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Data assimilation addresses the general problem of how to combine model-
based predictions with partial and noisy observations of the process in an
optimal manner. This survey focuses on sequential data assimilation tech-
niques using probabilistic particle-based algorithms. In addition to surveying
recent developments for discrete- and continuous-time data assimilation, both
in terms of mathematical foundations and algorithmic implementations, we
also provide a unifying framework from the perspective of coupling of meas-
ures, and Schrödinger’s boundary value problem for stochastic processes in
particular.
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Figure 1.1. Schematic illustration of sequential data assimilation, where model
states are propagated forward in time under a given model dynamics and adjusted
whenever data become available at discrete instances in time. In this paper, we look
at a single transition from a given model state conditioned on all the previous and
current data to the next instance in time, and its adjustment under the assimilation
of the new data then becoming available.

1. Introduction

This survey focuses on sequential data assimilation techniques for state
and parameter estimation in the context of discrete- and continuous-time
stochastic diffusion processes. See Figure 1.1. The field itself is well estab-
lished (Evensen 2006, Särkkä 2013, Law, Stuart and Zygalakis 2015, Reich
and Cotter 2015, Asch, Bocquet and Nodet 2017), but is also undergoing
continuous development due to new challenges arising from emerging ap-
plication areas such as medicine, traffic control, biology, cognitive sciences
and geosciences.

Data assimilation is typically formulated within a Bayesian framework in
order to combine partial and noisy observations with model predictions and
their uncertainties with the goal of adjusting model states and model para-
meters in an optimal manner. In the case of linear systems and Gaussian
distributions, this task leads to the celebrated Kalman filter (Särkkä 2013)
which even today forms the basis of a number of popular data assimilation
schemes and which has given rise to the widely used ensemble Kalman fil-
ter (Evensen 2006). Contrary to standard sequential Monte Carlo methods
(Doucet, de Freitas and Gordon 2001, Bain and Crisan 2008), the ensemble
Kalman filter does not provide a consistent approximation to the sequential
filtering problem, while being applicable to very high-dimensional problems.
This and other advances have widened the scope of sequential data assim-
ilation and have led to an avalanche of new methods in recent years.
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In this review we will focus on probabilistic methods (in contrast to data
assimilation techniques based on optimization, such as 3DVar and 4DVar
(Evensen 2006, Law et al. 2015)) in the form of sequential particle methods.
The essential challenge of sequential particle methods is to convert a sample
of M particles from a filtering distribution at time tk into M samples from
the filtering distribution at time tk+1 without having access to the full fil-
tering distributions. It will also often be the case in practical applications
that the sample size will be small to moderate in comparison to the number
of variables we need to estimate.

Sequential particle methods can be viewed as a special instance of in-
teracting particle systems (del Moral 2004). We will view such interact-
ing particle systems in this review from the perspective of approximating
a certain boundary value problem in the space of probability measures,
where the boundary conditions are provided by the underlying stochastic
process, the data and Bayes’ theorem. This point of view leads natur-
ally to optimal transportation (Villani 2003, Reich and Cotter 2015) and,
more importantly for this review, to Schrödinger’s problem (Föllmer and
Gantert 1997, Leonard 2014, Chen, Georgiou and Pavon 2014), as formu-
lated first by Erwin Schrödinger in the form of a boundary value problem
for Brownian motion (Schrödinger 1931).

This paper has been written with the intention of presenting a unifying
framework for sequential data assimilation using coupling of measure argu-
ments provided through optimal transportation and Schrödinger’s problem.
We will also summarize novel algorithmic developments that were inspired
by this perspective. Both discrete- and continuous-time processes and data
sets will be covered. While the primary focus is on state estimation, the
presented material can be extended to combined state and parameter es-
timation. See Remark 2.2 below.

Remark 1.1. We will primary refer to the methods considered in the
survey as particle or ensemble methods instead of the widely used notion of
sequential Monte Carlo methods. We will also use the notions of particles,
samples and ensemble members synonymously. Since the ensemble size,
M , is generally assumed to be small to moderate relative to the number of
variables of interest, we will focus on robust but generally biased particle
methods.

1.1. Overall organization of the paper

This survey consists of four main parts. We start Section 2 by recalling
key mathematical concepts of sequential data assimilation when the data
become available at discrete instances in time. Here the underlying dynamic
models can be either continuous (i.e. generated by a stochastic differential
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equation) or discrete-in-time. Our initial review of the problem will lead
to the identification of three different scenarios of performing sequential
data assimilation, which we denote by (A), (B) and (C). While the first
two scenarios are linked to the classical importance resampling and optimal
proposal densities for particle filtering (Doucet et al. 2001), scenario (C)
builds upon an intrinsic connection to a certain boundary value problem in
the space of joint probability measures first considered by Erwin Schrödinger
(1931).

After this initial review, the remaining parts of Section 2 provide more
mathematical details on prediction in Section 2.1, filtering and smoothing
in Section 2.2, and the Schrödinger approach to sequential data assimilation
in Section 2.3. The modification of a given Markov transition kernel via a
twisting function will arise as a crucial mathematical construction and will
be introduced in Sections 1.2 and 2.1. The next major part of the paper,
Section 3, is devoted to numerical implementations of prediction, filtering
and smoothing, and the Schrödinger approach as relevant to scenarios (A)–
(C) introduced earlier in Section 2. More specifically, this part will cover
the ensemble Kalman filter and its extensions to the more general class
of linear ensemble transform filters as well as the numerical implementa-
tion of the Schrödinger approach to sequential data assimilation using the
Sinkhorn algorithm (Sinkhorn 1967, Peyre and Cuturi 2018). Discrete-time
stochastic systems with additive Gaussian model errors and stochastic dif-
ferential equations with constant diffusion coefficient serve as illustrating
examples throughout both Sections 2 and 3.

Sections 2 and 3 are followed by two sections on the assimilation of data
that arrive continuously in time. In Section 4 we will distinguish between
data that are smooth as a function of time and data which have been per-
turbed by Brownian motion. In both cases, we will demonstrate that the
data assimilation problem can be reformulated in terms of so-called mean-
field equations, which produce the correct conditional marginal distribu-
tions in the state variables. In particular, in Section 4.2 we discuss the
feedback particle filter of Yang, Mehta and Meyn (2013) in some detail.
The final section of this review, Section 5, covers numerical approximations
to these mean-field equations in the form of interacting particle systems.
More specifically, the continuous-time ensemble Kalman–Bucy and numer-
ical implementations of the feedback particle filter will be covered in detail.
It will be shown in particular that the numerical implementation of the
feedback particle filter can be achieved naturally via the approximation of
an associated Schrödinger problem using the Sinkhorn algorithm.

In the appendices we provide additional background material on mesh-free
approximations of the Fokker–Planck and backward Kolmogorov equations
(Appendix A.1), on the regularized Störmer–Verlet time-stepping meth-
ods for the hybrid Monte Carlo method, applicable to Bayesian inference
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problems over path spaces (Appendix A.2), on the ensemble Kalman filter
(Appendix A.3), and on the numerical approximation of forward–backward
stochastic differential equations (SDEs) (Appendix A.4).

1.2. Summary of essential notations

We typically denote the probability density function (PDF) of a random
variable Z by π. Realizations of Z will be denoted by z = Z(ω).

Realizations of a random variable can also be continuous functions/paths,
in which case the associated probability measure on path space is denoted
by Q. We will primarily consider continuous functions over the unit time
interval and denote the associated random variable by Z[0,1] and its real-
izations Z[0,1](ω) by z[0,t]. The restriction of Z[0,1] to a particular instance
t ∈ [0, 1] is denoted by Zt with marginal distribution πt and realizations
zt = Zt(ω).

For a random variable Z having only finitely many outcomes zi, i =
1, . . . ,M , with probabilities pi, that is,

P[Z(ω) = zi] = pi,

we will work with either the probability vector p = (p1, . . . , pM )T or the
empirical measure

π(z) =

M∑
i=1

pi δ(z − zi),

where δ(·) denotes the standard Dirac delta function.
We use the shorthand

π[f ] =

∫
f(z)π(z) dz

for the expectation of a function f under a PDF π. Similarly, integration
with respect to a probability measure Q, not necessarily absolutely continu-
ous with respect to Lebesgue, will be denoted by

Q[f ] =

∫
f(z)Q(dz).

