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Abstract

This paper establishes a duality between the category of polytopes (finitely generated real convex sets
considered as barycentric algebras) and a certain category of intersections of hypercubes, considered as
barycentric algebras with additional constant operations.
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1. Introduction

This paper represents a continuation of the work of Pszczoła and the latter two
authors [10–12]. The main motivation for this work is the search for a duality theory
of barycentric algebras. The aforementioned papers contain some partial results in
this direction. In particular, from [11] one obtains a duality for finite-dimensional
real simplices, as finitely generated free barycentric algebras. Another partial case
was considered in [12], where a duality for the class of quadrilaterals was established.
Pontryagin duality for semilattices [6] may also be considered as a duality for a limited
class of barycentric algebras.

In this paper, we offer a duality for real convex polytopes, considered as
(cancellative) barycentric algebras. As in the earlier cases of simplices and
quadrilaterals, this duality is again of ‘classical’ type, and is given by an infinite
schizophrenic object, the unit real interval. In the new duality, the class of
representation spaces is also a class of certain polytopes, namely a class of certain
intersections of hypercubes. However, as representation spaces these polytopes are
considered as barycentric algebras with additional constant operations (and with the
corresponding homomorphisms preserving these constants). Nevertheless our duality
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is not a direct generalization of the duality for quadrilaterals. The description of the
representation spaces dual to quadrilaterals given in [12] is too complicated to use in
the general case of all polytopes. We propose a somewhat different approach, closer in
spirit to the description of dual spaces for simplices given in [11], using a duality for
real affine spaces described in this paper, and the fact that convex polytopes embed into
affine spaces [14, Ch. 7]. In a sense, three dualities are carried out in parallel fashion:
for simplices, for polytopes, and for barycentric algebra reducts of finitely generated
real affine spaces. These dualities do not involve any topology or additional relations.
In subsequent work, we hope to show that the current approach can be extended to
obtain dualities for some more general classes of convex sets.

Section 2 gives a brief introduction to real affine spaces, convex sets and barycentric
algebras. A special description of convex polytopes is given in Section 3. Section 4
provides the background necessary for the dualities considered in this paper. The next
two sections deal with the first and second duals. The main result (Theorem 6.5)
establishes the full duality between the category of all convex polytopes and the
category of corresponding representation spaces.

We use notation and conventions similar to those of [15] and the earlier papers.
For details and further information on affine spaces and barycentric algebras, we refer
the reader to those papers, and to the monographs [13, 14]. For convex polytopes,
see [1, 5].

2. Affine spaces, convex sets and barycentric algebras

Real affine spaces may be defined as the subreducts (subalgebras of reducts) (A, R)
of modules (A,+, R), where R consists of the set of binary operations

r : A2
→ A; (x, y) 7→ xyr = x(1− r)+ yr

for each r ∈ R. The class of all real affine spaces forms a variety, denoted by R.
Equivalently, the variety R is defined as the variety of Mal′tsev modes with binary
operations r for r ∈ R satisfying certain identities that can easily be deduced from
more general theorems [13, Corollary 255] and [14, Theorem 6.3.4]). Each real affine
space (A, R) generated by a finite set, say X = {x0, x1, . . . , xk}, is in fact the free real
affine space XR (or (k + 1)R) on X . Its underlying set is then described as{

x0r0 + · · · + xkrk

∣∣∣ ri ∈ R,
k∑

i=0

ri = 1
}
.

The affine space (k + 1)R is isomorphic to the affine space Rk freely generated by the
standard set of generators

e0 = (0, . . . , 0), e1 = (1, 0, . . . , 0), . . . , ek = (0, . . . , 0, 1).

