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Parameterization of lateral drag in flowline models of glacier
dynamics
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ABSTRACT. Given the cross-sectional geometry of a valley glacier, effects of lateral drag can be
parameterized in flowline models through the introduction of Nye shape factors. Lateral drag also
arises due to lateral variability in bed topography and basal flow, which induce horizontal shear stress
and differential ice motion. For glaciers with various geometric and basal conditions, we compare
three-dimensional Stokes solutions to flowline model solutions to examine both sources of lateral drag.
We calculate associated correction factors that help flowline models to capture the effects of lateral
drag. Such parameterizations provide improved simulations of the dynamics of narrow, channelized,
fast-flowing glacial systems. We present an example application for Athabasca Glacier in the Canadian
Rocky Mountains.

1. INTRODUCTION
Over the past several decades, many numerical models have
been developed and applied to simulate the dynamics of
glaciers (e.g. Blatter, 1995; Oerlemans and others, 1998;
Pattyn, 2003; Zwinger and others, 2007; Jouvet and others,
2008) and ice sheets (e.g. Oerlemans, 1982; Huybrechts,
1990). Despite various degrees of complexity in physics
and numerics, the fundamentals of these models all rely
on the conservation laws of mass, momentum and energy.
Glaciers and ice sheets move so slowly that the acceleration
term can be removed from themomentum-balance equation;
the dynamical problem in glaciology therefore reduces
to a Stokes problem. Stokes models (e.g. Gudmundsson,
1999, 2003; Hindmarsh, 2004; Zwinger and others, 2007;
Jarosch, 2008), which solve the complete set of elliptical
diagnostic equations, describe the most complete treatment
of glacier dynamics. Other models, such as the shallow-
ice approximation (SIA) of Hutter (1983) and the high-order
model of Pattyn (2003), can be considered as approximations
to the Stokes model (Hindmarsh, 2004). We refer to these as
reduced models of glacier dynamics.
In order to understand the physical mechanisms associated

with Stokes and reduced models, the force budget in a
glacier section has been analyzed several times (e.g. Nye,
1957; Budd, 1970; Kamb and Echelmeyer, 1986; Whillans,
1987). By partitioning the Cauchy stress tensor into the
resistive stress tensor and hydrostatic pressure, Whillans
(1987) derives a set of balance equations, consisting of
the terms that intuitively describe the physical processes of
glacier mechanics. In three-dimensional (3-D) space, the full-
stress balance equation in the principal flow direction, for
example, can be written as (e.g. Whillans, 1987; Van der
Veen, 1999),

ρgzhαsx︸ ︷︷ ︸
τd

=Rxz (b)− Rxx (b)αbx − Rxy (b)αby︸ ︷︷ ︸
τb

− ∂

∂x

∫ s

b
Rxx dz︸ ︷︷ ︸

τlon

− ∂

∂y

∫ s

b
Rxy dz︸ ︷︷ ︸

τlat

,
(1)

where ρ is the ice density, gz is the vertical component of
gravity, h is the ice thickness, αij is the slope (i = s, b

represents the ice surface and bed, j = x, y indicates the
horizontal directions) and Rij is the resistive stress (i, j =
x, y , z). From Eqn (1) it is evident that the gravitational driving
stress, τd, in full-stress Stokes models is balanced collectively
by the basal drag, τb, the resistance due to longitudinal stress
gradients, τlon, and the lateral drag, τlat. The mechanics of
reduced models can be described in a similar manner. SIA
models, for example, simulate the ice dynamics according to
a balance between τd and τb alone, as vertical shear stresses,
Rxz and Ryz , are the only nonzero stress components in the
balance equations.
Pragmatic flowline models are popular, especially for

dynamical studies of valley glaciers, because they describe
the dominant elevation-dependent mass-balance controls,
dynamical evolution and climatic sensitivity of most glaciers,
while requiring minimal inputs (e.g. Oerlemans and others,
1998, and references therein). Flowline models can also be
of various degrees of complexity (Adhikari and Marshall,
2011), but they all lack a complete physical treatment of τlat
in the force-balance equations, because variations in lateral
direction are omitted as per the plane-flow approximation.
In reality, τlat plays an important role in controlling the
dynamics of glaciers (e.g. Raymond, 1971, 1996; Pimentel
and others, 2010) and fast-flowing ice streams that are
bounded by relatively sluggish ice sheets on the lateral
margins (e.g. Bindschadler and others, 1987; Echelmeyer and
others, 1994; Whillans and Van der Veen, 1997). Flowline
models therefore do not describe the full dynamics of these
glacial systems, although lateral stress effects have been
parameterized in different ways (e.g. Nye, 1965; Marshall
and Clarke, 1997).
To address these inherent shortcomings of flowline

models and to improve parameterizations, it is important
to understand the sources of lateral drag. In general, this
drag arises wherever there are lateral gradients in downslope
velocity. The most obvious source of τlat in valley glaciers
is the friction between the moving ice and valley walls
(e.g. Van der Veen, 1999; Cuffey and Paterson, 2010). For
narrow, channelized, fast-flowing ice streams, τlat can also
arise from lateral variations in basal geometry or stick/slip
basal transitions (e.g. Raymond, 1996; Whillans and Van
der Veen, 1997; Van der Veen and others, 2007). These two
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sources of τlat are hereafter referred to as geometry-induced
and slip-induced lateral drag, respectively. Observations (e.g.
Raymond, 1971; Harbor and others, 1997) indicate that the
slip-induced lateral drag is also common in valley glaciers.
Based on numerical studies of ice flow down an idealized

channel of various cross sections, Nye (1965) recommends
a set of correction factors (shape factors) to be imposed
upon SIA flowline models. With shape factors, these models
empirically capture the influence of lateral drag due to valley
walls. The Nye model accommodates internal deformation
only, which is the leading flow mechanism in many valley
glaciers. However, shape factors do not account for the
effects of slip-induced lateral drag and are not designed
to accommodate τlat when basal flow dominates. Many
applications of flowline models employ shape factors where
basal sliding is a significant part of ice dynamics (e.g. De
Smedt and Pattyn, 2003; Anderson and others, 2008). This
implicitly assumes that sliding velocity along the lateral
transect is consistent with the value at the valley centre,
an assumption that results in systematic overestimation
of the fluidity of glacier ice in flowline models. Proper
parameterization of slip-induced lateral drag is therefore
necessary to enhance the dynamical realism of flowline
models. Previous workers have analyzed the flow in channels
of irregular cross sections (Shoemaker, 1985) and assessed
the effects of basal sliding on valley glacier dynamics (e.g.
Reynaud, 1973; Harbor, 1992), but none of them present
parameterizations or guidance for flowline models. The
ideas and numerical simulations presented in this paper are
designed to address this.
The layout of this paper is as follows: we (1) introduce

relevant ice-flow models; (2) assess the effects of lateral drag;
(3) calculate the corresponding correction factors; (4) test the
compatibility of these factors; and (5) present an example
application, illustrating how one can improve simulations of
flowline dynamics through the correction factors.