The notation E[f ] is used if we do not wish to specify the measure explicitly.
The PDF of a Gaussian random variable Z with mean z̄ and covariance

matrix B will be abbreviated by n(z; z̄, B). We also use Z ∼ N(z̄, B).
Let u ∈ RN , then D(u) ∈ RN×N denotes the diagonal matrix with entries

(D(u))ii = ui, i = 1, . . . , N . We also denote the N × 1 vector of ones by
1N = (1, . . . , 1)T ∈ RN .
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A matrix P ∈ RL×M is called bi-stochastic if all its entries are non-
negative, which we will abbreviate by P ≥ 0, and

L∑
l=1

qli = p0,

M∑
i=1

qli = p1,

where both p1 ∈ RL and p0 ∈ RM are probability vectors. A matrix Q ∈
RM×M defines a discrete Markov chain if all its entries are non-negative and

L∑
l=1

qli = 1.

The Kullback–Leibler divergence between two bi-stochastic matrices P ∈
RL×M and Q ∈ RL×M is defined by

KL (P ||Q) :=
∑
l,j

plj log
plj
qlj
.

Here we have assumed for simplicity that qlj > 0 for all entries of Q. This
definition extends to the Kullback–Leibler divergence between two discrete
Markov chains.

The transition probability going from state z0 at time t = 0 to state z1 at
time t = 1 is denoted by q+(z1|z0). Hence, given an initial PDF π0(z0) at
t = 0, the resulting (prediction or forecast) PDF at time t = 1 is provided by

π1(z1) :=

∫
q+(z1|z0)π0(z0) dz0. (1.1)

Given a twisting function ψ(z) > 0, the twisted transition kernel qψ+(z1|z0)
is defined by

qψ+(z1|z0) := ψ(z1) q+(z1|z0) ψ̂(z0)−1 (1.2)

provided

ψ̂(z0) :=

∫
q+(z1|z0)ψ(z1) dz1 (1.3)

is non-zero for all z0. See Definition 2.8 for more details.
If transitions are characterized by a discrete Markov chain Q+ ∈ RM ,

then a twisted Markov chain is provided by

Qu+ = D(u)Q+D(v)−1

for given twisting vector u ∈ RM with positive entries ui, i.e. u > 0, and
the vector v ∈ RM determined by

v = (D(u)Q+)T 1M .
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The conditional probability of observing y given z is denoted by π(y|z)
and the likelihood of z given an observed y is abbreviated by l(z) = π(y|z).
We will also use the abbreviations

π̂1(z1) = π1(z1|y1)

and

π̂0(z0) = π0(z0|y1)

to denote the conditional PDFs of a process at time t = 1 given data at time
t = 1 (filtering) and the conditional PDF at time t = 0 given data at time
t = 1 (smoothing), respectively. Finally, we also introduce the evidence

β := π1[l] =

∫
p(y1|z1)π1(z1) dz1

of observing y1 under the given model as represented by the forecast PDF
(1.1). A more precise definition of these expressions will be given in the
following section.

2. Mathematical foundation of discrete-time DA

Let us assume that we are given partial and noisy observations yk, k =
1, . . . ,K, of a stochastic process in regular time intervals of length T =
1. Given a likelihood function π(y|z), a Markov transition kernel q+(z′|z)
and an initial distribution π0, the associated prior and posterior PDFs are
given by

π(z0:K) := π0(z0)

K∏
k=1

q+(zk|zk−1) (2.1)

and

π(z0:K |y1:K) :=
π0(z0)

∏K
k=1 π(yk|zk) q+(zk|zk−1)

π(y1:K)
, (2.2)

respectively (Jazwinski 1970, Särkkä 2013). While it is of broad interest
to approximate the posterior or smoothing PDF (2.2), we will focus on
the recursive approximation of the filtering PDFs π(zk|y1:k) using sequen-
tial particle filters in this paper. More specifically, we wish to address the
following computational task.

Problem 2.1. We have M equally weighted Monte Carlo samples zik−1,
i = 1, . . . ,M , from the filtering PDF π(zk−1|y1:k−1) at time t = k − 1
available and we wish to produce M equally weighted samples from the
filtering PDF π(zk|y1:k) at time t = k having access to the transition kernel
q+(zk|zk−1) and the likelihood π(yk|zk) only. Since the computational task
is exactly the same for all indices k ≥ 1, we simply set k = 1 throughout
this paper.
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We introduce some notations before we discuss several possibilities of
addressing Problem 2.1. Since we do not have direct access to the filtering
distribution at time k = 0, the PDF at t0 becomes

π0(z0) :=
1

M

M∑
i=1

δ(z0 − zi0), (2.3)

where δ(z) denotes the Dirac delta function and zi0, i = 1, . . . ,M , are M
given Monte Carlo samples representing the actual filtering distribution.
Recall that we abbreviate the resulting filtering PDF π(z1|y1) at t = 1 by
π̂1(z1) and the likelihood π(y1|z1) by l(z1). Because of (1.1), the forecast
PDF is given by

π1(z1) =
1

M

M∑
i=1

q+(z1|zi0) (2.4)

and the filtering PDF at time t = 1 by

π̂1(z1) :=
l(z1)π1(z1)

π1[l]
=

1

π1[l]

1

M

M∑
i=1

l(z1) q+(z1|zi0) (2.5)

according to Bayes’ theorem.

Remark 2.2. The normalization constant π(y1:K) in (2.2), also called the
evidence, can be determined recursively using

π(y1:k) = π(y1:k−1)

∫
π(yk, zk−1)π(zk−1|y1:k−1) dzk−1

= π(y1:k−1)

∫ ∫
π(yk|zk) q+(zk|zk−1)π(zk−1|y1:k−1) dzk−1 dzk

= π(y1:k−1)

∫
π(yk|zk)π(zk|y1:k−1) dzk (2.6)

(Särkkä 2013, Reich and Cotter 2015). Since, as for the state estimation
problem, the computational task is the same for each index k ≥ 1, we simply
set k = 1 and formally use π(y1:0) ≡ 1. We are then left with

β := π1[l] =
1

M

M∑
i=1

∫
l(z1) q+(z1|zi0) dz1 (2.7)

within the setting of Problem 2.1, and β becomes a shorthand for π(y1). If
the model depends on parameters, λ, or different models are to be compared,
then it is important to evaluate the evidence (2.7) for each parameter value
λ or model, respectively. More specifically, if q+(z1|z0;λ), then β = β(λ) in
(2.7) and larger values of β(λ) indicate a better fit of the transition kernel
to the data for that parameter value. One can then perform Bayesian para-
meter inference based upon appropriate approximations to the likelihood
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π(y1|λ) = β(λ) and a given prior PDF π(λ). The extension to the complete
data set y1:K , K > 1, is straightforward using (2.6) and an appropriate
data assimilation algorithm, i.e. algorithms that can tackle Problem 2.1
sequentially.

Alternatively, one can treat a combined state–parameter estimation prob-
lem as a particular case of Problem 2.1 by introducing the extended state
variable (z, λ) and augmented transition probabilities Z1 ∼ q+(·|z0, λ0) and
P[Λ1 = λ0] = 1. The state augmentation technique allows one to extend
all approaches discussed in this paper for Problem 2.1 to combined state–
parameter estimation.

See Kantas et al. (2015) for a detailed survey of the topic of combined
state and parameter estimation.

The filtering distribution π̂1 at time t = 1 implies a smoothing distribution
at time t = 0, which is given by

π̂0(z0) :=
1

β

∫
l(z1) q+(z1|z0)π0(z0) dz1 =

1

M

M∑
i=1

γiδ(z0 − zi0) (2.8)

with weights

γi :=
1

β

∫
l(z1) q+(z1|zi0) dz1. (2.9)

It is important to note that the filtering PDF π̂1 can be obtained from π̂0

using the transition kernels

q̂+(z1|zi0) :=
l(z1) q+(z1|zi0)

β γi
, (2.10)

that is,

π̂1(z1) =
1

M

M∑
i=1

q̂+(z1|zi0) γi.