Let I denote the closed unit interval [0, 1] ⊂ R, and let I o denote the open unit
interval ]0, 1[ ⊂ R. Convex subsets of real affine spaces can be defined as subreducts
(C, I o) of affine spaces (A, R). The variety B generated by the class of real convex
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sets (C, I o) is called the variety of barycentric algebras. The class of convex sets
forms the subquasivariety C of cancellative barycentric algebras, and cancellative
barycentric algebras are known to be precisely those barycentric algebras that embed
into real affine spaces as I o-subreducts. (Romanowska and Smith [13, Section 2.6]
discuss the universal affine space extension of a cancellative barycentric algebra.) The
variety B is also considered as a category, having barycentric algebras as objects
and barycentric algebra homomorphisms as morphisms. The (full) subcategory S
of finite-dimensional simplices and the (full) subcategory P of convex polytopes
(finitely generated cancellative barycentric algebras) play an important role in this
paper. We are also interested in category B̆ of cancellative barycentric algebras

with two constant operations denoted by 0 and 1, and with barycentric algebra
homomorphisms preserving these constants as morphisms. In particular, we will
consider the class consisting of subalgebras of hypercubes Î n+1

= (I n+1, I o, 0, 1),
equipped with constants 0̄= (0, . . . , 0) and 1̄= (1, . . . , 1).

Finitely generated free barycentric algebras may be characterized by the following
theorem (see [9, 13, Section 2.1, 14, Section 5.8]).

THEOREM 2.1. Let X = {x0, x1, . . . , xk} be a finite set. Then the following objects
coincide:

(1) the free barycentric algebra X B over X;
(2) the simplex 1k spanned by X;
(3) the I o-subreduct generated by X of the free affine space XR generated by X.

The elements of the I o-subreduct are described as follows:{
x0r0 + · · · + xkrk

∣∣∣ ri ∈ I,
k∑

i=0

ri = 1
}
.

We say that a convex set A is k-dimensional, and write dim A = k, if k is the
smallest positive integer such that A embeds as a subreduct into the affine space
(k + 1)R. In such a situation, the convex set A generates the affine space (k + 1)R.
Each convex polytope A is finite-dimensional and, considered as a subset of the
topological space Rk with the usual topology, it is closed. The minimal set of
generators of A is uniquely determined: it is the set of vertices of A. If A has n
vertices, then we say that A is n-generated. If dim A = k, then the number of vertices
is at least k + 1.

3. Convex polytopes

First, we will provide a description of convex polytopes of dimension at least 1. We
will use the concept of a wall of a polytope, however, in both geometric and algebraic
senses [13, 14]. Recall that a wall of a polytope A is a subalgebra, say B, of A such
that if b1b2r ∈ B for some b1, b2 ∈ A and r ∈ I o, then b1, b2 ∈ B. In geometry, walls
are also called ‘faces’ and maximal faces are called ‘facets’.
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The following theorem (whose proof we sketch) seems to be folklore in the theory
of convex polytopes1. Let G(A) denote the set of vertices (the minimal set of
generators) of a given convex polytope A.

THEOREM 3.1. Let A be a k-dimensional convex polytope with the set G(A) of
n + 1 vertices, where n ≥ k. Let g be an element of G(A). Then A is the union
of k-dimensional simplices, each generated by a (k + 1)-element subset of G(A)
containing g. Moreover, any two of these simplices have a common wall that is a
simplex containing g.

PROOF. The theorem is obvious for k = 2. Assume now that k > 2, and that the
theorem holds for (k − 1)-dimensional convex polytopes. In particular, the theorem
holds for the facets of A that do not contain g. Consider the set S of (k − 1)-
dimensional simplices subdividing these facets. The required division of A is obtained
by taking the simplices generated by g and the vertices of each of the (k − 1)-
dimensional simplices from the set S. 2

For a fixed g, each simplex of the division described in Theorem 3.1 has dimension
k, and any two of them are isomorphic. The set of vertices of each such simplex will
be called a frame of A centered in g or a g-frame. The element g will be called its
center.

COROLLARY 3.2. Suppose that n ≥ k. Then each vertex of a k-dimensional and
(n + 1)-generated convex polytope A is the center of a frame of A.