2. ICE RHEOLOGY AND FLOW MODELS
The rheological properties of glacier ice are practically
independent of the isotropic or hydrostatic pressure (e.g.
Rigsby, 1958), and are therefore commonly described
using deviatoric stresses rather than Cauchy stresses. The
constitutive equation that relates deviatoric stresses to strain
rates in isotropic ice is given by the inversion of Glen’s flow
law (Glen, 1955),

τij = 2ηε̇ij , (2)

where τ is the deviatoric stress tensor, ε̇ is the strain-rate
tensor and η is the effective viscosity. The viscosity of ice is
strain-rate dependent and is given by

η =
1
2
A−

1
n ε̇

(
1−n
n

)
e , (3)

where A is the flow law rate factor, n is the flow law
exponent and ε̇e is the effective strain rate that is the second
invariant of the strain-rate tensor, 2ε̇2e = ε̇ij ε̇ji . By defining
ε̇ij = 1

2

(
ui,j + uj,i

)
, deviatoric stresses (Eqn (2)) can be

linked to the ice velocity, u, which is a commonly observed
glaciological field variable at the glacier surface. Note that
we use index notation for derivatives; ui,j , for example,
denotes the derivative of the ith component of velocity vector
u with respect to the j-axis.

Hypotheses and experimental foundations of this flow
law of ice are given by Glen (1958) and are reviewed in
considerable detail by, for example, Hooke (1981), Budd and
Jacka (1989), Alley (1992) and Cuffey and Paterson (2010).
Because the form of the constitutive relation – describing the
non-Newtonian behaviour of glacier ice in a low Reynolds
number flow – is well established and can be explained
in terms of dislocation theory, these discussions revolve
around the suitable values for n and A under different
thermomechanical regimes. For isothermal and isotropic ice
masses under realistic stress regimes, i.e. τ ∈ [50, 200] kPa
(e.g. Cuffey and Paterson, 2010), these parameters can
be considered as constants; we use n = 3 and A =
10−16 Pa−3 a−1 (as, e.g., in Pattyn and others, 2008). Based
on this theory of ice rheology, we run dynamical ice-flow
models by solving the corresponding governing equations.

2.1. Governing equations
For isothermal glacier domains in d (≥2)-dimensional Eu-
clidean space, R

d , the general suite of ice-flow models
can be described using the incompressibility criterion and
the linear momentum-balance equation (neglecting the
acceleration term),

ui,i = 0, (4)

σij,j + ρgi = 0, (5)

where u is the velocity vector, σ is the Cauchy stress tensor, ρ
(910 kgm−3) is the ice density and g (= {00− 9.81}T ms−2)
is the gravity vector. We split σ into its deviatoric part, τ , and
an isotropic pressure, p, so that

σij = τij − pδij , (6)

whereby the momentum-balance equation (Eqn (5)) can be
expressed in terms of the velocity vector, using Eqn (2). The
isotropic pressure is dependent on the trace of the Cauchy
stress tensor, such that p = −σkk/d , and is activated via the
Kronecker delta, δij , only when normal stresses are involved
(δij = 1 for i = j, and δij = 0 otherwise).
For the purpose of parameterizing the effects of lateral

drag, we consider a 3-D Stokes model and a flowline model
such that τlat is the only dynamical discrepancy between
them. Mathematical details of a number of different reduced
models are presented by Adhikari and Marshall (2012);
below we provide a brief summary of the models applied
here.

2.1.1. Full-stress Stokes (FS) model
In any dimension d ≥ 2, Eqns (4) and (5) are called the
Stokes equations. If a model solves the Stokes system in 3-D
space, R3, we call it the full-stress Stokes (FS) model. Here
indices (i, j, k ) refer to Cartesian coordinates (x, y , z); x is
the horizontal coordinate along the principal flow direction,
y is the second horizontal coordinate along the lateral
direction and z is the vertical coordinate opposite to gravity.
The positive sense of these axes is shown in Figure 1. By
expanding the force-balance equations (Eqn (5)) in the form
of Eqn (1), it can be shown that τd in the FS model is balanced
collectively by τb, τlon and τlat.

2.1.2. Flowline (FL) models
Flowline (FL) models are two-dimensional (2-D), with indices
(i, j, k ) referring to Cartesian coordinates (x, z). Here x is the
horizontal coordinate along the principal flow direction and
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Fig. 1. Schematic illustration of glacier cross sections and basal conditions: (a) rectangular and (b) parabolic valley with finite lateral extent;
infinitely wide domains with (c) rectangular and (d) parabolic troughs; and infinitely wide domain with (e) basal sliding only around the
domain interior (shaded zone). Red circles illustrate the stick/slip contrast; the size of the circle represents the magnitude of velocity along
the principal flow direction (perpendicular to the paper). Over the sliding zone, (f), ice is allowed to slip abruptly or smoothly (friction
coefficient β is shown with red curves). For all domains (a–e), blue and black lines indicate ice and bedrock, respectively, with ice thickness
h0 at the central flowline (i.e. y = 0) and h∞ at any |y | > w , where w is the characteristic channel width. Open edges illustrate the infinite
extent of the domain. Only one half of the lateral dimension is shown in each case.

z is the vertical coordinate opposite to gravity. Plane-strain
Stokes (PS) models that solve the Stokes equations in 2-D
space, R2, are the most complete FL models. Barring τlat,
these models deal with all other resistances. The widely used
SIA model in 2-D space is among the simplest of FL models,
where τd = τb.
For all experiments considered in this study, glacier

geometries and basal conditions do not vary in the
longitudinal direction, so the role of τlon becomes negligible.
Consequently the FS model deals with τb and τlat only, while
the PS model effectively reduces to the simpler SIA model. In
this context, τlat fully explains the dynamical discrepancies
between FS and SIA models. This idealized geometry allows
us to isolate the effects of τlat within the common and readily
interpretable framework of an SIA-based flowline model.