See Figure 2.1 for a schematic illustration of these distributions and their
mutual relationships.

Remark 2.3. The modified transition kernel (2.10) can be seen as a par-
ticular instance of a twisted transition kernel (1.2) with ψ(z) = l(z)/β and

ψ̂(zi0) = γi. Such twisting kernels will play a prominent role in this survey,
not only in the context of optimal proposals (Doucet et al. 2001, Arulam-
palam, Maskell, Gordon and Clapp 2002) but also in the context of the
Schrödinger approach to data assimilation, i.e. scenario (C) below.

The following scenarios of how to tackle Problem 2.1, that is, how to
produce the desired samples ẑi1, i = 1, . . . ,M , from the filtering PDF (2.5),
will be considered in this paper.
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Figure 2.1. Schematic illustration of a single data assimilation cycle. The distri-
bution π0 characterizes the distribution of states conditioned on all observations
up to and including t0, which we set here to t = 0 for simplicity. The predictive
distribution at time t1 = 1, as generated by the model dynamics, is denoted by
π1. Upon assimilation of the data y1 and application of Bayes’ formula, one ob-
tains the filtering distribution π̂1. The conditional distribution of states at time t0
conditioned on all the available data including y1 is denoted by π̂0. Control theory
provides the adjusted model dynamics for transforming π̂0 into π̂1. Finally, the
Schrödinger problem links π0 and π̂1 in the form of a penalized boundary value
problem in the space of joint probability measures. Data assimilation scenario (A)
corresponds to the dotted lines, scenario (B) to the short-dashed lines, and scenario
(C) to the long-dashed line.

Definition 2.4. We define the following three scenarios of how to tackle
Problem 2.1.

(A) We first produce samples, zi1, from the forecast PDF π1 and then trans-
form those samples into samples, ẑi1, from π̂1. This can be viewed as
introducing a Markov transition kernel q1(ẑ1|z1) with the property that

π̂1(ẑ1) =

∫
q1(ẑ1|z1)π1(z1) dz1. (2.11)

Techniques from optimal transportation can be used to find appro-
priate transition kernels (Villani 2003, Villani 2009, Reich and Cotter
2015).

https://doi.org/10.1017/S0962492919000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492919000011


Data assimilation: The Schrödinger perspective 645

(B) We first produce M samples from the smoothing PDF (2.8) via res-
ampling with replacement and then sample from π̂1 using the smooth-
ing transition kernels (2.10). The resampling can be represented in
terms of a Markov transition matrix Q0 ∈ RM×M such that

γ = Q0 p.

Here we have introduced the associated probability vectors

γ =

(
γ1

M
, . . . ,

γM

M

)T

∈ RM , p =

(
1

M
, . . . ,

1

M

)T

∈ RM . (2.12)

Techniques from optimal transport will be explored to find such Markov
transition matrices in Section 3.

(C) We directly seek Markov transition kernels q∗+(z1|zi0), i = 1, . . . ,M ,
with the property that

π̂1(z1) =
1

M

M∑
i=1

q∗+(z1|zi0) (2.13)

and then draw a single sample, ẑi1, from each kernel q∗+(z1|zi0). Such
kernels can be found by solving a Schrödinger problem (Leonard 2014,
Chen et al. 2014) as demonstrated in Section 2.3.

Scenario (A) forms the basis of the classical bootstrap particle filter
(Doucet et al. 2001, Liu 2001, Bain and Crisan 2008, Arulampalam et al.
2002) and also provides the starting point for many currently used ensemble-
based data assimilation algorithms (Evensen 2006, Reich and Cotter 2015,
Law et al. 2015). Scenario (B) is also well known in the context of particle
filters under the notion of optimal proposal densities (Doucet et al. 2001,
Arulampalam et al. 2002, Fearnhead and Künsch 2018). Recently there
has been renewed interest in scenario (B) from the perspective of optimal
control and twisting approaches (Guarniero, Johansen and Lee 2017, Heng,
Bishop, Deligiannidis and Doucet 2018, Kappen and Ruiz 2016, Ruiz and
Kappen 2017). Finally, scenario (C) has not yet been explored in the context
of particle filters and data assimilation, primarily because the required ker-
nels q∗+ are typically not available in closed form or cannot be easily sampled
from. However, as we will argue in this paper, progress on the numerical
solution of Schrödinger’s problem (Cuturi 2013, Peyre and Cuturi 2018)
turns scenario (C) into a viable option in addition to providing a unifying
mathematical framework for data assimilation.

We emphasize that not all existing particle methods fit into these three
scenarios. For example, the methods put forward by van Leeuwen (2015)
are based on proposal densities which attempt to overcome limitations of
scenario (B) and which lead to less variable particle weights, thus attempting
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to obtain particle filter implementations closer to what we denote here as
scenario (C). More broadly speaking, the exploration of alternative proposal
densities in the context of data assimilation has started only recently. See,
for example, Vanden-Eijnden and Weare (2012), Morzfeld, Tu, Atkins and
Chorin (2012), van Leeuwen (2015), Pons Llopis, Kantas, Beskos and Jasra
(2018) and van Leeuwen et al. (2018).

The accuracy of an ensemble-based data assimilation method can be char-
acterized in terms of its effective sample size Meff (Liu 2001). The relevant
effective sample size for scenario (B) is, for example, given by

Meff =
M2∑M
i=1(γi)2

=
1

‖γ‖2
.

We find that M ≥ Meff ≥ 1 and the accuracy of a data assimilation step
decreases with decreasing Meff , that is, the convergence rate 1/

√
M of a

standard Monte Carlo method is replaced by 1/
√
Meff (Agapiou, Papaspipli-

opoulos, Sanz-Alonso and Stuart 2017). Scenario (C) offers a route around
this problem by bridging π0 with π̂1 directly, that is, solving the Schrödinger
problem delivers the best possible proposal densities leading to equally
weighted particles without the need for resampling.1

Example 2.5. We illustrate the three scenarios with a simple example.
The prior samples are given by M = 11 equally spaced particles zi0 ∈ R
from the interval [−1, 1]. The forecast PDF π1 is provided by

π1(z) =
1

M

M∑
i=1

1

(2π)1/2σ
exp

(
− 1

2σ2
(z − zi0)2

)
with variance σ2 = 0.1. The likelihood function is given by

π(y1|z) =
1

(2πR)1/2
exp

(
− 1

2R
(y1 − z)2

)
with R = 0.1 and y1 = −0.5. The implied filtering and smoothing distri-
butions can be found in Figure 2.2. Since π̂1 is in the form of a weighted
Gaussian mixture distribution, the Markov chain leading from π̂0 to π̂1 can
be stated explicitly, that is, (2.10) is provided by

q̂+(z1|zi0) =
1

(2π)1/2σ̂
exp

(
− 1

2σ̂2
(z̄i1 − z1)2

)
(2.14)

with

σ̂2 = σ2 − σ4

σ2 +R
, z̄i1 = zi0 −

σ2

σ2 +R
(zi0 − y1).

1 The kernel (2.10) is called the optimal proposal in the particle filter community. How-
ever, the kernel (2.10) is suboptimal in the broader framework considered in this paper.
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Figure 2.2. The initial PDF π0, the forecast PDF π1, the filtering PDF π̂1, and
the smoothing PDF π̂0 for a simple Gaussian transition kernel.

The resulting transition kernels are displayed in Figure 2.3 together with
the corresponding transition kernels for the Schrödinger approach, which
connects π0 directly with π̂1.

Remark 2.6. It is often assumed in optimal control or rare event simula-
tions arising from statistical mechanics that π0 in (2.1) is a point measure,
that is, the starting point of the simulation is known exactly. See, for ex-
ample, Hartmann, Richter, Schütte and Zhang (2017). This corresponds
to (2.3) with M = 1. It turns out that the associated smoothing problem
becomes equivalent to Schrödinger’s problem under this particular setting
since the distribution at t = 0 is fixed.