Each frame F of A generates a subalgebra of A that is isomorphic to a free
barycentric algebra (a k-dimensional simplex). At the same time, it (freely)
generates the k-dimensional real affine space R(A)= FR. Obviously, A is an I o-
subreduct of the affine space R(A). Then R(A) is called the canonical extension
of A. Choose a generator g0 ∈ G(A) and a g0-frame {g0, g1, . . . , gk}, and let
G(A)= {g0, g1, . . . , gk, . . . , gn}. Corollary 3.2 allows us to consider the generators
g0, g1, . . . , gk as the (free) generators x0, . . . , xk of the affine space R(A). Then each
of the generators gi , for i = k + 1, . . . , n, can be described in R(A) as

gi = x0ri0 + · · · + xkrik, (3.1)

where
∑k

j=0 ri j = 1. (Other elements of A have a similar description in R(A).) Note
that passage from one frame of A to another will induce an automorphism of the
canonical affine space extension R(A), determined by a bijective mapping between
the first and second frames, assigning the center of the second frame to the center of
the first.

THEOREM 3.3. Suppose that A and B are convex polytopes. Then each barycentric
algebra homomorphism h : A→ B extends uniquely (to within isomorphism) to an
affine space homomorphism h̄ : R(A)→ R(B) between the corresponding canonical
affine space extensions.
1 We are grateful to G. Bergman and B. Grünbaum for discussion concerning this result.
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PROOF. Let F be a frame of A. Then the restriction

h|F : F→ B ↪→ R(B)

extends uniquely (up to isomorphism) to h̄ : R(A)→ R(B). Moreover, h̄|A = h. 2

4. Duality

Let A and X be categories. We say that there is a full dual equivalence, or simply
full duality, between A and X if there are contravariant functors

D :A−→ X and E : X −→A

such that both DE = E ◦ D and E D = D ◦ E are naturally isomorphic with the
corresponding identity functors on A and X , respectively (compare [7] and [8, p. 91]).
In the cases of current interest, A is a category of convex sets with the corresponding
homomorphisms as morphisms, while the category X of representation spaces is
a certain category of subalgebras of hypercubes Î k+1 with constants, in which the
morphisms are barycentric algebra homomorphisms preserving these constants. The
functors D and E are defined on objects and morphisms by

D : ( f : A→ B) 7→ ( f D
:A(B, I )→A(A, I ); x 7→ f x),

E : (ϕ : X̂→ Ŷ ) 7→ (ϕE
: X (Ŷ , Î )→ X (X̂ , Î ); α 7→ ϕα).

In left-handed notation,

D(A)= AD
=A(A, I ) and D( f )= f D.

The natural isomorphisms e of DE with the identity functor and ε of E D with the
identity functor are given by the evaluations

eA : A→ ADE
; a 7→ (aeA : x 7→ ax),

εX̂ : X̂→ X̂ E D
; x 7→ (xεX̂ : α 7→ xα).

In left-handed notation,

eA(a)(x)= x(a) and εX̂ (x)(α)= α(x).

Observe that such dualities are given by the schizophrenic object I . Note that the so-
called ‘natural dualities’ considered in [2–4] are of similar type. However, they require
finite schizophrenic objects and satisfaction of certain additional conditions that do not
necessarily obtain for the cases considered in this paper.

Two known dualities for convex sets concern the classes A= S of finite-
dimensional simplices and A= Q of quadrilaterals, while the duality under
consideration in this paper deals with the class A= P of convex polytopes.
All three dualities are based on the following theorem, an obvious corollary of
[13, Proposition 159]).
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THEOREM 4.1. For each pair A and B of cancellative barycentric algebras, the set
B(B, A) is a cancellative barycentric algebra, a subalgebra of AB .

Note also the following.

LEMMA 4.2. Let A and B be convex polytopes. Let h ∈ B(B, A). Then h D is a

morphism of B̆. Similarly, if Â and B̂ are convex polytopes with constants and

ϕ̂ ∈ B̆(B̂, Â), then ϕ̂E is a B-morphism.

PROOF. We omit the routine details of the proof based on the following two facts. The
barycentric algebra structure on the set I A is defined by

r : (I A)2→ I A
; ( f1, f2) 7→ f1 f2r =: f,

where
f : A→ I ; x 7→ x f = x( f1 f2r)= x f1 x f2r ,

for each r ∈ I o. Then the constants 0 and 1 in B(A, I ) are defined to be the mappings
A→ {0} and A→ {1}, respectively. 2

5. The first dual

In this section, we describe the functor D in the case A= P , along with the category
X = D(P) of representation spaces.