2.2. Boundary conditions
At the ice/bedrock interface, z = b, we impose either a no-
slip boundary condition, i.e. ui (b) = 0, or we allow basal
motion according to the linear parameterization of basal drag
(e.g. MacAyeal, 1993)

τb = βu‖(b), (7)

where β ≥ 0 is the friction coefficient and u‖(b) is
the tangential component of the velocity vector at the
ice/bedrock interface.
The upper ice surface, z = s, satisfies a stress-free

condition, i.e. σij (s) ≈ 0, and the kinematic boundary
condition. Along the valley walls, no-slip boundary condi-
tions are applied. To represent an infinite horizontal extent
(downslope or, in some experiments, laterally), we impose
periodic boundary conditions.

2.3. Solution strategy
Velocity and stress solutions for the FL (SIA) model are
obtained analytically (e.g. Van der Veen, 1999; Cuffey and
Paterson, 2010). The horizontal velocity, ux , at any point on
the flowline plane (x, z) is given by

ux (x, z) =
2A
n + 1

(
τd
)n
h
{
c +

[
1−

( s − z
h

)n+1]}
, (8)

where τd = ρgzhαsx (as defined in Eqn (1)) and c is the
slip ratio (e.g. Gudmundsson, 2003), a ratio between the
sliding velocity and the deformational velocity at the glacier
surface. The stress solution is given by τxz (x, b) = τd at
the ice/bedrock interface. It decreases linearly towards the
glacier surface, satisfying τxz (x, s) = 0.
Analytical solutions do not exist for the FS model. We

employ the finite-element method to obtain numerical
solutions (see Adhikari and Marshall, 2012, for mathematical
details of the finite-element formulation and stabilization of
the governing equations). We use the open-source finite-
element software Elmer (http://www.csc.fi/elmer), adapted
for Glen’s flow law for ice (Glen, 1955). Elmer gives
approximate (numerical) solutions to the Stokes equations
that are tested against the ISMIP-HOM (Ice Sheet Model
Intercomparison Project for Higher-Order Models; Pattyn and
others, 2008) benchmark experiments by Gagliardini and
Zwinger (2008).
For each experiment, we use ElmerGrid to generate the

structured mesh. The mesh consists of quadrilateral elements
with four nodes in 2-D and hexahedral elements with
eight nodes in 3-D. Average horizontal mesh resolution
is 20m. The vertical dimension of elements varies as a
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function of the ice thickness, based on 20 vertical layers.
For 3-D experiments, we perform parallel runs in a high-
performance computing cluster provided by the Western
Canadian Research Grid (WestGrid).

3. EXPERIMENTAL DESIGN
We consider idealized 3-D domains such that there is no
longitudinal variation in cross-sectional geometry or basal
boundary conditions. Glacier geometry and basal conditions
vary only in the lateral direction, as described below.

3.1. Glacier geometry
In order to assess the influence of geometry-induced lateral
drag, we conduct an initial set of experiments where ice
flow is due to internal deformation only. Assuming that the
upper ice surfaces, s(x, y ), have no gradient in the lateral
direction, i.e. αsy = 0, we consider several domains with
infinite longitudinal extents. The ice surface in each case is
characterized by

s
(
x, y

)
= −xαsx , (9)

where αsx is the uniform surface slope along the principal
flow direction. We let the glacier flow down-valley in various
sections, including classical rectangular and parabolic
valleys (Fig. 1a and b) and cases with rectangular and
parabolic ‘troughs’ embedded in a large-scale ice flow
(Fig. 1c and d). These latter cases can be thought of as fjords
or incised bedrock channels that induce lateral variations in
ice thickness and velocity.
Define the central flowline y = 0 and let w be the

half-width of the glacier valley or the channel/trough, as
measured at the glacier surface. For the valley geometries
(Fig. 1a and b), rectangular and parabolic cross sections are
defined as

b
(
x, y

)
= s

(
x, y

)− h (x, 0) , (10)

b
(
x, y

)
= s

(
x, y

) − h (x, 0)
[
1−

( y
w

)2]
, (11)

where h
(
x, y

)
is the ice thickness, equal to h(x, 0) = h0 at

the central flowline.
For the incised channels, we assume infinite lateral extent

of the glacier domain, with channel half-width w , and we
introduce ψ to characterize the channel/trough depth. The
parameter ψ is the ratio between the ice thickness at any
|y | > w (i.e. h(x,∞) = h∞) and that at the central flowline:
ψ = h∞/h0 (Fig. 1c and d). The basal topography of
rectangular troughs (e.g. fjord-like channels) for |y | > w is
defined as

b
(
x, y

)
= s

(
x, y

)− ψh (x, 0) . (12)

Within the incised channel, y ∈ [−w ,w], basal topography
follows Eqn (10). For the parabolic channels (Fig. 1d),
Eqn (12) applies for |y | > w and Eqn (11) is adapted to
define the channel geometry for y ∈ [−w ,w]:

b
(
x, y

)
= s

(
x, y

)− h (x, 0)
[
1− (1− ψ)

( y
w

)2]
. (13)

Central flowlines for all domains (Fig. 1a–d) have similar
geometries; the surface topography, s(x, 0), is described by
Eqn (9), ice thickness is h(x, 0) = h0 and basal topography is
b(x, 0) = s(x, 0)− h0.