The remainder of this section is structured as follows. We first recapitu-
late the pure prediction problem for discrete-time Markov processes and
continuous-time diffusion processes, after which we discuss the filtering
and smoothing problem for a single data assimilation step as relevant for
scenarios (A) and (B). The final subsection is devoted to the Schrödinger
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Figure 2.3. (a) The transition kernels (2.14) for the M = 11 different particles zi0.
These correspond to the optimal control path in Figure 2.1. (b) The corresponding
transition kernels, which lead directly from π0 to π̂1. These correspond to the
Schrödinger path in Figure 2.1. Details of how to compute these Schrödinger
transition kernels, q∗+(z1|zi0), can be found in Section 3.4.1.
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problem (Leonard 2014, Chen et al. 2014) of bridging the filtering distribu-
tion, π0, at t = 0 directly with the filtering distribution, π̂1, at t = 1, thus
leading to scenario (C).

2.1. Prediction

We assume under the chosen computational setting that we have access to
M samples zi0 ∈ RNz , i = 1, . . . ,M , from the filtering distribution at t = 0.
We also assume that we know (explicitly or implicitly) the forward transition
probabilities q+(z1|zi0) of the underlying Markovian stochastic process. This
leads to the forecast PDF π1 as given by (2.4).

Before we consider two specific examples, we introduce two concepts re-
lated to the forward transition kernel which we will need later in order to
address scenarios (B) & (C) from Definition 2.4.

We first introduce the backward transition kernel q−(z0|z1), which is
defined via the equation

q−(z0|z1)π1(z1) = q+(z1|z0)π0(z0).

Note that q−(z0|z1) as well as π0 are not absolutely continuous with respect
to the underlying Lebesgue measure, that is,

q−(z0|z1) =
1

M

M∑
i=1

q+(z1|zi0)

π1(z1)
δ(z0 − zi0). (2.15)

The backward transition kernel q−(z1|z0) reverses the prediction process in
the sense that

π0(z0) =

∫
q−(z0|z1)π1(z1) dz1.

Remark 2.7. Let us assume that the detailed balance

q+(z1|z0)π(z0) = q+(z0|z1)π(z1)

holds for some PDF π and forward transition kernel q+(z1|z0). Then π1 = π
for π0 = π (invariance of π) and q−(z0|z1) = q+(z1|z0).

We next introduce a class of forward transition kernels using the concept
of twisting (Guarniero et al. 2017, Heng et al. 2018), which is an application
of Doob’s H-transform technique (Doob 1984).

Definition 2.8. Given a non-negative twisting function ψ(z1) such that
the modified transition kernel (1.2) is well-defined, one can define the twisted
forecast PDF

πψ1 (z1) :=
1

M

M∑
i=1

qψ+(z1|zi0) =
1

M

M∑
i=1

ψ(z1)

ψ̂(zi0)
q+(z1|zi0). (2.16)
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The PDFs π1 and πψ1 are related by

π1(z1)

πψ1 (z1)
=

∑M
i=1 q+(z1|zi0)∑M

i=1
ψ(z1)

ψ̂(zi0)
q+(z1|zi0)

. (2.17)

Equation (2.17) gives rise to importance weights

wi ∝ π1(zi1)

πψ1 (zi1)
(2.18)

for samples zi1 = Zi1(ω) drawn from the twisted forecast PDF, that is,

Zi1 ∼ q
ψ
+(· |zi0)

and

π1(z) ≈ 1

M

M∑
i=1

wi δ(z − zi1)

in a weak sense. Here we have assumed that the normalization constant in
(2.18) is chosen such that

M∑
i=1

wi = M. (2.19)

Such twisted transition kernels will become important when looking at the
filtering and smoothing as well as the Schrödinger problem later in this
section.

Let us now discuss a couple of specific models which give rise to trans-
ition kernels q+(z1|z0). These models will be used throughout this paper to
illustrate mathematical and algorithmic concepts.

2.1.1. Gaussian model error

Let us consider the discrete-time stochastic process

Z1 = Ψ(Z0) + γ1/2Ξ0 (2.20)

for given map Ψ : RNz → RNz , scaling factor γ > 0, and Gaussian dis-
tributed random variable Ξ0 with mean zero and covariance matrix B ∈
RNz×Nz . The associated forward transition kernel is given by

q+(z1|z0) = n(z1; Ψ(z0), γB). (2.21)

Recall that we have introduced the shorthand n(z; z̄, P ) for the PDF of a
Gaussian random variable with mean z̄ and covariance matrix P .

Let us consider a twisting potential ψ of the form

ψ(z1) ∝ exp

(
−1

2
(Hz1 − d)TR−1(Hz1 − d)

)
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for given H ∈ RNz×Nd , d ∈ RNd , and covariance matrix R ∈ RNd×Nd . We
define

K := BHT(HBHT + γ−1R)−1 (2.22)

and

B̄ := B −KHB, z̄i1 := Ψ(zi0)−K(HΨ(zi0)− d). (2.23)

The twisted transition kernels are given by

qψ+(z1|zi0) = n(z1; z̄i1, γB̄)

and

ψ̂(zi0) ∝ exp

(
−1

2
(HΨ(zi0)− d)T(R+ γHBHT)−1(HΨ(zi0)− d)

)
for i = 1, . . . ,M .

2.1.2. SDE models

Consider the (forward) SDE (Pavliotis 2014)

dZ+
t = ft(Z

+
t ) dt+ γ1/2 dW+

t (2.24)

with initial condition Z+
0 = z0 and γ > 0. Here W+

t stands for standard
Brownian motion in the sense that the distribution of W+

t+∆t, ∆t > 0,

conditioned on w+
t = W+

t (ω) is Gaussian with mean w+
t and covariance

matrix ∆t I (Pavliotis 2014) and the process Z+
t is adapted to W+

t .
The resulting time-t transition kernels q+

t (z|z0) from time zero to time t,
t ∈ (0, 1], satisfy the Fokker–Planck equation (Pavliotis 2014)

∂tq
+
t (· |z0) = −∇z · (q+

t (· |z0)ft) +
γ

2
∆zq

+
t (· |z0)

with initial condition q+
0 (z|z0) = δ(z− z0), and the time-one forward trans-

ition kernel q+(z1|z0) is given by

q+(z1|z0) = q+
1 (z1|z0).

We introduce the operator Lt by

Ltg := ∇zg · ft +
γ

2
∆zg

and its adjoint L†t by

L†tπ := −∇z · (π ft) +
γ

2
∆zπ (2.25)

(Pavliotis 2014). We call L†t the Fokker–Planck operator and Lt the gener-
ator of the Markov process associated to the SDE (2.24).
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Solutions (realizations) z[0,1] = Z+
[0,1](ω) of the SDE (2.24) with initial

conditions drawn from π0 are continuous functions of time, that is, z[0,1] ∈
C := C([0, 1],RNz), and define a probability measure Q on C, that is,

Z+
[0,1] ∼ Q.

We note that the marginal distributions πt of Q, given by

πt(zt) =

∫
q+
t (zt|z0)π0(z0) dz0,

also satisfy the Fokker–Planck equation, that is,

∂tπt = L†t πt = −∇z · (πt ft) +
γ

2
∆zπt (2.26)

for given PDF π0 at time t = 0.
Furthermore, we can rewrite the Fokker–Planck equation (2.26) in the

form

∂πt = −∇z · (πt(ft − γ∇z log πt))−
γ

2
∆zπt, (2.27)

which allows us to read off from (2.27) the backward SDE

dZ−t = ft(Z
−
t ) dt− γ∇z log πt dt+ γ1/2 dW−t ,

= bt(Z
−
t ) dt+ γ1/2 dW−t (2.28)

with final condition Z−1 ∼ π1, W−t backward Brownian motion, and density-
dependent drift term

bt(z) := ft(z)− γ∇z log πt

(Nelson 1984, Chen et al. 2014). Here backward Brownian motion is to be
understood in the sense that the distribution of W−t−∆τ , ∆τ > 0, conditioned

on w−t = W−t (ω) is Gaussian with mean w−t and covariance matrix ∆τ I
and all other properties of Brownian motion appropriately adjusted. The
process Z−t is adapted to W−t .