The results of Section 3 show that, for each convex polytope A, there is a
uniquely defined canonical affine space extension R(A). Moreover, each barycentric
homomorphism ϕ : A→ I of AD extends uniquely to an affine space homomorphism
ϕ̄ : R(A)→ R(I ) of the set

D̄(A)= {ϕ̄ : R(A)→ R(I )= R | ϕ ∈ AD
} ⊆ R(R(A), R).

Note that R(A)∼= Rk if A is k-dimensional and, by results of [11],

R(R(A), R)∼= Rk+1.

With respect to the I o-operations, D̄(A) is a barycentric algebra. Moreover, the
following lemma holds.

LEMMA 5.1. The mapping

ι : AD
→ D̄(A); ϕ 7→ ϕ̄ (5.1)

is a barycentric algebra isomorphism.

The homomorphisms ϕ̄ are characterized among the homomorphisms ψ of
R(R(A), R) as those satisfying ψ(A)⊆ I . In other words,

D̄(A)= {ψ ∈ R(R(A), R) | Aψ ⊆ I }.
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Similarly, for any barycentric subreduct S of the affine space R(A) that is isomorphic
to a k-dimensional simplex and contains A as a subalgebra, one also has SD ∼= D̄(S).
Moreover, the homomorphisms ϕ̄ of D̄(S) that correspond to the homomorphisms ϕ
of SD are precisely the elements of

D̄(S)= {ψ ∈ R(R(S), R) | Sψ ⊆ I }.

It is obvious that D̄(S)⊆ D̄(A). As dim D̄(S)= k + 1, it follows also that
dim D̄(A)= k + 1.

Each homomorphism ϕ̄ of D̄(A) is determined by the (k + 1)-tuple (x̂0, . . . , x̂k)

of images x̂i = xiϕ of the generators x0, . . . , xk of R(A). (We retain the notation of
Section 3.) In particular,

ĝi := giϕ = x0ri0ϕ + · · · + xkrikϕ = x̂0ri0 + · · · + x̂krik,

and ĝi ∈ I for each i = 0, . . . , n. In other words, the following conditions are satisfied
for each i = 0, . . . , n:

0≤ x̂0ri0 + · · · + x̂krik ≤ 1.

In particular, for i = 0, . . . , k,
0≤ x̂i ≤ 1.

This leads to the definition of a barycentric algebra Â as{
(y0, . . . , yk) ∈ Rk+1

∣∣∣ 0≤
k∑

j=0

y jri j ≤ 1 for all i = 0, . . . , n

}
, (5.2)

where the ri j are the coefficients of gi . Note that Â contains 0= (0, . . . , 0) and 1=
(1, . . . , 1), and hence also all r̄ = (r, . . . , r) for r in I (corresponding to the constant
homomorphisms ϕ mapping all elements xi to r ). Note also that the inequalities

0≤ yi ≤ 1, (5.3)

for i = 0, . . . , k, describe the hypercube I k+1. In the case n = k (that is, if A is a
k-dimensional simplex 1k), then Â is isomorphic to the hypercube Î k+1, as shown
in [11]. Each pair of equations

k∑
j=0

y jri j = 0 and
k∑

j=0

y jri j = 1, (5.4)

for i = k + 1, . . . , n, describes two parallel hyperplanes Hi0 and Hi1 in Rk+1, the first
containing 0 and the second containing 1. Let Bi be the subset of Rk+1 satisfying

0≤ y0ri0 + · · · + ykrik ≤ 1, (5.5)
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the sandwich bounded by the two hyperplanes Hi0 and Hi1. It follows that Â is the
intersection of the hypercube I k+1 and the n − k sandwiches Bi for i = k + 1, . . . , n,
each determined by one of the generators gi . Equivalently, Â is the intersection of
n + 1 sandwiches. In particular, Â is a convex polytope. The set Â may also be
considered as the intersection of hyperparallelepipeds, each isomorphic to a (k + 1)-
dimensional hypercube. To see this, first note that by Theorem 3.1, the convex
polytope A is the union of subalgebras Ai , each generated by a g0-frame of A for
a fixed generator g0, and each isomorphic to a k-dimensional simplex. Denote such a
union by

⊕
i∈I Ai . Then

AD
i
∼= D̄(Ai )∼= Î k+1,

and any two of the D̄(Ai ) have a non-empty intersection. Moreover,

AD
=

(⊕
i∈I

Ai

)D
∼=

⋂
i∈I

(AD
i ).

