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HANKEL MATRICES OVER 
RIGHT ORDERED AMENABLE GROUPS 

BY 

RUY EXEL* 

ABSTRACT. We extend to amenable right ordered groups the theorems 
of Nehari and Hartman on Hankel matrices. 

INTRODUCTION 

An infinite complex matrix M -- (mij)ij>\ is said to be a Hankel matrix if mtj is given 
by some function of / + j . In other words the entries are required to be constant along 
every diagonal perpendicular to the main diagonal. 

Extending a former result of Toepliz [13], Nehari gave in [8] a necessary and sufficient 
condition for a Hankel matrix to be bounded. The condition obtained by Nehari is that the 
first row of M (which clearly determines M itself ) be given by the Fourier coefficients, 
with positive indices, of some measurable bounded periodic function/ on the real line, 
i.e. mi j = / ( / ) for ally > 1. 

One year after the publication of Nehari's paper Philip Hartman [7] found a character
ization of compact of Hankel matrices. His result says that a Hankel matrix is compact 
if and only if its first row is given by the positive Fourier coefficients of a continuous 
periodic function. 

Therefore, in a way, bounded Hankel matrices correspond to bounded functions while 
compact Hankel matrices correspond to continuous functions. 

We refer the reader to S. Power's survey [11] and the references therein for more 
information on the classical theory of Hankel matrices and its interesting connections 
with other areas of analysis. 

We propose, in this paper, to extend the characterizations above to the context of right 
ordered groups. We thus define Hankel matrices over a given right ordered group G 
and prove natural extensions of Nehari's theorem as well as Hartman's provided G is 
amenable. When G is the group of integers we recover Nehari's theorem and obtain a 
result closely related to Hartman's theorem. 

This paper has two distinct parts the first of which is directed to a proof of the gen
eralization of Nehari's theorem which is found in section III. The second part starts 
with section IV and is intended to construct a proof of the generalization of Hartman's 
theorem. 
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Nehari's proof is based on the solution of certain functional equations which arise 
from a problem closely related to the Pick-Nevanlinna interpolation theory for bounded 
analytic functions, and are solved using a algorithm of Schur. Other techniques em
ployed include the existence of radial limits for bounded analytic functions on the unit 
disc and the maximum principle for harmonic functions. 

The harmonic analysis of right ordered groups does not yet include such powerful 
tools, so our techniques, as far as Part One is concerned, are forced in a different direction 
resembling somewhat the theory of nest algebras (see for example [1]). 

In part two our techniques have a more classical flavor. Based on Pierre Eymard's 
thesis [5] we are able to extend to our context the notion of summability kernels which 
turns out to be a very useful tool. En passant we give a partial answer to a question 
posed by Arveson in [2, remarks 2.2.3 and 3.2.3] and prove a generalization of Sarason's 
theorem [12] on the closedness of//00 + C. 

Our techniques break down completely without the assumption that our group be 
amenable. It is, nevertheless, an interesting project to study how much of all this still 
holds in the non-amenable case. 

This paper is an expanded version of a paper we presented at the Brazilian Analysis 
Seminar. We would finally like to thank Paulo D. Cordaro for helpful suggestions and 
fruitful discussions. 

PART ONE 

1. Lower triangular systems . Suppose that A — (fl^)/jGZ is an infinite matrix 
whose only known entries CLQ are those below the main diagonal (i.e. for i — j > 0); 
we propose to fill in the missing entries in such a way that A becomes the matrix of a 
bounded operator on liiZ). Of course such a task is not always feasible, as for example, 
would be the case if there were submatrices of A, living in the known region, of arbi
trarily large norm. Note that any such submatrix is in turn a submatrix of a "maximal 
known submatrix", i.e. a submatrix consisting of the entries CLQ for / > n and j < n for 
some n. 

It is therefore reasonable to ask whether the existence of a uniform bound for the 
norms of all "maximal known submatrices" could make our task possible. 

The goal of the present section is to answer this question. We do so in a much more 
general setting. 

Let H\ and H2 be Hilbert spaces. By a flag between H\ and Hi we shall mean a triple 
(/,P, Q) where / is a linearly ordered index set, P — {pt}iei and Q = {qi}iei are 
increasing families of self-adjoint projections on H\ and H2 respectively. If the reader 
is used to the notion of nests he will recognize flags as natural generalizations of nests. 