3.2. Stick/slip basal conditions
A second set of experiments assesses the role of slip-induced
lateral drag. We consider infinitely wide, slab-type glaciers
with the surface topography defined by Eqn (9) and basal
topography by Eqn (10). To induce lateral drag, we create
differential motion of ice by imposing a sliding condition
around the domain interior, y ∈ [−w ,w], and a no-slip
boundary elsewhere (Fig. 1e). We define basal friction as
a function of the slip ratio, c, based on analytical solutions
to basal drag and surface velocity (Section 2.3) at the central
flowline,

β(x, 0) =
[
c
2A
n + 1

(
τd
)n−1

h
]−1

. (14)

For a selected value of c, this parameterization of β in the
sliding zone, along with β →∞ in the no-slip zone, creates
an abrupt transition in basal friction and sliding. We also
consider a smooth stick/slip transition by varying β according
to the sine curve

β = 20β(x, 0)
[
1 + 0.95 sin

(
y + 3w
2w

π

)]
. (15)

Illustrations of abrupt and smooth basal transitions are given
in Figure 1f.
Satisfying the geometric and basal conditions discussed

above, we alter the glacier and channel geometry by varying
the lateral aspect ratio, ζ = w/h0. For a given ζ, we also vary
ψ (first set of experiments) and c (second set of experiments)
over a range of glaciologically relevant conditions.

4. ROLE OF LATERAL DRAG
Because lateral drag is the only difference between the FS
and FL models, the idealized basal and geometric conditions
discussed above provide a way to assess how τlat influences
glacier dynamics.

4.1. Englacial velocity fields
We calculate englacial velocities in 3-D domains by solving
the FS equations numerically. Figure 2 presents lateral slices
of different domains to illustrate the variation of englacial
velocity fields for various cross sections and basal conditions.
In each case, the horizontal velocity is maximum at the
upper surface of the central flowline (y = 0m), because the
central flowline is farthest from the source of lateral drag. By
comparing these and similar results with the corresponding
FL solutions (Eqn (8)), we quantify the influence of lateral
drag on the englacial velocity fields.

4.1.1. Surface velocity at the central flowline
First, we discuss how geometry-induced drag alters the
maximum surface velocity. We consider several domains
with unique combinations of aspect ratio, ζ ∈ [0.5, 10],
and channel/trough depth, ψ ∈ [0, 0.75]. Applying a no-
slip boundary condition at the bedrock and valley walls, we
run the FS model to calculate englacial velocities in each
domain. To illustrate the role of cross-sectional geometry,
we normalize surface velocities at the central flowline with
respect to the corresponding FL solutions (Eqn (8), c = 0).
Figure 3a and b plot the resulting values for rectangular
and parabolic valley cross sections (ψ = 0) and for incised
channels of different depths (ψ > 0). Because FS solutions are
influenced by lateral drag, normalized velocities are equal to
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Fig. 2. Englacial velocity fields along the lateral transect of (a) rectangular and (b) parabolic valley channels; large-scale flow with
(c) rectangular and (d) parabolic troughs and domains with (e) abrupt and (f) smooth transitions of basal conditions. All domains rest
on non-deformable bedrock with a uniform along-flow slope αbx = 5◦, and have lateral aspect ratio ζ = 4. For infinitely wide domains,
results are shown for thickness ratio ψ = 0.75 (c, d) and for slip ratio c = 1 (e, f).

Fig. 3. Surface velocity at the central flowline, i.e. y = 0 (see Fig. 2), in (a) rectangular and (b) parabolic sections, as a function of lateral
aspect ratio, ζ. Velocities are normalized with respect to the FL solutions. Analogous plot for domains with (c) abrupt and (d) smooth
transitions of basal condition. Each curve represents the case with unique measure, ψ, of trough (a, b) and slip ratio, c (c, d).
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Fig. 4. Lateral variation of surface velocity for several aspect ratios, ζ, in domains with (a) abrupt and (b) smooth transitions of basal
conditions. Lateral distances are computed from the central flowline and are scaled down with respect to the ice thickness, h(x, 0); only
one half of the lateral dimension is shown in each case. Results are given for slip ratio c = 1. Depth variation of velocity at the central
flowline in the same domain with (c) abrupt and (d) smooth transitions of basal conditions. Velocities are normalized with respect to the FL
solutions (surface velocities).

or smaller than unity. For each ψ, values approach zero when
channels become narrow (small ζ). Ice velocities are strongly
influenced by lateral drag in these cases; the surface velocity
at the central flowline, for example, is reduced to 28% in
a narrow parabolic valley with ψ = 0 and ζ = 2. For both
rectangular and parabolic channels, the influence of lateral
drag decreases with increasing ψ (more shallow troughs).
The rate of decrement, however, is not uniform; for example,
differences in velocity between ψ = 0 and ψ = 0.25 are
smaller than those between ψ = 0.5 and ψ = 0.75.
A comparison of Figure 3a and b for given values of ψ and

ζ reveals that ice velocities are smaller in parabolic sections.
Parabolic channels are more resistive than rectangular chan-
nels because the source of lateral drag in parabolic sections
is relatively closer to the central flowline (Fig. 2a and b). As
the channel becomes wider, however, the influence of lateral
drag decreases in both rectangular and parabolic sections.
As expected, for ζ →∞, FS and FL models yield exactly the
same solutions at the central flowline, irrespective of ψ.
Next, we assess the influence of slip-induced lateral drag

for each combination of the narrowness of sliding zone, ζ ∈
[0.5, 10], and slip ratio, c ∈ [0.5, 5]. For a given c, Eqn (8)
gives the FL solutions that are free from any effects of lateral
drag. With respect to these solutions, we normalize the
surface velocities obtained from the FS model. Normalized
velocities are plotted as a function of ζ for domains with
abrupt (Fig. 3c) and smooth (Fig. 3d) transitions of stick/slip
basal conditions. Similar to the geometric effect, surface
velocities decrease in each case as ζ → 0; the narrower
the sliding zone, the stronger the lateral drag. For domains
with both abrupt and smooth basal transitions, normalized
velocities are smaller for larger slip ratios. This is due to

the stronger lateral gradient in ice velocities, which exerts
relatively more drag. Domains with smooth basal transitions
appear to be more resistive, as a consequence of reduced
sliding velocities adjacent to the central flowline. As the
sliding zone becomes wider (larger ζ), the influence of lateral
drag diminishes in all cases. Consequently, ice velocities
increase towards the values obtained from the FL solutions.