Lemma 2.9. The backward SDE (2.28) induces a corresponding back-
ward transition kernel from time one to time t = 1 − τ with τ ∈ [0, 1],
denoted by q−τ (z|z1), which satisfies the time-reversed Fokker–Planck equa-
tion

∂τq
−
τ (· |z1) = ∇z · (q−τ (· |z1) b1−τ ) +

γ

2
∆zq

−
τ (· |z1)

with boundary condition q−0 (z|z1) = δ(z − z1) at τ = 0 (or, equivalently, at
t = 1). The induced backward transition kernel q−(z0|z1) is then given by

q−(z0|z1) = q−1 (z0|z1)

and satisfies (2.15).
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Proof. The lemma follows from the fact that the backward SDE (2.28)
implies the Fokker–Planck equation (2.27) and that we have reversed time
by introducing τ = 1− t.

Remark 2.10. The notion of a backward SDE also arises in a different
context where the driving Brownian motion is still adapted to the past, i.e.
W+
t in our notation, and a final condition is prescribed as for (2.28). See

(2.54) below as well as Appendix A.4 and Carmona (2016) for more details.

We note that the mean-field equation,

d

dt
zt = ft(zt)−

γ

2
∇z log πt(zt) =

1

2
(ft(zt) + bt(zt)), (2.29)

resulting from (2.26), leads to the same marginal distributions πt as the
forward and backward SDEs, respectively. It should be kept in mind, how-
ever, that the path measure generated by (2.29) is different from the path
measure Q generated by (2.24).

Please also note that the backward SDE and the mean-field equation
(2.29) become singular as t → 0 for the given initial PDF (2.3). A mean-
ingful solution can be defined via regularization of the Dirac delta function,
that is,

π0(z) ≈ 1

M

M∑
i=1

n(z; zi0, εI),

and taking the limit ε→ 0.
We will find later that it can be advantageous to modify the given SDE

(2.24) by a time-dependent drift term ut(z), that is,

dZ+
t = ft(Z

+
t ) dt+ ut(Z

+
t ) dt+ γ1/2 dW+

t . (2.30)

In particular, such a modification leads to the time-continuous analogue of
the twisted transition kernel (1.2) introduced in Section 2.1.

Lemma 2.11. Let ψt(z) denote the solutions of the backward Kolmogorov
equation

∂tψt = −Ltψt = −∇zψt · ft −
γ

2
∆zψt (2.31)

for given final ψ1(z) > 0 and t ∈ [0, 1]. The controlled SDE (2.30) with

ut(z) := γ∇z logψt(z) (2.32)

leads to a time-one forward transition kernel qψ+(z1|z0) which satisfies

qψ+(z1|z0) = ψ1(z1) q+(z1|z0)ψ0(z0)−1,

where q+(z1|z0) denotes the time-one forward transition kernel of the un-
controlled forward SDE (2.24).
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Proof. A proof of this lemma has, for example, been given by Dai Pra
(1991, Theorem 2.1).

More generally, the modified forward SDE (2.30) with Z+
0 ∼ π0 gen-

erates a path measure which we denote by Qu for given functions ut(z),
t ∈ [0, 1]. Realizations of this path measure are denoted by zu[0,1]. According

to Girsanov’s theorem (Pavliotis 2014), the two path measures Q and Qu

are absolutely continuous with respect to each other, with Radon–Nikodym
derivative

dQu

dQ |zu
[0,1]

= exp

(
1

2γ

∫ 1

0
(‖ut‖2 dt+ 2γ1/2ut · dW+

t )

)
, (2.33)

provided that the Kullback–Leibler divergence KL(Qu||Q) between Qu and
Q, given by

KL(Qu||Q) :=

∫ [
1

2γ

∫ 1

0
‖ut‖2 dt

]
Qu(dzu[0,1]), (2.34)

is finite. Recall that the Kullback–Leibler divergence between two path
measures P� Q on C is defined by

KL(P||Q) =

∫
log

dP
dQ

P(dz[0,1]).

If the modified SDE (2.30) is used to make predictions, then its solu-
tions zu[0,1] need to be weighted according to the inverse Radon–Nikodym

derivative

dQ
dQu

|zu
[0,1]

= exp

(
− 1

2γ

∫ 1

0
(‖ut‖2 dt+ 2γ1/2ut · dW+

t )

)
(2.35)

in order to reproduce the desired forecast PDF π1 of the original SDE (2.24).

Remark 2.12. A heuristic derivation of equation (2.33) can be found in
Section 3.1.2 below, where we discuss the numerical approximation of SDEs
by the Euler–Maruyama method. Equation (2.34) follows immediately from
(2.33) by noting that the expectation of Brownian motion under the path
measure Qu is zero.

2.2. Filtering and smoothing

We now incorporate the likelihood

l(z1) = π(y1|z1)

of the data y1 at time t1 = 1. Bayes’ theorem tells us that, given the forecast
PDF π1 at time t1, the posterior PDF π̂1 is given by (2.5). The distribution
π̂1 solves the filtering problem at time t1 given the data y1. We also recall
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the definition of the evidence (2.7). The quantity F = − log β is called the
free energy in statistical physics (Hartmann et al. 2017).

An appropriate transition kernel q1(ẑ1|z1), satisfying (2.11), is required in
order to complete the transition from π0 to π̂1 following scenario (A) from
Definition 2.4. A suitable framework for finding such transition kernels is via
the theory of optimal transportation (Villani 2003). More specifically, let
Πc denote the set of all joint probability measures π(z1, ẑ1) with marginals∫

π(z1, ẑ1) dẑ1 = π1(z1),

∫
π(z1, ẑ1) dz1 = π̂1(ẑ1).

We seek the joint measure π∗(z1, ẑ1) ∈ Πc which minimizes the expected
Euclidean distance between the two associated random variables Z1 and
Ẑ1, that is,

π∗ = arg inf
π∈Πc

∫ ∫
‖z1 − ẑ1‖2 π(z1, ẑ1) dz1 dẑ1. (2.36)

The minimizing joint measure is of the form

π∗(z1, ẑ1) = δ(ẑ1 −∇zΦ(z1))π1(z1) (2.37)

with suitable convex potential Φ under appropriate conditions on the PDFs
π1 and π̂1 (Villani 2003). These conditions are satisfied for dynamical sys-
tems with Gaussian model errors and typical SDE models. Once the po-
tential Φ (or an approximation) is available, samples zi1, i = 1, . . . ,M , from
the forecast PDF π1 can be converted into samples ẑi1, i = 1, . . . ,M , from
the filtering distribution π̂1 via the deterministic transformation

ẑi1 = ∇zΦ(zi1). (2.38)

We will discuss in Section 3 how to approximate the transformation (2.38)
numerically. We will find that many popular data assimilation schemes,
such as the ensemble Kalman filter, can be viewed as approximations to
(2.38) (Reich and Cotter 2015).

We recall at this point that classical particle filters start from the import-
ance weights

wi ∝ π̂1(zi1)

π1(zi1)
=
l(zi1)

β
,

and obtain the desired samples ẑi by an appropriate resampling with re-
placement scheme (Doucet et al. 2001, Arulampalam et al. 2002, Douc and
Cappe 2005) instead of applying a deterministic transformation of the form
(2.38).

Remark 2.13. If one replaces the forward transition kernel q+(z1|z0) with
a twisted kernel (1.2), then, using (2.17), the filtering distribution (2.5)
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satisfies

π̂1(z1)

πψ1 (z1)
=

l(z1)
∑M

j=1 q+(z1|zj0)

β
∑M

j=1
ψ(z1)

ψ̂(zj0)
q+(z1|zj0)

. (2.39)

Hence drawing samples zi1, i = 1, . . . ,M , from πψ1 instead of π1 leads to
modified importance weights

wi ∝
l(zi1)

∑M
j=1 q+(zi1|z

j
0)

β
∑M

j=1
ψ(zi1)

ψ̂(zj0)
q+(zi1|z

j
0)
. (2.40)

We will demonstrate in Section 2.3 that finding a twisting potential ψ such

that π̂1 = πψ1 , leading to importance weights wi = 1 in (2.40), is equivalent
to solving the Schrödinger problem (2.58)–(2.61).