Given a flag F = (/, P, Q), an F-lower triangular system is by definition a family of 
bounded operators { Ti}ieI in B(H\, H2) such that 

(a)Ti = (l-qi)TiPi, 
(b) (1 - qi)Ti = TjPi for all / <j, and 
(c)sup{||Ti||,/ G /} < 00. 
An example is the family of "maximal known submatrices" as in our discussion above 

provided all boundedness conditions are satisfied. 
The precise statement of our result is then 
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THEOREM 1. Given a flag F = (/, P, Q) between H\ and H2 and an ¥-lower triangular 
system { Ti}i<Ei, there exists a bounded operator T G B(H\,H2) such that 

(a) Ti — {\— qi)Tpifor all i G /, and 

W||r|| = {sup||r,||,/G/}. 
PROOF. AS a first step we shall prove the theorem for finite flags by induction on the 

cardinality | / | of the index set. 
If |/| = 1 then the operator T =•• T\ clearly satisfies (a) and (b). 
Assume now that | /| = n > 1 and let P = {p\ , . . . ,pn} and Q— {q\,...,qn}> 
Let S = T2+q2T\ which is a bounded operator. Then S — ( 1 — q\ )Sp2 and by (a trivial 

modification of ) Parrot's distance formula (Theorem 1 of [9]) we have 

dist(£($2 ~ qi)B(HuH2)(p2 -Pl)) = max{ ||(1 - q2)S\\, | |5p,| |}.. 

Note that (1 — q2)S = T2 while Sp\ = T\. Therefore the distance form S to (q2 — 
q\)B(H\,H2)(p2 — pi) is less than M where M = max{ ||r/||,/ G / } . So there exists an 
operator 

Xe(q2-ql)B(HuH2)(p2-pl) 

such that || S -X\\ <M. 
Consider now the flag Ff = (/', P\ Q') where P' = {p2,P3,P4, • •. ,Pn} and Q' = 

{ 1̂» ^3, ^4, • • • ,qn}, with /' as the obvious index set, and define an F'-lower triangular 
system as follows: 

{7j}^ = {s-x,r3,r4,...,rn}. 
One may easily verify that { 7!'}./e/' ^s mdeed an F'-lower triangular system. It is also 

clear that max{ || 7j|| J G /'} < M, and so the induction hypothesis provides us with an 
operator T G B(HUH2) with || T\\ < M such that 

(1 — qt)Tpi = Tt for / > 3, 

and 
( l - 0 i ) 7 p 2 = S - X . 

The reader may now check that (1 — q\)Tp\ = T\ and (1 — q\)Tp2 = T2, completing 
the proof of the finite case. 

For infinie flags we proceed as follows. Consider the directed set of all finite subsets J 
of / ordered by inclusion. For each such J let Fj = (J, P\j, Q\j) denote the corresponding 
finite subflag and choose Tj G B(H\,H2) satisfying 

(1 - qj)TjPj = Tj for all j G 7 

and 
| | ' r , | | <max{ | | 7} | | , j e /} 

(hence || Tj\\ < M), as constructed above. Viewing {Tj} as a bounded net, let T be the 
weak limit of any weakly converging subnet. One may now verify that T satisfies the 
required properties. This completes the proof. 
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2. Right ordered groups . From now on we shall be concerned with C*-algebras 
and W* -algebras associated with discrete groups so we make a short pause to introduce 
some notation and recall some known facts. 

The letter G will always denote a discrete group. Given G we shall denote by ^(G) 
the Hilbert space of complex square summable functions on G. For every g in G we shall 
denote by 8g the function that vanishes everywhere on G except at the point g where its 
value is one. It is clear that the set of all 8gs forms an orthonormal basis for 12(G). 

For every g in G we denote by Lg (resp. Rg) the unitary operator on ^(G) given by 
Lg(8h) = 8gh (resp, Rg(8h) = 8hg). 

The von Neumann algebra generated by {Lg: g G G} (resp. {Rg: g G G} ) is called 
the left (resp. right) von Neumann algebra of G and is denoted by W*(G) (resp. W*(G)r). 
It is a well known fact that the commutant of W*(G) is W*(G)r and vice versa. 

The C*-algebra generated by {Lg\ g G G} is called the reduced C*-algebra of G and 
is denoted by C*ed(G). 

The linear functional r defined on W*(G) by 

r(a) = (a(8e),6e), ae W*(G) 

is a non-degenerate normalized trace. The Fourier transform a of an element a in W*(G) 
is defined to be the complex-valued function on G given by 

â(g) = r(Lg~xà) = (a(8e),6g), g G G. 