4.1.2. Lateral- and depth-variation of velocity
Ice velocities in and over a valley cross section have been
discussed several times before in rectangular and parabolic
channels (e.g. Nye, 1965; Shoemaker, 1985). Here we give
attention to the respective variations in cases with slip-
induced lateral drag. For c = 1, we plot lateral variations of
normalized surface velocity in domains with abrupt (Fig. 4a)
and smooth (Fig. 4b) transitions in basal conditions. Values
are once again normalized with respect to the FL solutions
that are free from any effects of lateral drag. Results are
shown for different aspect ratios, ζ; in each case, surface
velocity is maximum at the central flowline and it decreases
laterally towards the value associated with the internal
deformation only. Due to the weaker effects of lateral drag, as
explained above, velocities are higher for wider sliding zones
(larger ζ).
Similarly, we plot the normalized depth variation of

velocity at the central flowline for abrupt (Fig. 4c) and smooth
(Fig. 4d) basal transitions. For ζ → ∞ and c = 1, we find
(as expected) equal contributions of creep deformation and
basal sliding to the surface velocity. When ζ → 0, slip-
induced lateral drag comes into play and strongly alters
both deformational and sliding velocities. For a case with
ζ = 2 and a smooth basal transition, for example, we
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Fig. 5. Englacial stresses (vertical shear) in corresponding domains, with experimental details given in Figure 2.

observe that the sliding velocity and deformational velocity
at the glacier surface are reduced by 32.8% and 52.9%,
respectively. Corresponding values for a case with an abrupt
basal transition are 10.5% and 35.3%. The larger influence
of lateral drag in the former case (smooth transition) is
mainly due to the reduced basal velocities adjacent to the
central flowline.

4.2. Englacial stress fields
We calculate englacial stresses from the velocity fields
discussed above. For the chosen 3-D domains, the vertical
shear stress, τxz , and the horizontal shear stress, τxy ,
are the only nonzero stress components. We present the
corresponding stress fields in the domains whose velocity
fields are depicted in Figure 2. The distributions of τxz
are shown for rectangular (Fig. 5a and c) and parabolic
(Fig. 5b and d) channels, and also for domains with
abrupt (Fig. 5e) and smooth (Fig. 5f) basal transitions. In
rectangular and parabolic sections, τxz has the largest values
at the bedrock of the central flowline. This is not true for the
sliding experiments. Indeed, Figure 5e and f reveal that the
maximum τxz is at the bedrock of the no-slip zone (|y | > w ),
particularly near the slip transition.
The distributions of τxy are shown in Figure 6. In each case,

maximum horizontal shear stress is found at the ice surface.
Unlike in the rectangular channel (Fig. 6a), maximum values
do not always occur at the edges in a parabolic channel; this
has been discussed several times before (e.g. Nye, 1965; Van
der Veen, 1999). Comparing Figure 6a and b, for example,
the lateral gradient in τxy near the central flowline is seen
to be higher in a parabolic channel. Because this gradient in
shear stress characterizes the lateral drag (Eqn (1)), one can
understand why the parabolic channel is more resistive, as
noted earlier. For the domain with an abrupt basal transition,

Figure 6e suggests that maximum values of τxy prevail near
the basal transition, at y ≈ ±w . They are found closer to the
central flowline for smooth basal transitions (Fig. 6f), thereby
generating a larger lateral gradient in τxy and hence a greater
resistance to ice flow.

4.3. Discussion
From the stress calculations, we find that only shear
components are nonzero in the chosen domains. These
stress components are independent of the partitioning of
the Cauchy stress tensor, i.e. σij = τij = Rij for i �= j =
x, y , z (e.g. Van der Veen, 1999). Based on the balance
equations (e.g. Eqn (1)), it is therefore possible to calculate
the fractional contribution of lateral drag to balance the
gravitational driving stress in each 3-D domain.
The driving stress, τd, can be obtained analytically

(Section 2.3); for a domain with αsx = 5◦ and h = 200m,
for example, τd ≈ 152 kPa. Because the horizontal shear
stress at the bedrock of the central flowline is negligible in
each case, i.e. τxy (b) = 0 (see Fig. 6), the vertical shear
stress at the ice/bedrock interface, τxz (b), is the only nonzero
constituent of basal drag, τb (Eqn (1)). The normalized
values of τxz (b) with respect to τd therefore characterize
the fractional contributions of basal drag to oppose the
gravitational driving stress. The remainder of the driving stress
is taken up by lateral drag, as there is no resistance associated
with the longitudinal stress gradients in these experiments
(i.e. τlon = 0).
By plotting the normalized τxz (b) in Figure 7, we

investigate the contributions of lateral drag to balance the
driving stress at the central flowline. For rectangular and
parabolic sections (Fig. 7a and b), lateral drag is dominant
for narrow channels (small ζ) and it diminishes as ζ → ∞.
Lateral drag is more prominent in parabolic channels, as
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Fig. 6. Englacial stresses (horizontal shear) in corresponding domains, with experimental details given in Figure 2.

discussed above. Similarly, the contributions of slip-induced
lateral drag (Fig. 7c and d) are higher in the domains with
narrow sliding zones and large slip ratios. For the domains
with a smooth basal transition, where the amount of sliding
decreases away from the central flowline, lateral drag is even
more pronounced.

5. PARAMETERIZATION OF LATERAL DRAG
We have distinguished two different sources of lateral drag
and assessed their effects. Both sources of drag influence the
glacier dynamics, especially when the characteristic glacier
width, w , is small. FL models, which do not account for
the effects of lateral drag, will yield unrealistic results in this
situation. Here we propose a set of correction factors, f , that
can be introduced in FL (e.g. PS, SIA) models to empirically
account for the influence of lateral drag and hence yield
results that are comparable with FS solutions.

5.1. Theory and method
Correction factor f acts to scale (reduce) the gravitational
driving stress. To generalize, we introduce f in FL models by
modifying the force-balance equations (Eqn (5)), so that

σij,j + f ρgi = 0. (16)

We refer to the adjusted FL models following Eqn (16) as
modified flowline (MFL) models. In the most general case,
glacier dynamics are governed by the balance between τd,
τb, τlon and τlat (Eqn (1)). Factor f essentially modifies the
driving stress, τd, to give an ‘effective’ driving stress, τ

∗
d ,

at the central flowline: τ∗d = f τd = τd − τlat. Hence, the
stress balance reduces to a balance between f τd, τb and τlon.
Intuitively, τb = f τd for the zeroth-order SIA model.