These observations lead to the following proposition.

PROPOSITION 5.2. The mapping

h : D̄(A)→ Â; ϕ̄ 7→ (x0ϕ, . . . , xkϕ)

is a barycentric algebra isomorphism preserving constants. Moreover, Â is a convex
polytope, the intersection of subreducts of the affine space R̂k+1 with two constants 0
and 1, each isomorphic to the hypercube Î k+1.

REMARK 5.3. Note that choosing different frames of A when embedding A into R(A)
will provide isomorphic algebras D̄(A). Note also that frames could be replaced by
any subset of A generating a k-dimensional simplex. However, this would provide a
much less transparent description of the dual space.

6. The second dual

For each k-dimensional convex polytope A, the second dual ADE will be described
in this section. We show that there is a full duality between the category A= P of
convex polytopes with barycentric homomorphisms as morphisms, and the category
X = D(P)=: P̂ of all isomorphic copies of convex polytopes with constants (as
described in Section 5), with the barycentric homomorphisms preserving constants
as morphisms.

We start with the following observation.

LEMMA 6.1. The evaluation map

eA : A→ ADE
; a 7→ (aeA : x 7→ ax)

is injective.
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PROOF. For a, b in A, and r in I o, and for x in AD ,

x(abr)eA = (abr)x = ax bx r = xaeA xbeA r = x(aeA beA r),

where r is calculated as in the proof of Lemma 4.2. This shows that eA is a barycentric
algebra homomorphism. The injectivity of eA follows by the fact that each convex
polytope is a subalgebra of a direct power of I (compare [14, Ch. 7]). Thus distinct
elements a, b of A are separated by some homomorphism in AD . 2

In what follows, we use the symbol ˆ to denote algebras with constants and
homomorphisms preserving constants. In particular, we identify the first dual AD

with Â, and denote by R̂ the category of real affine spaces with constants 0 and 1.

According to our convention, we may identify the set ADE with D̄(A)E or ÂE

consisting of all B̆-homomorphisms ϕ̂ : Â→ Î . As in the case of the first dual, ÂE is

a cancellative barycentric algebra, and is isomorphic to the barycentric algebra Ē( Â)
consisting of those affine space homomorphisms

ϕ̂ := ¯̂ϕ : R̂k+1 ∼= R̂( Â)−→ R̂

with ϕ̂( Â)⊆ I , ϕ̂(0)= 0 and ϕ̂(1)= 1 that are unique extensions of the
homomorphisms ϕ̂ : Â→ Î . In fact, ϕ̂( Â)= I . Recall that

R̂(R̂k+1, R̂) ∈ R and R̂(R̂k+1, R̂)∼= Rk (6.1)

[11, Proposition 5.3], and note that

Ē( Â)⊆ R̂(R̂k+1, R̂). (6.2)

This may be summarized as follows.

PROPOSITION 6.2. To within isomorphism, the barycentric algebra Ē( Â) is an I o-
subreduct of the k-dimensional affine space Rk .

Let
{e0 = 0, e1 = (1, 0, . . . , 0), . . . , ek+1 = (0, . . . , 0, 1)}

be the standard set of generators of the affine space Rk+1. With e0 as zero, Rk+1 is
also a vector space with basis {e1, . . . , ek+1}. As in the proof of [11, Proposition 5.3],
the conditions ϕ̂(0)= 0 and ϕ̂(1)= 1 imply that the elements of R̂(R̂k+1, R̂) are

(idempotent) vector space projections taking 1 to 1. Each such element may be
described as