If S is any subset of G we set 

W(S) = {ae W*(G): â(g) = 0 for all g G G \ S} 

and W(S) equal to the a -weakly closed linear span of { Ls\ s G S}. 
Again, if S is a subset of G we set 

C(S) = {ae Cr*ed : â(g) = Oforallg G G\ S} 

and C(S) equal to the norm-closed linear span of { Ls : s G 5} . The linear span of 
{Ls:s eS} is denoted by C (S). 

We shall say that G is a right ordered group if G comes with an order relation < 
satisfying 

(i) for every g, h in G, either g < h or h < g, and 
(ii) for every g, s, tin G if s < t then sg < tg. 
Given a right ordered group G we set 

G+ = {geG:g>e}, 

G- = {geG:g<e}, 

G+
0 = {geG:g> e) and 

Gô = {geG:g<e}. 
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We also let H+, H~, //J, and HQ be the closed subspaces of 12(G) spanned by the 6gS 
with g in G+, G~, GJ, and GQ respectively, and/?+,/?~,/?o, and/?5~ denote the orthogonal 
projections onto these subspaces. 

3. Bounded Hankel matrices . Let G be a right ordered group. 

DEFINITION 2 . A Hankel matrix over G is a complex matrix 

M = (mKs)teG+,seG-

satisfying mUs — a(ts~l) for some complex function a defined on GJ, which we shall 
call the defining function of M. A Hankel operator is by definition a bounded operator 
from HQ to H+ whose matrix with respect to the canonical basis of HQ and H+ is a 
Hankel matrix. A Hankel matrix is said to be bounded if it is the matrix of some Hankel 
operator. 

As an example note that if a is an element of W*(G) then the operator h(a) defined by 

h(a) = p+a\H-

is a Hankel operator (as the reader may easily verify). The corresponding Hankel matrix 
is the matrix (mUs)teG+^G- given by 

mus = (p+a\H- (8s),6t) = (a(6s),6t) = a(ts~x). 

It is clear that a is in W(G~) if, only if, h(a) = 0. 
As we shall now see every Hankel operator arises in this way when G is amenable. 

THEOREM 3. Let G be an amenable right ordered group and let 

M = (mttS)teG+tSeG-

be a Hankel matrix over G. Then M is bounded if and only if M is h(a) for some a in 
W*(G). In this case one can choose a with ||<z|| = ||M||. 

PROOF. The "if" part being trivial we move on to the "only if" part. 
The proof will be based on Section I so let us identify the flag which will be relevant 

for our purposes. 
For every g in G we denote by Hg the closed linear span of { Ss: s < g} and write pg 

for the orthogonal projection onto Hg. 
If P is the family of all such p' s then the triple F — (G, P, P) is clearly a flag between 

H and itself. 
Given that M represents a bounded operator, let b be such an operator. Obviously, 

|| b\\ = || M||. We shall assume that b is defined on the whole of ^(G) by putting b\n+ = 
0. 

For every g in G set bg = RgbRg\. With a little effort the reader may verify that 
the family { bg}geG is an F-lower triangular system with bound equal to ||M||. We may 
therefore use Theorem 1 to conclude that there exists a bounded operator a on 12(G) 
such that 11 a\\ < \\M\\ and for all g in G one has bg = (1 — pg)apg. 
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Let 5 denote the set of all such operators. One may show that S is convex and weakly 
compact and that Rg\SRg — S for all g in G. That is, S is invariant under the action of 
G by conjugation by the operators Rg. 

Since G is amenable it follows by [6] that there exists a fixed point, i.e. there exists 
some a in S such that Rg\ aRg = a for all g in G. This says that a commutes with the 
right von Neumann algebra of G. Therefore a is in W*(G) and we have for t > e, s < e 

mus = (b(6s),St) 

= (be(6s),6t) 

= ((1 -pe)ape(Ss),St) 

= (a(6s),6t) 

= â(ts~l). 

Finally, note that 

NI >\\(1-Pe)ape\\ =|IM =11*11 =W\\ 

and so 

NI = llMll-
COROLLARY 4. Let G be an amenable right ordered group. Then for every a in W*(G) 

we have 
dist(a, W(G~)) = \\h(a)\\. 

PROOF. If b is in W(G~) we have h(b) = 0 and so 

\\a-b\\ > \\h{a-b)\\ = \\h(a% 

so that dist(a, W(G~)) > || h(a)\\. To prove the converse inequality note that by Theorem 
3 there exists b in W*(G) with h(b) = h(a)<md \\b\\ = ||A(û)||.Sowehave/i(fl-*) = 0, 
whence a — b is in W(G~) and thus 

dist(a,W(G-))<\\a-(a-b)\\ = \\b\\ = \\h(a)\\, 

completing the proof. 