With reference to Eqns (1) and (16), f can be understood
as a ratio between

(
τb + τlon

)
and τd. This stress ratio, and

hence f , varies between glaciers according to the cross-
sectional geometry and variability in basal conditions. The
general method of computing f involves a two-step process.
First, we calculate the stress ratio f∗ =

(
τb + τlon

)
/τd

using FS solutions and consider this as the first-order
approximation to f . Second, we fine-tune f using the MFL
model (replacing τd by f τd in Eqn (8)), such that the model
produces the correct surface velocity with respect to the FS
solution at the central flowline.

5.2. Correction factors
The correction factor f has two components: (1) a factor
associated with geometry-induced drag, fn (subscript n is for
‘Nye factor’; Nye, 1965) and (2) a factor associated with slip-
induced drag, fs. We hypothesize that fn and fs are related to f
through a multiplicative superposition, f = fn × fs. For cases
with no lateral variations in basal condition, for example,
f = fn because slip-induced lateral drag does not come into
play, i.e. fs = 1.

5.2.1. Geometry-induced drag
To parameterize the influence of lateral drag due to valley
walls (ψ = 0), Nye (1965) calculates correction factors, fn, for
various valley cross sections. For similar geometric settings to
Nye, we recalculate fn to validate our method of calculation.
This gives us confidence to estimate the analogous correction
factors for other geometric and basal scenarios.
For each valley shape with unique ζ, we run the FS model

to obtain the velocity and stress solutions. We also calculate
driving stress, τd, at the central flowline. Because τlon = 0 for
the chosen domains and τxz (b) characterizes the basal drag,
we compute f∗ = τxz (b)/τd. The stress ratio, f∗, is in fact
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Fig. 7. Corresponding stress (vertical shear stress at the ice/bedrock interface) summary, with geometric and experimental details given in
Figure 3. In each case (a–d), stresses are normalized with respect to the driving stress, τd (Eqn (1)).

the normalized τxz (b) plotted in Figure 7a and b. With f∗ as
an initial guess for fn, we run the MFL model to calculate
ice velocities along the central flowline. The correction
factor, fn, is then optimized, such that the difference in
surface velocity at the central flowline between the FS and
MFL models is minimized. As expected, we find fn ≈ f∗;
compare, for example, Figures 7a and 8a. The optimized
values of fn (Table 1) are plotted for rectangular (Fig. 8a) and
parabolic (Fig. 8b) valleys, along with Nye’s estimates. For
rectangular channels, we find no difference in magnitudes
of fn obtained from this and Nye’s research. We observe
only minor differences (<1%) in parabolic channels. As Nye
advised, the figures confirm that the correction factors, fn,
are smaller for narrow valleys (small ζ), to capture the larger
influence of lateral drag.
Following the same procedure, we calculate correction

factors, fn, for domains with embedded basal channels
(ψ > 0). For each combination of ζ and ψ, we consider
f∗ = τxz (b)/τd (Fig. 7a and b) as the initial guess for fn and
run the MFL model by tuning fn until the model yields the
correct surface velocity. The optimized values of fn in each
case (Table 1) are plotted in Figure 8a and b. For domains
with large ψ, where the influence of lateral drag is weak,
correction factors are close to unity.

5.2.2. Slip-induced drag
Here we calculate the correction factors, fs, that represent
the effects of slip-induced lateral drag when employed in
flowline models. These factors are computed in a similar
manner to fn. For each slab-type, 3-D domain with a unique
combination of sliding zone width, ζ, and slip ratio, c, we
calculate the surface velocity and f∗ = τxz (b)/τd (Fig. 7c
and d) at the central flowline. By taking f∗ as the first guess
for fs, we run the MFL model. The correction factor, fs,

is then optimized, such that the MFL model produces the
correct surface velocity at the central flowline. For several
combinations of ζ and c, we list the optimized values of fs
for domains with both abrupt and smooth basal transitions
(Table 2); corresponding plots are shown in Figure 8c and d.
To capture the larger effects of slip-induced lateral drag, we
find smaller magnitudes of fs for narrow sliding zones (small
ζ) and large slip ratios.
We also explore an alternative way of capturing the

effects of slip-induced lateral drag in FL models. One can
modify the friction coefficient, β, itself, while keeping the
governing equations (Eqns (4) and (5)) intact. We find that
the associated correction factors are strongly related to the
width of the sliding zone through the power-law relationship,

Table 1. Correction factors, fn, for rectangular and parabolic
sections, under no-slip basal conditions. Values are given for several
combinations of aspect ratio, ζ, and channel/trough depth, ψ.
Values for ψ = 0 represent the Nye shape factors

ζ

ψ 0.5 1 2 3 4 5 10

Rectangular section
0 0.313 0.558 0.790 0.884 0.929 0.954 0.990
0.25 0.342 0.573 0.796 0.887 0.932 0.956 0.991
0.5 0.490 0.642 0.818 0.897 0.936 0.958 0.992
0.75 0.746 0.803 0.875 0.923 0.950 0.966 0.993

Parabolic section
0 0.251 0.448 0.653 0.748 0.803 0.839 0.917
0.25 0.303 0.493 0.686 0.776 0.827 0.861 0.933
0.5 0.477 0.593 0.739 0.814 0.858 0.887 0.947
0.75 0.736 0.778 0.832 0.875 0.904 0.923 0.966

https://doi.org/10.3189/2012JoG12J018 Published online by Cambridge University Press

https://doi.org/10.3189/2012JoG12J018


1128 Adhikari and Marshall: Parameterization of lateral drag

Fig. 8. Correction factors, fn, associated with geometry-induced lateral drag, for (a) rectangular and (b) parabolic sections. Analogous
correction factors, fs, for the influence of slip-induced lateral drag, for cases with (c) abrupt and (d) smooth transitions of basal conditions.

but are relatively insensitive to slip ratio (results not shown).
From a practical point of view, however, this approach
to improving FL models is not sensible. Because only the
sliding component of velocity is adjusted through β, the
englacial velocity distribution might have been completely
miscalculated in the process of obtaining the correct surface
velocity. Adjustment through fs, in the spirit of Nye factors,
is more transparent and effective.