The associated smoothing distribution at time t = 0 can be defined as
follows. First introduce

ψ(z1) :=
π̂1(z1)

π1(z1)
=
l(z1)

β
. (2.41)

Next we set

ψ̂(z0) :=

∫
q+(z1|z0)ψ(z1) dz1 = β−1

∫
q+(z1|z0) l(z1) dz1, (2.42)

and introduce π̂0 := π0 ψ̂, that is,

π̂0(z0) =
1

M

M∑
i=1

ψ̂(zi0) δ(z0 − zi0)

=
1

M

M∑
i=1

γi δ(z0 − zi0) (2.43)

since ψ̂(zi0) = γi with γi defined by (2.9).

Lemma 2.14. The smoothing PDFs π̂0 and π̂1 satisfy

π̂0(z0) =

∫
q−(z0|z1) π̂1(z1) dz1 (2.44)

with the backward transition kernel defined by (2.15). Furthermore,

π̂1(z1) =

∫
q̂+(z1|z0) π̂0(z0) dz0

with twisted forward transition kernels

q̂+(z1|zi0) := ψ(z1) q+(z1|zi0) ψ̂(zi0)−1 =
l(z1)

β γi
q+(z1|zi0) (2.45)
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and γi, i = 1, . . . ,M , defined by (2.9).

Proof. We note that

q−(z0|z1) π̂1(z1) =
π0(z0)

π1(z1)
q+(z1|z0)π̂1(z1) =

l(z1)

β
q+(z1|z0)π0(z0),

which implies the first equation. The second equation follows from π̂0 = ψ̂ π0

and ∫
q̂+(z1|z0) π̂0(z0) dz0 =

1

M

M∑
i=1

l(z1)

β
q+(z1|zi0).

In other words, we have defined a twisted forward transition kernel of the
form (1.2).

Seen from a more abstract perspective, we have provided an alternative
formulation of the joint smoothing distribution

π̂(z0, z1) :=
l(z1) q+(z1|z0)π0(z0)

β
(2.46)

in the form of

π̂(z0, z1) =
l(z1)

β

ψ(z1)

ψ(z1)
q+(z1|z0)

ψ̂(z0)

ψ̂(z0)
π0(z0)

= q̂+(z1|z0) π̂0(z0) (2.47)

because of (2.41). Note that the marginal distributions of π̂ are provided
by π̂0 and π̂1, respectively.

One can exploit these formulations computationally as follows. If one has
generated M equally weighted particles ẑj0 from the smoothing distribution
(2.43) at time t = 0 via resampling with replacement, then one can obtain

equally weighted samples ẑj1 from the filtering distribution π̂1 using the mod-
ified transition kernels (2.45). This is the idea behind the optimal proposal
particle filter (Doucet et al. 2001, Arulampalam et al. 2002, Fearnhead and
Künsch 2018) and provides an implementation of scenario (B) as introduced
in Definition 2.4.

Remark 2.15. We remark that backward simulation methods use (2.44)
in order to address the smoothing problem (2.2) in a sequential forward–
backward manner. Since we are not interested in the general smoothing
problem in this paper, we refer the reader to the survey by Lindsten and
Schön (2013) for more details.

Lemma 2.16. Let ψ(z) > 0 be a twisting potential such that

lψ(z1) :=
l(z1)

β ψ(z1)
π0[ψ̂]
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is well-defined with ψ̂ given by (1.3). Then the smoothing PDF (2.46) can
be represented as

π̂(z0, z1) = lψ(z1) qψ+(z1|z0)πψ0 (z0), (2.48)

where the modified forward transition kernel qψ+(z1|z0) is defined by (1.2)
and the modified initial PDF by

πψ0 (z0) :=
ψ̂(z0)π0(z0)

π0[ψ̂]
.

Proof. This follows from the definition of the smoothing PDF π̂(z0, z1) and

the twisted transition kernel qψ+(z1|z0).

Remark 2.17. As mentioned before, the choice (2.41) implies lψ = const.,
and leads to the well-known optimal proposal density for particle filters. The
more general formulation (2.48) has recently been explored and expanded
by Guarniero et al. (2017) and Heng et al. (2018) in order to derive effi-
cient proposal densities for the general smoothing problem (2.2). Within
the simplified formulation (2.48), such approaches reduce to a change of

measure from π0 to πψ0 at t0 followed by a forward transition according to

qψ+ and subsequent reweighting by a modified likelihood lψ at t1 and hence
lead to particle filters that combine scenarios (A) and (B) as introduced in
Definition 2.4.

2.2.1. Gaussian model errors (cont.)

We return to the discrete-time process (2.20) and assume a Gaussian meas-
urement error leading to a Gaussian likelihood

l(z1) ∝ exp

(
−1

2
(Hz1 − y1)TR−1(Hz1 − y1)

)
.

We set ψ1 = l/β in order to derive the optimal forward kernel for the
associated smoothing/filtering problem. Following the discussion from Sec-
tion 2.1.1, this leads to the modified transition kernels

q̂+(z1|zi0) := n(z1; z̄i1, γB̄)

with B̄ and K defined by (2.23) and (2.22), respectively, and

z̄i1 := Ψ(zi0)−K(HΨ(zi0)− y1).

The smoothing distribution π̂0 is given by

π̂0(z0) =
1

M

M∑
i=1

γi δ(z − zi0)
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with coefficients

γi ∝ exp

(
−1

2
(HΨ(zi0)− y1)T(R+ γHBHT)−1(HΨ(zi0)− y1)

)
.

It is easily checked that, indeed,

π̂1(z1) =

∫
qψ+(z1|z0) π̂0(z0) dz0.

The results from this subsection have been used in simplified form in
Example 2.5 in order to compute (2.14). We also note that a non-optimal,
i.e. ψ(z1) 6= l(z1)/β, but Gaussian choice for ψ leads to a Gaussian lψ and

the transition kernels qψ+(z1|zi0) in (2.48) remain Gaussian as well. This is
in contrast to the Schrödinger problem, which we discuss in the following
Section 2.3 and which leads to forward transition kernels of the form (2.66)
below.

2.2.2. SDE models (cont.)

The likelihood l(z1) introduces a change of measure over path space z[0,1] ∈ C
from the forecast measure Q with marginals πt to the smoothing measure
P̂ via the Radon–Nikodym derivative

dP̂
dQ |z[0,1]

=
l(z1)

β
. (2.49)

We let π̂t denote the marginal distributions of the smoothing measure P̂ at
time t.

Lemma 2.18. Let ψt denote the solution of the backward Kolmogorov
equation (2.31) with final condition ψ1(z) = l(z)/β at t = 1. Then the
controlled forward SDE

dZ+
t = (ft(Z

+
t ) + γ∇z logψt(Z

+
t )) dt+ γ1/2 dW+

t , (2.50)

with Z+
0 ∼ π̂0 at time t = 0, implies Z+

1 ∼ π̂1 at final time t = 1.

Proof. The lemma is a consequence of Lemma 2.11 and definition (2.45)

of the smoothing kernel q̂+(z1|z0) with ψ(z1) = ψ1(z1) and ψ̂(z0) = ψ0(z0).

The SDE (2.50) is obviously a special case of (2.30) with control law ut
given by (2.32). Note, however, that the initial distributions for (2.30) and
(2.50) are different. We will reconcile this fact in the following subsection
by considering the associated Schrödinger problem (Föllmer and Gantert
1997, Leonard 2014, Chen et al. 2014).

https://doi.org/10.1017/S0962492919000011 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492919000011


660 S. Reich

Lemma 2.19. The solution ψt of the backward Kolmogorov equation
(2.31) with final condition ψ1(z) = l(z)/β at t = 1 satisfies

ψt(z) =
π̂t(z)

πt(z)
(2.51)

and the PDFs π̂t coincide with the marginal PDFs of the backward SDE
(2.28) with final condition Z−1 ∼ π̂1.

Proof. We first note that (2.51) holds at final time t = 1. Furthermore,
equation (2.51) implies

∂tπ̂t = πt ∂tψt − ψt ∂tπt.