PART TWO 

4. Summability kernels . In order to extend the notion of summability kernels 
to non-commutative groups we must make use of the work of P. Eymard [5] which we 
now briefly describe, for the convenience of the reader and also because, in our context 
of discrete groups, we can make some minor improvements on it. These improvements 
will turn out to be important in the sequel. See [5] for details. 
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As before let G be a discrete group. The full C*-algebra of G, denoted by C*(G), is by 
définition the C*-algebra generated by the range of the universal representation U of G. 

According to [5] the Banach space dual of C*(G) may be identified with the subspace 
B(G) of ^oo(G) spanned by the positive definite functions on G. The identification is as 
follows: given i/> in C*(G)*, the corresponding element in loo(G) is the function 

geG*-+xi)(Ug)ec. 

In turns out that B(G) is a subalgebra of £oo(G) under pointwise multiplication. More
over it is an involutive Banach algebra with the norm inherited from C*{Gf and invo
lution defined by 

f(g)=f(g-1), g^G 

for al l / in £(G). 
The subset of B(G) comprising the positive definite functions is a closed convex gen

erating cone which is denoted B+(G). Eymard calls B(G) the Fourier-Stieltjes algebra of 
G. 

The pre-dual W*(G)* of W*(G) may be identified with a closed self-adjoint ideal A(G) 
of B(G) called the Fourier algebra of G. The identification maps each <j> in W*(G)* to 
the function 

g£G^<t)(Lg) EC. 

The intersection of B+(G) with A(G) is denoted by A+(G). 
Keeping the above identifications in mind we shall refer to C*(G)* and W*(G)* as 

B(G) and A(G) respectively (and vice versa) since no confusion will arise. This will of 
course lead to an identification between the notations </> (Lg) and <f> (g). 

For every g in G let \g be the characteristic function of the singleton {g}. Each \g 

belongs to A{G). Actually A(G) contains the space K{G) of finitely supported functions 
on G as a dense subspace. Given x/j in B(G) and a in W*(G) the map 

<f) G A ( G ) H ( # ) ( Û ) G C 

(note that the right hand side makes sense because A(G) is an ideal) is clearly a bounded 
linear funcitonal on A(G) with norm at most \\I/J\\ \\a\\. But since W*(G) is the dual of 
A(G) there must exist a uniquely defined element in W*(G) which we denote T/; X a such 
that 

(</> ^ )(a) = <t> (\j) x a) 

for all <j> in A(G). This gives W*(G) a 5(G)-module structure. 
As an example note that if <j> is in B(G) and g is a group element one has 

i/j xLg = il;(Lg)Lg 

since for all <j> in A(G) we have 

H1> x Lg) = (M){Lg) = <t>{Lg)^(Lg) = <f>{^(Lg)Lg). 

PROPOSITION 5. Given a discrete group G the following statements hold: 
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(i) For all \\) in B(G) the map 

a G W*(G) H-> V x a G W*(G) 

is a -weakly continuous. 
(ii) For all xp in B(G), a in W*(G) and g in G 

(xfxa)(g) = ^(g)â(g). 

(Hi) C$ed(G) is a B(G)-submodule ofW*(G). In other words 

B(G) x Cred(G) C Ced(G). 

(iv)A(G)x r ( G ) C C ; d ( G ) . 

PROOF. Since the cr-weak topology on W*(G) coincides with the weak topology aris
ing from the duality between A(G) and W*(G) all we must check in order to prove (i) is 
that for every <\> in A(G) the map 

ae y/*(G)v-><}>(\i) xa)ec 

is a -weakly continuous. But note that §($ x a) = (cpxpXa) and (fri/j E A(G) because 
A(G) is an ideal. Since A(G) corresponds exactly to the a-weakly continuous linear 
functionals on W*(G) we have proven (i). 

To prove (ii) recall that for g in G, \g *s in A(G). Viewing \g as an element of W*(G)*, 
it is clear that Xg(a) = à(g) for all a in W*(G). We then have 

(tlTx a)(g) = Xg{^ x a) = (xg^)(a) = W(g)xg)(a) = ^(g)â(g). 