5.3. Compatibility of correction factors
In many applications of real glaciers, ice flow is affected
by both geometry-induced and slip-induced lateral drag.
It is essential in such cases to use the relevant correction
factors together. Here, we test whether the factors fn and fs
honour the multiplicative superposition relationship as hy-
pothesized. We consider both the rectangular and parabolic
sections and impose basal sliding of various lateral extents
around the central flowline. Depending upon the aspect ratio
of the glacier domain, the width of the sliding zone varies in
a range ζs ∈ [0.5, 10]. For a channel with ζ = 2, for example,
we present three experiments, namely ζs = 0.5, 1 and 2. For
each combination of ζ and ζs, we vary the slip ratio, c, and
allow the ice to slide over the bedrock by maintaining either
abrupt or smooth basal transitions. Results for ψ = 0 (glacier
valleys) are discussed below, but this discussion is equally
applicable to embedded channels (ψ > 0).
For each experiment that hosts both sources of τlat, we first

calculate the combined correction factor, f , independently
such that the MFL model produces accurate surface
velocities at the central flowline. We then compare this
single correction factor, f , with the product of relevant factors
associated with each source of lateral drag (Tables 1 and
2). To illustrate the compatibility of correction factors, we
plot f vs fn × fs for rectangular sections with abrupt (Fig. 9a)

and smooth (Fig. 9b) basal transitions. Corresponding plots
for parabolic sections are depicted in Figure 9c and d.
The diagonal indicates the case where fn × fs is perfectly
compatible with the correct velocity. The data that lie above
the diagonal suggest that fn × fs underestimates the required
correction factor, f , and hence underestimates the velocity
solutions. The opposite is true for cases where data appear
below the diagonal. All data points in each case follow
the diagonal and fall well within a 10% error zone. This
illustrates that the multiplicative superposition of correction
factors is reasonable.

Table 2. Correction factors, fs, for flowline models for abrupt and
smooth transitions of basal friction. Values are given for several
combinations of sliding zone width, ζ, and slip ratio, c

ζ

c 0.5 1 2 3 4 5 10

Abrupt basal transition
0.5 0.852 0.879 0.922 0.948 0.964 0.974 0.993
1 0.723 0.787 0.874 0.921 0.947 0.963 0.991
2 0.525 0.651 0.807 0.882 0.923 0.947 0.987
3 0.399 0.557 0.757 0.853 0.905 0.935 0.984
4 0.319 0.487 0.718 0.829 0.889 0.924 0.981
5 0.266 0.435 0.685 0.810 0.876 0.915 0.980

Smooth basal transition
0.5 0.836 0.844 0.858 0.872 0.883 0.893 0.926
1 0.687 0.704 0.739 0.769 0.793 0.813 0.876
2 0.466 0.500 0.570 0.626 0.670 0.705 0.809
3 0.339 0.381 0.467 0.537 0.592 0.636 0.765
4 0.265 0.310 0.403 0.479 0.539 0.587 0.732
5 0.218 0.263 0.359 0.437 0.500 0.551 0.706

https://doi.org/10.3189/2012JoG12J018 Published online by Cambridge University Press

https://doi.org/10.3189/2012JoG12J018


Adhikari and Marshall: Parameterization of lateral drag 1129

Fig. 9. Compatibility test of the multiplicative superposition relationship between the correction factors fn and fs. Four different combinations
of channel section and basal conditions are shown; a 10% error zone (shaded area) is also depicted in each case.

We use a constant value of β throughout the sliding
zone. Because the ice thickness varies laterally in parabolic
valleys, this β value corresponds to different slip ratios. In
the compatibility calculations, however, we use fs associated
with c at the central flowline. The correction factors
therefore appear relatively less compatible in parabolic
sections; notice relatively dispersed data points in Figure 9c,
compared with Figure 9a. Based on the results shown in
Figure 9, we note a few important findings: (1) there is
a little difference in the data trend between c = 1 and
c = 3 in each case; (2) for a given valley aspect ratio, ζ, we
see a general trend that fn × fs underestimates the required
correction factor for larger ζs and overestimates for smaller
ζs; and (3) correction factors are more compatible for the
cases with smooth transitions of stick/slip basal condition
(cf. Fig. 9a and b). The third point is encouraging, because
smooth basal transitions may be more realistic. All in all,
we recommend that the correction factors, fn and fs, can be
employed together by choosing suitable values that depend
on the geometric and basal conditions along the lateral
transect.

5.4. Example application: Athabasca Glacier
We now test the usefulness of the proposed correction factors
in a real glacier simulation. Due to the availability of relevant
data, we consider Athabasca Glacier (52.2◦N, 117.2◦W) in
the Canadian Rocky Mountains as our test case. Athabasca
Glacier is one of several outlet glaciers of the Columbia
Icefield. During 1966–68, across selected sections of the
glacier, Raymond (1971) observed the internal distribution
of ice velocity in considerable detail. The glacier section
(Fig. 10a) resembles a parabolic channel with maximum ice
thickness (300m) at the central flowline. Over a longitudinal
extent twice the ice thickness in the study region, the glacier

has relatively uniform bedrock and surface slope (4◦) and a
near-constant width (1.2 km).
Of particular interest for our purpose, we attempt to simu-

late the following important features of velocity distribution
in Athabasca Glacier (Raymond, 1971): (1) maximum surface
(51ma−1) and basal (40ma−1) velocities are measured at
the central flowline; (2) basal velocities exceed 70% of the
surface velocities over half of the glacier width; and (3) basal
velocities are much less near the glacier margins, of the order
of a few meters per year. By choosing appropriate values of A
and c (β is assumed to vary laterally according to Eqn (15)),
we first run the FS model to mimic the observed distribution
of englacial velocity. We then use the MFL model to test the
performance of the proposed correction factors.
Based on the observational data, c ≈ 4 during Raymond’s

study period. However, we find that with c = 4, the
measured surface velocity can only be simulated with an
unrealistically low value of A for the ice rheology. The
associated value of A corresponds to extremely cold ice
(e.g. −30◦C), which is not expected in the Canadian Rocky
Mountains. Additionally, this low value of A results in a
difference between the surface and basal velocities at the
central flowline of only ∼2ma−1, much less than the
observed value (∼10ma−1). This predicts an unrealistic
dominance of sliding velocity, as the ice is too stiff (a
consequence of the chosen A) and the modelled deformation
is limited. To improve simulation results, we lower c and
raise A; values of c = 1.3 and A = 0.8 × 10−16 Pa−3 a−1
give the best match to Raymond’s data. The corresponding
velocity solutions are shown in Figure 10a. This matches the
observed distribution of velocity (see, e.g., Raymond, 1971;
Cuffey and Paterson, 2010) and satisfies all the important
features listed above. The chosen value of A corresponds to
a reasonable value of ice temperature, −2◦C (Cuffey and
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Fig. 10. (a) Distribution of velocity in a cross section of Athabasca Glacier, obtained from the FS simulation. These results match the values
measured by Raymond (1971). (b) Illustration of usefulness of correction factors fn and fs to obtain realistic solutions of velocity at the central
flowline; (c) corresponding stress solutions.

