ned by

Di �E Dj:�
X
d;k

hDi;Dj;DkiEd qdDk;

where qd � Qi q
R
d
epi

i . Note that the product is homogeneous with the chosen grading.

1.4. QUANTUM HYPERPLANE PRINCIPLE

Let T be a formal homogeneous variable of degree 1. Let eE1� be the map induced from
the push-forward e1� by passing to the quotient (3). Use E

0
1;d to denote the top Chern

class of the kernel in (8), thus E1;d � E0E
0
1;d . Consider the following degree 0 vector in

A��E���q; Tÿ1��:

JE : � ep ln�q�=TX
d

qdeE1�
E
0
1;d

T�Tÿ c1�

 !

� ep ln�q�=TX
d

qd
Di

T�Tÿ c�
� �

E
d D

i;

�10�

where p ln q �Pi ln�qi�pi, and the convention hDi=�T�Tÿ c��iE0 Di � 1 is used. Sup-
pose H � �Li is a sum of convex line bundles on X . If c1�X � ÿ c1�E �H� is nef,
the quantum hyperplane principle suggests an explicit relationship between JE
and JE�H via the following adjunct in A��E �H���q; Tÿ1��:

IHE :� ep ln�q�=TX
d

qdHdeE�H1�
E
0
1;d

T�Tÿ c1�

 !
; �11�
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where

Hd :�
Y
i

YRd c1�Li�

m�1
�c1�Li� �mT�;

and the qi's are regraded so that
P

i deg�qi�pi � c1�X � ÿ c1�E �H� modulo ann�E0�.
Hence, by assumption, all deg�qi�X 0. The precise statement is:

The vectors IHE and JE�H coincide up to amirror transformation of the following type:

(i) multiplication by a exp�b=T�where aand b are homogeneous q-series of degree 0and
1 respectively,

(ii) coordinate changes ln qi 7! ln qi � fi ; where fi are homogeneous q-series of degree
0 without constant term.

Further, the mirror transformation is uniquely determined by the ¢rst two
coef¢cients in the Tÿ1-Taylor expansion of IHE and JE�H .

THEOREM 2. If X is a homogenous space and E is equivariant with respect to a
maximal torus action on X, then the quantum hyperplane conjecture as formulated
above is true.

Proof. The proof in [18] for rank�E� � 0 extends with minor modi¢cations to the
general case. &

Remark 1. An early version of this principle appeared in [3]. Givental formulated
and proved the rank�E� � 0 case for toric manifolds [14, 15]. The above formulation
when rank�E� � 0 is due to B. Kim [18]. Extending the conjecture of B. Kim we
expect that the principle holds for more general X . In [26] the conjecture was tested
on a nonconvex, nontoric manifold.

Remark 2. An analogue generalization of the hyperplane principle in [13, 17] for
concavex H can be formulated with E convex/concave. The proof in [18] extends
to cover these cases when X is homogenous. See also [22].

1.5. DIFFERENTIAL EQUATIONS

The vector JE encodes all the E-restricted one-point GW-invariants. Reconstruction
using TRR [23] shows that these are determined by two-point GW-invariants
without c's. This is organized nicely in terms of differential equations [8, 15]. Con-
sider the quantum differential equation

Tqk
d

dqk
T � pk �E T ; k � 1; . . . ; rank�A1�E��; �12�

where T is a series in the variables ln qi and Tÿ1 with coef¢cients from A��E�. The
WDVV-relations imply that the system is solvable. An application of the divisor
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equation and TRR [23, 26] shows that JE � hS; 1iE for fundamental solution S of
(12). In particular, if c1�X � ÿ c1�E� is positive the hyperplane principle, when true,
yields an algebraic representation of the (quantum) D-module generated by JE�H .