In order to prove (iii) take x/j in B(G) and a in C (G). Then a is of the form 

1=1 

and we have 
n n 

^ x a = J2 W x Lgi = Zl ^iLgi)Lgi 
1=1 1=1 

which clearly belongs to C (G). That is, B(G) x C (G) is contained in C (G). But since 
C*ed(G) is the norm closure of C (G) the result follows from continuity. 

To prove (iv) pick </> in K(G) and a in W*(G). Then by (ii) 

(<M0)(s) = 0(g)a(g) 

so that (j) x a has finitely many non-zero Fourier coefficients, whence 

<t> xa= Y,(f* a)(8)Lg> 
gee 

so that </> x a is in C (G). This says that K(G) x W*(G) is contained in C (G). The result 
now follows from the fact that K(G) is dense in A(G). 

Since most of our results are only proved for amenable groups we will, from now on, 
concentrate our attention on groups having this property. 

If G is amenable then the trivial representation of G extends to a one dimensional 
representation T of C*ed(G) (which in this case is isomorphic to C*(G); cf. [10, 7.3.9]) 
such that T(Lg) = 1 for all g in G. 
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LEMMA 6. Let G be amenable. Then for every </> in A(G) and a in W*(G) we have 
4>{a) = T(</> xa). 

PROOF. First assume that a = Lg for some g in G. Then 

T((f> xa) = T(<t> x Lg) = T((f>(Lg)Lg) = </>(Lg) = <t>{a). 

So by linearity and continuity the lemma holds for all a in C*&d(G). Now suppose that 
a is in W*(G) and <j> = fa<f>2 for some </>i, fa in A(G). Then fa x a belongs to C*Qd(G) 
and we have by what was said above 

7(0 xa) = T(fa x {fa x a)) = fa(fa x a) = (fafa)(a) = <t>{a). 

It is now enough to prove that 

A(Gf = span{ fa fa: fa, fa £ A(G)} 

is dense in A(G). But this becomes clear once we note that K(G)2 = K(G). 

DEFINITION 7. A summability kernel for a group G is a net {</>/} of elements of A(G) 
such that 

(i) for all a in C*ed(G) the net { fa x a} is a norm convergent to a, 
(ii) for all « in W*(G) the net { fa x a] is a <r-weakly convergent to a. 

THEOREM 8. If G is amenable then there exists a summability kernel { fa} such that 
each (f>i is in A+(G) D K(G) and \\fa\\ < 1. 

PROOF. According to [10, 7.3.8] there exists a net {f} in the unit sphere of ^{G) 
such that/ *yj* (convolution product) converges pointwise to 1. We may clearly assume 
that/ G K(G). Define 

> « = / • */T 
so that (/>/ belongs to A+(G) H K(G) and 

II^-II < I I / - I I 2 < I . 
Observe that for all g in G, </>, x Lg = fa(Lg)Lg converges to Lg. Thus, by linearity, 

fa x a converges to a for al a in C(G) and since { fa} is uniformly bounded, fa x a 
converges to a for all a in C*ed(G). 

To prove (7.ii) we first claim that for all b in C*ed(G), 

\imfa(b) = T(b). 
i 

This is clear if b = Lg for some g in G, so also for all b in C (G). In the general case 
the claim follows from the uniform boundedness of {</>/}. 

Now let a be in W*(G). To prove that { fa x a} converges a-weakly to a it is enough 
to show that for all <j> in A(G) one has 

lim <j>{fa x a) — <t>(a). 
i 

But 
<t>(fa xa) = (<l>fa)(a) = {fa<t>)(a) = fa(</> x a), 

which, by the claim above, converges to T(</> x a) since <j> x a is in C*ed(G). Therefore 

lim <j>(fa xa) = T(<t> x a) = <j>(a). 
i 

As a first application of the results of this section we can give a partial answer to a 
question posed by Arveson in [2, remarks 2.2.3 and 3.2.3]. 
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THEOREM 9. Let G be amenable. Given any subset S of G (in particular G+ in case G 
is a right ordered group, which is the case of interest in [2]) we have W(S) = W(S) and 
C(S) = C(S). 

PROOF. . It is clear that W(S) is contained in W(S) and C(S) is contained in C(S). To 
prove the reverse inclusions let {fa} be a summability kernel for G with fa G K(G). 

Given a in W(S), for all / we have that the non-zero Fourier coefficients of fa x a 
correspond to a finite subset of S by Proposition 5 (ii). Thus fa x a is in C (S), hence 
in W(S). Since a is the cr-weak limit of fa x a it follows that a belongs to W(S). The 
inclusion C(S) C C(S) is proved in a similar way. 