ϕ̂ = x̆1r1 + · · · + x̆k+1rk+1, (6.3)

with
∑k+1

i=1 ri = 1, where for i = 1, . . . , k + 1 the map

x̆i : Rk+1
→ R
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is defined by ei 7→ 1 and e j 7→ 0 for j 6= i . If x0, . . . , xk are the free generators of
the affine space Rk , then the mapping xi 7→ x̆i+1, for i = 0, . . . , k, gives the required
isomorphism of the affine space Rk with the affine space R̂(R̂k+1, R̂). Note that all

the mappings x̆i belong to Ē( Â), and also that each homomorphism ϕ̂ is determined
by the k-dimensional subspace Ker ϕ̂ of Rk+1, or by its normal vector. In particular,
Ker x̆i is the hyperplane yi−1 = 0. No homomorphism ϕ̂ has its kernel containing the
line through 0̄ and 1̄. (Indeed, note that such a kernel has an equation

y0r0 + · · · + ykrk = 0,

with r0 + · · · + rk = 0.)
Let A be a k-dimensional convex polytope as above, with a fixed frame

{x0 = g0, . . . , xk = gk}. For each a =
∑k

j=0 x jraj in A, define the mapping

ϕ̂a : R̂k+1
→ R̂; (y0, . . . , yk) 7→

k∑
j=0

y jraj .

(Note that yϕ̂xi = yi = yx̆i+1 for i = 0, . . . , k and y = (y0, . . . , yk) ∈ R̂k+1.) Define
8̂ to be the set {ϕ̂a | a ∈ A}.

LEMMA 6.3. Let A be a convex polytope as above. Then 8̂ embeds into the
barycentric algebra Ē( Â), and is isomorphic to A and hence also to eA(A).

PROOF. By Lemma 6.1, eA(A) is a subalgebra of ADE . As ADE ∼= E( Â), in the
evaluation mapping eA of Lemma 6.1, we can replace ADE by E( Â), and the mapping
AD
→ Î by Â→ Î . Recall that E( Â)∼= Ē( Â). Let

ēA : A→ Ē( Â); a 7→ ēA(a) : R̂( Â)→ R̂( Î ).

Then the map
eA(A)→ ēA(A) : eA(a) 7→ ēA(a)

is a barycentric algebra isomorphism. Now recall that R̂( Â)∼= R̂k+1 and R̂( Î )∼= R̂.
Now for each a =

∑k
j=0 x jraj in A, we have ēA(a)(y)= ϕ̂a(y). It follows that any

two of the barycentric algebras A, eA(A), ēA(A) and 8̂ are isomorphic. 2

Note that for the generators g0, . . . , gn of A as above, the barycentric algebra
8̂ is generated by the ϕ̂gi . Moreover, Ker ϕ̂gi is the hyperplane Hi0 defined by∑k

j=0 y jri j = 0.

PROPOSITION 6.4. The barycentric algebras Ē( Â) and 8̂ are isomorphic.

PROOF. We will identify 8̂ with its image ēA(A) in Ē( Â), and simply write
8̂⊆ Ē( Â). We will show that the converse inclusion holds.
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Let ϕ̂ ∈ Ē( Â). We may assume that ϕ̂ : R̂k+1
→ R̂ with ϕ̂( Â)= I , and that for

y = (y0, . . . , yk) ∈ Â,

yϕ̂ = yx̆1r1 + · · · + yx̆k+1rk+1 = y0r1 + · · · ykrk+1.

Define the element a of A by

a :=
k∑

j=0

x j
1

k + 1
.

Write σ̂ := ϕ̂a . Note that for y = (y0, . . . , yk) ∈ Â,

σ̂ (y)=
k∑

j=0

y j
1

k + 1
=

k∑
j=0

yx̆ j+1
1

k + 1
.

Since ϕ̂xi = x̆i+1 ∈ 8̂, it follows that σ̂ ∈ 8̂.
Now suppose that

ϕ̂ ∈ Ē( Â) \ 8̂,

and let θ̂ be an element of the intersection 8̂
⋂
[ σ̂ , ϕ̂] lying on the boundary of 8̂.

This element belongs to a proper wall W of 8̂. Suppose that W is generated by the set
{ϕ̂gi1

, . . . , ϕ̂gi p
}. Choose a frame F(W )= {z0, . . . , z j } of W . Note that

F(W )⊆ {ϕ̂gi1
, . . . , ϕ̂gi p

}.