Remark 3. A useful application of Theorem 2 is the following: for partial £ag
manifolds F � F �n1; . . . ; nr; n� with universal sub-bundles Uni and quotient bundles
Qni , one may consider vector bundles E that are direct sums of bundles of type

^p1U_ni1 
 ^
p2Qni2


 Sp3U_ni3 
 Sp4Qni4
:

If c1�F � ÿ c1�E� is positive, the E-restricted quantum cohomology can in principle be
computed using localization techniques, and the theorem will yield the quantum
D-module for the nef (and, in particular, the Calabi^Yau) cases of type E �H, with
H decomposable.

2. The Pfa¤an Variety

LetV be a vector space of dimension 7 and consider the projective space P � P�^2V �
with universal 7� 7 skew-symmetric linear map a:V_P �ÿ1� ! VP; where VP denotes
the trivial vector bundle on P with ¢ber V . De¢ne M � P as the locus where
rankaW 4. The scheme structure is determined by the Pfaf¢ans of the diagonal
6� 6-minors. The variety is locally Gorenstein of codimension 3 in P with canonical
sheaf OM�ÿ14�. Its singular locus, which is the rank 2 degeneracy locus of a, is of
codimension 7 in M [6]. This implies that the intersection Mk �M \ Pk�3 with
a general linear sub-space Pk�3 in P is of dimension k, has canonical sheaf
OMk �3ÿ k�, and is smooth when kW 6.

We recall a classic construction for degeneracy loci (see, for instance, [12],
Example 14.4.11). Let G � Grass4�V � be the Grassmannian of 4-planes in V with
universal exact sequence

0! U ! VG ! Q! 0 :

Pulling everything back to PG � P � G, we regard ^2U�1� as a sub-bundle of
^2VPG�1�, where the twists are with respect to OP�1�. The map a induces a regular
section a of the convex rank 15 quotient bundle on PG

A:� ^2VPG�1�= ^2 U�1�:
LEMMA 1.The zero-scheme V �a� � PG projects birationally ontoM.Moreover, the
projection is isomorphic over the nonsingular locus of M.

For a general linear sub-space Pk�3 in P, let �Ak; ak� denote the pull-back of the
pair �A; a� to Pk�3 � G. By Lemma 1, V �ak� projects isomorphically toMk for kW 6.

We are now set to compute the quantum D-module of the Calabi^Yau variety M3

using Theorem 2. This can in principle be done from any of the Ak-restricted �kX 4�
GW-theories. We provide details for the case E � A6.
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First, we need to determine the cohomology ring A��E�. Pull-backs to P9 � G of
the Chern classes p � c1�OP�1�� and gi � ci�Q�; i � 1; 2; 3, generate the Q-algebra
A��P9 � G�, and induce generators of A��E�.

LEMMA 2.

(i) The Q-algebra A��E� is generated by p and g2 with top degree monomial values as
follows:

p6 � 14; p4g2 � 28; p2g22 � 59; g32 � 117:

In particular the Betti numbers of A��E� are �1; 1; 2; 2; 2; 1; 1�.
(ii) We have the relation g1 � 2p.

Proof. Computed using Schubert.* &

Our choice of basis fDig for A��E� is the following:

f1; p; p2; g2; p3; pg2; p4; p2g2; p5; p6g:

Rather than to work directly with the solutions (10) and (11) we prefer to work with
their governing differential equations. The quantum differential equation (12) is
determined by the two-point numbers hDi;DjiEd for all d in A1�E;Z� ' Z. A simple
dimension count shows that these are 0 unless

codim�Di� � codim�Dj� � 5� 3d : �13�

LEMMA 3. Values of dX 1 GW-invariants satisfying (13) are as follows:

hp2; p6iE1 � 238; hpg2; p5iE1 � 2044; hp2g2; p2g2iE1 � 6617;

hg2; p6iE1 � 504; hp4; p4iE1 � 1568;

hp3; p5iE1 � 980; hp4; p2g2iE1 � 3220; hp5; p6iE2 � 9800

Proof. It follows from Lemma 2 that the map (4) identi¢es d with the curve class
�d; 2d� in A1�P9 � G;Z�, so the GW-invariants are integrals over �P9 � G��d;2d�.