We should note that after the present paper was first submitted for publication, we have 
been able to find a complete answer to Arveson's question in the finite case(see [4]). In 
particular, the equality W(G+) = W(G+) holds for all right ordered groups regardless of 
amenability. 

5. Approximately finite Hankel matrices. Our goal in this section is to extend 
Hartman's theorem concerning compact Hankel matrices. Hartman proves in [7] that a 
Hankel matrix is compact if and only if its first row is given by the Fourier coefficients, 
with positive indices, of some continuous periodic function. 

Over some right ordered groups (as is the case of the discrete real line ) there is no 
non-zero compact Hankel matrix. The reason being that there may not exist finite or
dered intervals except for the degenerate ones. Because of this we must work with an 
alternative notion of "compactness" for Hankel matrices which we now describe. 

DEFINITION 10. Let M be a Hankel matrix over the right ordered group G and let a 
be its defining function. We shall say taht M is finite if the support of a is a finite subset 
of G. We shall say that M is approximately finite if M is in the operator norm closure of 
the space of finite Hankel matrices. 

It is clear that finite and hence also approximately finite Hankel matrices are bounded. 
Our first step towards a "right ordered" form of Hartman's theorem is a generaliza

tion of a result of Sarason [12] on the closedness of H°° + C Thanks to the existence of 
summability kernels over amenable groups we are able to give an "ipsis litteris" trans
lation of Zalcman's proof [14] of Sarason's theorem. 

THEOREM 11. Let G be an amenable group and let S be a subset ofG. Then 
(i) C;ed(G) + W(S) is closed, 
(ii)for all a in C*red(G), dist(a, W(S)) = dist(a, C(5)). 

PROOF. We prove (ii) first. Let {</>;} be a finitely supported summability kernel for G, 
each fa having norm one as in Thoerem 8. Given a in C*eA(G) and b in W(S) we have 
for all / 

\\a-fa x b\\ < \\a-fa x a\\ + \\fa xa-fax b\\ < \\a-fa X a\\ + ||a —fc||. 

Since || a —fa x a\\ —• 0 and since each fa x b is in C(S) we conclude that dist(a, C(S)) < 
dist(a, W(S)). The reverse inequality is trivial. 
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To prove (i) note that from (ii) the natural map 

CUG)/C(s)^W\G)/W(S) 

is isometric and so its range is closed. Therefore C*ed(G) + W(S), being the inverse image 
of that range under the quotient map 

W*(G)\-*W*(G)/W(S), 

is also closed. 
We can now prove the main result of this section. 

THEOREM 12. Let G be an amenable right ordered group. A necessary and sufficient 
condition for a given Hankel matrix M to be approximately finite is that M be h{a)for 
some a in C*ed(G). In this case, for every e > 0, one can find a in C*ed(G) with M = h(a) 
and \\a\\ < \\M\\ + e. 

PROOF. Since every a in C*ed(G) is the norm limit of elements in C (G), it is clear that 
h{a) is approximately finite. 

Conversely let M be an approximately finite Hankel matrix. Given e > 0 one can 
find a sequence {Mt} of finite Hankel matrices such that 

oo 

/ = 1 

||A*i|| < ||M|| + e / 4 and 

\\Mi\\ <2~l-xe 

for all / > 2. Since Mt is finite for every / we may obviously choose at in C (G) such that 
Mi — h(ai). 

We have by Corollary 4 and Theorem 11, 

distfo, C(G-)) = dist(fl/, W(G~)) = ||/z(a/)|| = ||M/||. 

So for every / we may take b( in C{G~) such that 

| | f l«-*«| | < | | M / | | + 2 - / - 1 £ . 

oo 

The series £ at — bt is therefore absolutely summable. Denote its sum by a. We have 
i=\ 

oo oo 

INI < E l k - M I <T,\M\+2-'-ie<\\M\\+e. 
i= 1 / = 1 

Moreover, 
oo oo oo 

h(a) - J2 h("> - bù = E *to) = Y,Mi = M. 
1=1 1=1 1=1 
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THEOREM 13. Let a be in W*(G). Then a is in C*ed(G) + W(G~) if and only if Ha) is 
approximately finite. 

PROOF. Suppose that h(a) is approximately finite. Then there exists b in C*ed(G) such 
that h(b) = h(a). It follows that h(a — b) = 0 and hence a — b is in W(G~). Writing 
a = b + (a — Z?) we see that a is in Cled(G) + W(G~). The "only if" part is clear. 
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