Since the wall W is proper, j < k. The frame F(W ) can be extended to a frame

F(8̂)= {z0, . . . , z j , . . . zk} ⊆ {ϕ̂g0, . . . , ϕ̂gn },

of 8̂. Without loss of generality, we may assume that

x0 = ι
−1(z0), . . . , x j = ι

−1(z j ), x j+1 = ι
−1(z j+1), . . . , xk = ι

−1(zk),

where ι : A→ 8̂; a 7→ ϕ̂a is the isomorphism described in the proof of Lemma 6.3.
Let η : R(A)→ R be the affine space homomorphism that is defined on the

generators xi by η(xi )= 0 if i = 0, . . . , j , and otherwise by η(xi )= 1. Since A is
a convex polytope, there is a generator gi of A and a real number q > 0 such that

q = η(gi )=max
x∈A

η(x).

Now define η′ : R(A)→ R by

η′(x)=
1
q
η(x).
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Note that
max
x∈A

η′(x)= 1

and
min
x∈A

η′(x)= 0,

whence η′ ∈ D̄(A). By Proposition 5.2, η′ may be identified with the element
t̂ := (x0η

′, . . . , xkη
′) of Â, and this element is not zero.

Now, for each s ∈ R, define
ξ̂s := σ̂ θ̂ s.

Then ξ̂0 = σ̂ , ξ̂1 = θ̂ and, for some s0 > 1, ξ̂s0 = ϕ̂. Define f to be the mapping

f : R−→ R; s 7→ ξ̂s(t̂).

Note that

f (s)= σ̂ (t̂ ) θ̂(t̂ ) s = f (0)(1− s)+ f (1)s = ( f (0)− f (1))s + f (1),

so that f is a linear function. Since j < k, the definition of η′ implies that
f (0)= σ̂ (t̂ ) > 0. Moreover, f (1)= θ̂ (t̂ )= 0. By the linearity of f , we have
f (s0)= ϕ̂(t̂ ) < 0. This contradicts the assumption that ϕ̂ ∈ Ē( Â ). The required
equality 8̂= Ē( Â ) follows. 2

THEOREM 6.5 (Duality theorem). There is a full duality between the categories P

and P̂ given by the schizophrenic object I .

PROOF. The existence of a duality between the categories P and P̂ follows directly
by the previous results, with the natural isomorphism e given by

eA : A→ ADE
; a 7→ κ(ϕ̂a),

where κ : 8̂→ eA(A) is the isomorphism described in the proof of Lemma 6.3.
This duality is full. First recall that each member of the dual category P̂ has the

form AD for some convex polytope A. As A ∼= ADE , we may assume that each
element of ADE is of the form ϕ̂a for precisely one a ∈ A. Hence, eA(a)= ϕ̂a and

e−1
A : ADE

→ A; ϕ̂a 7→ a.

By the definition of the functor D,

D(e−1
A ) : AD

−→ ADE D
; ψ 7→ ψ ◦ e−1

A

and
D(e−1

A )(ψ)(ϕ̂a)= ψ(e
−1
A (ϕ̂a))= ψ(a).
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Note also that for ψ in AD ,

ψ(a)= eA(a)(ψ)= ϕ̂a(ψ). (6.4)

Now the natural isomorphism ε of E D with the identity functor is given by the
evaluation

εAD : AD
→ ADE D

; ψ 7→ εAD(ψ),

and by equation (6.4),
εAD(ψ)(ϕ̂a)= ϕ̂a(ψ)= ψ(a).

It follows that
εAD = D(e−1

A ). 2

Recall that for a k-dimensional convex polytope A =
⊕

i∈I Ai partitioned into k-
dimensional simplices Ai as in Section 4,

Â ∼= AD
=

(⊕
i∈I

Ai

)D
∼=

⋂
i∈I

(AD
i ).

Dualizing R̂ ˆ(A) in parallel with Â provides corresponding dual spaces ADE
i
∼= Ai of

Âi ∼= AD
i .
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