Since πt satisfies the Fokker–Planck equation (2.26) and ψt the backward
Kolmogorov equation (2.31), it follows that

∂tπ̂t = −∇z · (π̂t(f − γ∇z log πt))−
γ

2
∆zπ̂t, (2.52)

which corresponds to the Fokker–Planck equation (2.27) of the backward
SDE (2.28) with final condition Z−1 ∼ π̂1 and marginal PDFs denoted by
π̂t instead of πt.

Note that (2.52) is equivalent to

∂π̂t = −∇z · (π̂t(f − γ∇z log πt + γ∇z log π̂t)) +
γ

2
∆zπ̂t,

which in turn is equivalent to the Fokker–Planck equation of the forward
smoothing SDE (2.50) since ψt = π̂t/πt.

We conclude from the previous lemma that one can either solve the back-
ward Kolmogorov equation (2.31) with ψ1(z) = l(z)/β or the backward
SDE (2.28) with Z−1 ∼ π̂1 = l π1/β in order to derive the desired control
law ut(z) = γ∇z logψt in (2.50).

Remark 2.20. The notion of a backward SDE used throughout this paper
is different from the notion of a backward SDE in the sense of Carmona
(2016), for example. More specifically, Itô’s formula

dψt = ∂tψt dt+∇zψt · dZ+
t +

γ

2
∆zψt dt

and the fact that ψt satisfies the backward Kolmogorov equation (2.31)
imply that

dψt = γ1/2∇zψt · dW+
t (2.53)

along solutions of the forward SDE (2.24). In other words, the quantities ψt
are materially advected along solutions Z+

t of the forward SDEs in expecta-
tion or, in the language of stochastic analysis, ψt is a martingale. Hence, by
the martingale representation theorem, we can reformulate the problem of
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determining ψt as follows. Find the solution (Yt, Vt) of the backward SDE

dYt = Vt · dW+
t (2.54)

subject to the final condition Y1 = l(Z+
1 )/β at t = 1. Here (2.54) has

to be understood as a backward SDE in the sense of Carmona (2016), for
example, where the solution (Yt, Vt) is adapted to the forward SDE (2.24),
i.e. to the past s ≤ t, whereas the solution Z−t of the backward SDE (2.28) is
adapted to the future s ≥ t. The solution of (2.54) is given by Yt = ψt(Z

+
t )

and Vt = γ1/2∇zψt(Z+
t ) in agreement with (2.53) (compare Carmona 2016,

page 42). See Appendix A.4 for the numerical treatment of (2.54).

A variational characterization of the smoothing path measure P̂ is given
by the Donsker–Varadhan principle

P̂ = arg inf
P�Q
{−P[log(l)] + KL(P||Q)}, (2.55)

that is, the distribution P̂ is chosen such that the expected loss, −P[log(l)],
is minimized subject to the penalty introduced by the Kullback–Leibler
divergence with respect to the original path measure Q. Note that

inf
P�Q
{P[− log(l)] + KL(P||Q)} = − log β (2.56)

with β = Q[l]. The connection between smoothing for SDEs and the
Donsker–Varadhan principle has, for example, been discussed by Mitter
and Newton (2003). See also Hartmann et al. (2017) for an in-depth dis-
cussion of variational formulations and their numerical implementation in
the context of rare event simulations for which it is generally assumed that
π0(z) = δ(z − z0) in (2.3), that is, the ensemble size is M = 1 when viewed
within the context of this paper.

Remark 2.21. One can choose ψt differently from the choice made in
(2.51) by changing the final condition for the backward Kolmogorov equa-
tion (2.31) to any suitable ψ1. As already discussed for twisted discrete-time
smoothing, such modifications give rise to alternative representations of the
smoothing distribution P̂ in terms of modified forward SDEs, likelihood
functions and initial distributions. See Kappen and Ruiz (2016) and Ruiz
and Kappen (2017) for an application of these ideas to importance sampling
in the context of partially observed diffusion processes. More specifically,
let ut denote the associated control law (2.32) for the forward SDE (2.30)
with given initial distribution Z+

0 ∼ q0. Then

dP̂
dQ |zu

[0,1]

=
dP̂

dQu
|zu

[0,1]

dQu

dQ |zu
[0,1]

,
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which, using (2.33) and (2.49), implies the modified Radon–Nikodym deriv-
ative

dP̂
dQu

|zu
[0,1]

=
l(zu1 )

β

π0(zu0 )

q0(zu0 )
exp

(
− 1

2γ

∫ 1

0
(‖ut‖2 dt+2γ1/2ut · dW+

t )

)
. (2.57)

Recall from Lemma 2.18 that the control law (2.32) with ψt defined by

(2.51) together with q0 = π̂0 leads to P̂ = Qu.

2.3. Schrödinger problem

In this subsection we show that scenario (C) from Definition 2.4 leads to
a certain boundary value problem first considered by Schrödinger (1931).
More specifically, we state the so-called Schrödinger problem and show how
it is linked to data assimilation scenario (C).

In order to introduce the Schrödinger problem, we return to the twisting
potential approach as utilized in Section 2.2, with two important modi-
fications. These modifications are, first, that the twisting potential ψ is

determined implicitly and, second, that the modified transition kernel qψ+
is applied to π0 instead of the tilted initial density πψ0 as in (2.48). More
specifically, we have the following.

Definition 2.22. We seek the pair of functions ψ̂(z0) and ψ(z1) which
solve the boundary value problem

π0(z0) = πψ0 (z0) ψ̂(z0), (2.58)

π̂1(z1) = πψ1 (z1)ψ(z1), (2.59)

πψ1 (z1) =

∫
q+(z1|z0)πψ0 (z0) dz0, (2.60)

ψ̂(z0) =

∫
q+(z1|z0)ψ(z1) dz1, (2.61)

for given marginal (filtering) distributions π0 and π̂1 at t = 0 and t = 1,

respectively. The required modified PDFs πψ0 and πψ1 are defined by (2.58)

and (2.59), respectively. The solution (ψ̂, ψ) of the Schrödinger system
(2.58)–(2.61) leads to the modified transition kernel

q∗+(z1|z0) := ψ(z1) q+(z1|z0) ψ̂(z0)−1, (2.62)

which satisfies

π̂1(z1) =

∫
q∗+(z1|z0)π0(z0) dz0

by construction.

The modified transition kernel q∗+(z1|z0) couples the two marginal distri-
butions π0 and π̂1 with the twisting potential ψ implicitly defined. In other
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words, q∗+ provides the transition kernel for going from the initial distribu-
tion (2.3) at time t0 to the filtering distribution at time t1 without the need
for any reweighting, i.e. the desired transition kernel for scenario (C). See
Leonard (2014) and Chen et al. (2014) for more mathematical details on
the Schrödinger problem.

Remark 2.23. Let us compare the Schrödinger system to the twisting po-
tential approach (2.48) for the smoothing problem from Section 2.2 in some
more detail. First, note that the twisting potential approach to smoothing
replaces (2.58) with

πψ0 (z0) = π0(z0) ψ̂(z0)

and (2.59) with

πψ1 (z1) = π1(z1)ψ(z1),

where ψ is a given twisting potential normalized such that π1[ψ] = 1. The

associated ψ̂ is determined by (2.61) as in the twisting approach. In both
cases, the modified transition kernel is given by (2.62). Finally, (2.60) is
replaced by the prediction step (2.4).

In order to solve the Schrödinger system for our given initial distribution
(2.3) and the associated filter distribution π̂1, we make the ansatz

πψ0 (z0) =
1

M

M∑
i=1

αi δ(z0 − zi0),
M∑
i=1

αi = M.

This ansatz together with (2.58)–(2.61) immediately implies

ψ̂(zi0) =
1

αi
, πψ1 (z1) =

1

M

M∑
i=1

αi q+(z1|zi0),

as well as

ψ(z1) =
π̂1(z1)

πψ1 (z1)
=
l(z1)

β

1
M

∑M
j=1 q+(z1|zj0)

1
M

∑M
j=1 α

j q+(z1|zj0)
. (2.63)

Hence we arrive at the equations

ψ̂(zi0) =
1

αi
(2.64)

=

∫
ψ(z1) q+(z1|zi0) dz1

=

∫
l(z1)

β

∑M
j=1 q+(z1|zj0)∑M

j=1 α
j q+(z1|zj0)

q+(z1|zi0) dz1 (2.65)

for i = 1, . . . ,M . These M equations have to be solved for the M unknown
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coefficients {αi}. In other words, the Schrödinger problem becomes finite-
dimensional in the context of this paper. More specifically, we have the
following result.