Localization. Consider the standard action of T � �C��10 � �C��7 on P9 � G. Since
the integrands are polynomials in Chern classes of equivariant vector bundles with
respect to the induced T -action on �P9 � G��d;2d�, they may be evalued using Bott's
residue formula (see [10, 20]). As there are only ¢nitely many ¢xed points and curves
in P9 � G, the formulae involved are similar to the ones found in [20]. Details are left
to the reader. The two-point integrals with d � 1 were evaluated in this manner.

*A MAPLE package for enumerative geometry written by S. Katz and S.-A. Str�mme.
Software and documentation available at http://www.math.okstate.edu/~katz/schubert.html.
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Reconstruction. The number hp5; p6iE2 is however more easily obtained from d � 1
numbers using the following WDVV-relations:

� p
p2g2
iÿh p

5

g2

�
2
;
� p
p4
iÿh p

5

g2

�
2
;
� p
p3
iÿh p

6

g2

�
2
;
� p
pg2
iÿh p

6

g2

�
2
: �14�

In fact, a further analysis* shows that the 3-point d � 1 numbers appearing in the
equations (14) are in turn determined by the 2-point d � 1 numbers above. &

Remark. Employing a description in [9] of the class in Grass2�^2V � of lines on M,
the d � 1 GW-invariants which only involve powers of p can be computed without
using Bott's formula.

Consider the differential equation (12), with invariants as in Lemma 3 and T � 1.
Denote q � q1 and D � qd=dq. By reduction we ¢nd the (order 10, degree
5)-differential equation P�D� �Pd q

dPd�D� � 0, with Pd as below, for JE�T � 1�.

P0 � 3D7�Dÿ 1�3;
P1 � D3�194D7 ÿ 776D6 � 1072D5 ÿ 1405D4 ÿ 1716D3 ÿ 1272D2ÿ

ÿ 414Dÿ 51�;
P2 � 343D10 ÿ 1715D9 � 3185D8 ÿ 58593D7 ÿ 55484D6 ÿ 460D5 � 10697D4�

� 1850D3 ÿ 896D2 ÿ 480Dÿ 96;

P3 � ÿ99127D7 � 22736D5 ÿ 11772D4 ÿ 34797D3 ÿ 31654D2ÿ
ÿ 13495Dÿ 2175;

P4 � ÿ19551D4 ÿ 39102D3 ÿ 31360D2 ÿ 11524Dÿ 1430;
P5 � 343�D� 1�:

Let H � 3OP�1� and assume T � 1. The adjunct IHE is obtained by correcting the
qd-coef¢cients of JE with the class Hd �

Qd
m�1�p�m�3. A reformulation of this

transformation on the corresponding differential equations takes the same form**.
That is, the differential operator

X5
d�0

qdPd

Yd
m�1
�D�m�3 �17�

annihilates IHE . Recall that the commutation rule isDqÿ qD � q. If we factor out the
``trivial'' term D3�Dÿ 1�3 from the left of (15) and re-organize the terms we recover
the Picard^Fuchs operator (1).

*For instance, using Farsta, a computer program written by A. Kresch, available at http://
www.math.upenn.edu/~kresch/computing/farsta.html.
**This is a general principle when rankA1�E� � 1. It is easily proved using recursion formulas
for solutions of differential equations [3, 26].
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Proof of Theorem 1. From (9) it follows that hp; p; piM3

d � hp; p; piA
3

d . Using (12) it
is straightforward to check that D21=KD2 is the differential operator governing
JA3 (see, for instance, [26]). The rest follows from Theorem 2. &

The ¢rst ¢ve curve numbers are

n1 � 588; n2 � 12103; n3 � 583884; n4 � 41359136; n5 � 3609394096:
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