Paterson, 2010), while c = 1.3 yields the friction coefficient
β = 1.84kPa am−1 at the central flowline.
The FL model, as expected, yields higher velocities at the

central flowline; the depth variation of velocity is shown
in Figure 10b. We improve the FL solutions through the
introduction of correction factors. First, we observe how the
Nye shape factor, fn, improves the simulation results, by
accounting for the influence of valley walls. We use fn =
0.653, which is associated with a parabolic section with ψ =
0 and ζ = 2 (Table 1). The corresponding solution is shown
as the red curve; considerable improvements are already
evident. This solution is based on the assumption that the
basal velocity is constant throughout the cross section. This
assumption is not valid for the glacier we consider, as there is
marked variability in basal velocity. Because the MFL model
has not yet captured the slip-induced drag, a large difference
still exists between the MFL (red) and FS (black) solutions.
Over this MFL model, we now superimpose fs and try to re-
cover the missing effects of slip-induced lateral drag. For c =
1.3, we obtain fs = 0.680 through the third-order polynomial
interpolation of factors for domains with a smooth basal
transition and ζ = 2 (Table 2). Results from the MFL model
(maroon) are now greatly improved, and are almost identical
with the FS solution (black) throughout the vertical transect.
It is possible to quantify the fraction of lateral drag, τlat,

captured by each correction factor. The driving stress at the
central flowline, τd = 187 kPa, is obtained analytically. The
depth variation of vertical shear stress is shown in Figure 10c,
with magnitudes at the bedrock, τxz (b), characterizing τb.
From the FL (blue) and FS (black) solutions, τb, τlat and
τlon balance 42.2%, 56.2% and 1.6% of the driving stress
at the central flowline, respectively. Lateral drag balances
the largest fraction of τd. Through the introduction of the
Nye shape factor, fn, 61.0% of this missing stress term is

recovered in the FL model. With the addition of the slip-
induced correction factor, fn × fs, 97.8% of the lateral drag
effect is captured. The role of τb is equally important to
control the ice flow, but the contribution of τlon is small
for this test. This is because the bedrock slope is gentle and
there are no longitudinal variations in the channel section,
ice velocity or basal conditions.

6. DISCUSSION AND CONCLUSIONS
In 3-D glacier domains, gravity-driven ice flow is balanced by
(1) basal drag, (2) the resistance associated with longitudinal
stress gradients and (3) lateral drag. High-order or Stokes
models can simulate all of these resistances, and are
now computationally tractable, but they are not easily
accessible for many applications. Even if available, they are
difficult to implement in a computationally efficient manner,
and knowledge of the essential 2-D glaciological inputs
(e.g. subglacial topography, ice thickness and mass-balance
fields) is often lacking. Perhaps more importantly, there are
>200000 valley glaciers and ice caps on Earth; simulating
each glacier using a complex model is not feasible. However,
simple flowline models are easily available and can be
readily applied to such applications, as they primarily require
characterization of the central flowline and the glacier
width along the flowline, which can be acquired from
glacier imagery. Assumptions must still be made about cross-
sectional valley shape, basal conditions and ice thickness
(bedrock topography) along the flowline, but this has been
explored in some detail (e.g. Farinotti and others, 2009).
While flowline models are convenient and widely used,

they describe the reduced dynamics of ice flow.With the aim
of extending the dynamical applicability of flowline models,
we modify them through the introduction of empirical
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correction factors to account for the influence of lateral drag.
These correction factors are based on the principle that the
modified flowline models only deal with a relevant fraction
of gravitational driving stress. This relevant fraction can be
understood using the corresponding 3-D domain as a ratio
between all resistances other than lateral drag and the driving
stress. In order to calculate the correction factors effectively,
we distinguish two distinct sources of lateral drag: the first
arises from the cross-sectional geometry and the second is
due to the slip-induced differential motion of ice.
Nye (1965) has already calculated shape factors to capture

the effects of valley walls; we calculate analogous correction
factors for other geometric and basal scenarios. In situations
where differential slip at the bed is expected, a slip-induced
correction factor allows lateral drag to be parameterized
by direct analogy with Nye factors. Ice streams are an
obvious application, as lateral drag in this situation is mainly
associated with differential basal motion rather than stagnant
valley/rock walls. For fast-flowing outlet or valley glaciers,
whenever required, both the geometry-induced and slip-
induced correction factors can be used together. This is
demonstrated by considering the case of Athabasca Glacier.
For this test, the combined effect of correction factors helps
the flowline model to account for ∼98% of the lateral drag
prevailing in the 3-D domain.
The proposed correction factors can be used in flowline

models of any degree of complexity. In order to describe
more accurate dynamics of ice flow, we advise using PS
models whenever possible. Unlike the PS models, SIA
models fail to account for another important mechanism of
ice flow, i.e. longitudinal stress gradients. This gap between
the PS and SIA models, however, can be bridged empirically
using the longitudinal stress factors recommended by
Adhikari and Marshall (2011). Starting with the SIA model,
in which the gravity-driven ice flow is solely balanced by
the basal drag, we hypothesize that the total influence
of high-order dynamics can be captured empirically in a
stepwise manner: first by using the longitudinal stress factors
to account for the effects of longitudinal stress gradients, and
then by using the correction factors discussed in this paper
to account for the effects of lateral drag. We shall test the
approach of stepwise improvements to SIA models of glacier
dynamics in future work.
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