Lemma 2.24. The forward Schrödinger transition kernel (2.62) is given
by

q∗+(z1|zi0) =
π̂1(z1)

πψ1 (z1)
q+(z1|zi0)αi

=
αi
∑M

j=1 q+(z1|zj0)∑M
j=1 α

j q+(z1|zj0)

l(z1)

β
q+(z1|zi0), (2.66)

for each particle zi0 with the coefficients αj , j = 1, . . . ,M , defined by (2.64)–
(2.65).

Proof. Because of (2.64)–(2.65), the forward transition kernels (2.66) sat-
isfy ∫

q∗+(z1|zi0) dz1 = 1 (2.67)

for all i = 1, . . . ,M and∫
q∗+(z1|z0)π0(z0) dz =

1

M

M∑
i=1

q∗+(z1|zi0)

=
1

M

M∑
i=1

αiq+(z1|zi0)
π̂1(z1)

1
M

∑M
j=1 α

j q+(z1|zj0)

= π̂1(z1), (2.68)

as desired.

Numerical implementations will be discussed in Section 3. Note that
knowledge of the normalizing constant β is not required a priori for solving
(2.64)–(2.65) since it appears as a common scaling factor.

We note that the coefficients {αj} together with the associated potential
ψ from the Schrödinger system provide the optimally twisted prediction
kernel (1.2) with respect to the filtering distribution π̂1, that is, we set

ψ̂(zi0) = 1/αi in (2.16) and define the potential ψ by (2.63).

Lemma 2.25. The Schrödinger transition kernel (2.62) satisfies the fol-
lowing constrained variational principle. Consider the joint PDFs given by
π(z0, z1) := q+(z1|z0)π0(z0) and π∗(z0, z1) := q∗+(z1|z0)π0(z0). Then

π∗ = arg inf
π̃∈ΠS

KL(π̃||π). (2.69)
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Here a joint PDF π̃(z0, z1) is an element of ΠS if∫
π̃(z0, z1) dz1 = π0(z0),

∫
π̃(z0, z1) dz0 = π̂1(z1).

Proof. See Föllmer and Gantert (1997) for a proof and Remark 2.31 for a
heuristic derivation in the case of discrete measures.

The constrained variational formulation (2.69) of Schrödinger’s problem
should be compared to the unconstrained Donsker–Varadhan variational
principle

π̂ = arg inf{−π̃[log(l)] + KL(π̃||π)} (2.70)

for the associated smoothing problem. See Remark 2.27 below.

Remark 2.26. The Schrödinger problem is closely linked to optimal trans-
portation (Cuturi 2013, Leonard 2014, Chen et al. 2014). For example, con-
sider the Gaussian transition kernel (2.21) with Ψ(z) = z and B = I. Then
the solution (2.66) to the associated Schrödinger problem of coupling π0 and
π̂1 reduces to the solution π∗ of the associated optimal transport problem

π∗ = arg inf
π̃∈ΠS

∫ ∫
‖z0 − z1‖2 π̃(z0, z1) dz0 dz1

in the limit γ → 0.

2.3.1. SDE models (cont.)

At the SDE level, Schrödinger’s problem amounts to continuously bridging
the given initial PDF π0 with the PDF π̂1 at final time using an appropriate
modification of the stochastic process Z+

[0,1] ∼ Q defined by the forward SDE

(2.24) with initial distribution π0 at t = 0. The desired modified stochastic
process P∗ is defined as the minimizer of

L(P̃) := KL(P̃||Q)

subject to the constraint that the marginal distributions π̃t of P̃ at time
t = 0 and t = 1 satisfy π0 and π̂1, respectively (Föllmer and Gantert 1997,
Leonard 2014, Chen et al. 2014).

Remark 2.27. We note that the Donsker–Varadhan variational principle
(2.55), characterizing the smoothing path measure P̂, can be replaced by

P∗ = arg inf
P̃∈Π
{−π̃1[log(l)] + KL(P̃||Q)}

with

Π = {P̃� Q : π̃1 = π̂1, π̃0 = π0}
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in the context of Schrödinger’s problem. The associated

− log β∗ := inf
P̃∈Π
{−π̃1[log(l)] + KL(P̃||Q)} = −π̂[log(l)] + KL(P∗||Q)

can be viewed as a generalization of (2.56) and gives rise to a generalized
evidence β∗, which could be used for model comparison and parameter
estimation.

The Schrödinger process P∗ corresponds to a Markovian process across the
whole time domain [0, 1] (Leonard 2014, Chen et al. 2014). More specifically,
consider the controlled forward SDE (2.30) with initial conditions

Z+
0 ∼ π0

and a given control law ut for t ∈ [0, 1]. Let Pu denote the path measure as-
sociated to this process. Then, as discussed in detail by Dai Pra (1991), one
can find time-dependent potentials ψt with associated control laws (2.32)
such that the marginal of the associated path measure Pu at times t = 1
satisfies

πu1 = π̂1

and, more generally,

P∗ = Pu.

We summarize this result in the following lemma.

Lemma 2.28. The Schrödinger path measure P∗ can be generated by a
controlled SDE (2.30) with control law (2.32), where the desired potential ψt
can be obtained as follows. Let (ψ̂, ψ) denote the solution of the associated
Schrödinger system (2.58)–(2.61), where q+(z1|z0) denotes the time-one for-
ward transition kernel of (2.24). Then ψt in (2.32) is the solution of the
backward Kolmogorov equation (2.31) with prescribed ψ1 = ψ at final time
t = 1.

Remark 2.29. As already pointed out in the context of smoothing, the
desired potential ψt can also be obtained by solving an appropriate backward
SDE. More specifically, given the solution (ψ̂, ψ) and the implied PDF π̃+

0 :=

πψ0 = π0/ψ̂ of the Schrödinger system (2.58)–(2.61), let π̃+
t , t ≥ 0, denote

the marginals of the forward SDE (2.24) with Z+
0 ∼ π̃+

0 . Furthermore,
consider the backward SDE (2.28) with drift term

bt(z) = ft(z)− γ∇z log π̃+
t (z), (2.71)

and final time condition Z−1 ∼ π̂1. Then the choice of π̃+
0 ensures that

Z−0 ∼ π0. Furthermore the desired control in (2.30) is provided by

ut = γ∇z log
π̃−t
π̃+
t

,
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where π̃−t denotes the marginal distributions of the backward SDE (2.28)
with drift term (2.71) and π̃−1 = π̂1. We will return to this reformulation of
the Schrödinger problem in Section 3 when considering it as the limit of a
sequence of smoothing problems.

Remark 2.30. The solution to the Schrödinger problem for linear SDEs
and Gaussian marginal distributions has been discussed in detail by Chen,
Georgiou and Pavon (2016b).

2.3.2. Discrete measures

We finally discuss the Schrödinger problem in the context of finite-state
Markov chains in more detail. These results will be needed in the following
sections on the numerical implementation of the Schrödinger approach to
sequential data assimilation.

Let us therefore consider an example which will be closely related to the
discussion in Section 3. We are given a bi-stochastic matrix Q ∈ RL×M
with all entries satisfying qlj > 0 and two discrete probability measures
represented by vectors p1 ∈ RL and p0 ∈ RM , respectively. Again we
assume for simplicity that all entries in p1 and p0 are strictly positive. We
introduce the set of all bi-stochastic L ×M matrices with those discrete
probability measures as marginals, that is,

Πs := {P ∈ RL×M : P ≥ 0, PT1L = p0, P1M = p1}. (2.72)

Solving Schrödinger’s system (2.58)–(2.61) corresponds to finding two non-
negative vectors u ∈ RL and v ∈ RM such that

P ∗ := D(u)QD(v)−1 ∈ Πs.

In turns out that P ∗ is uniquely determined and minimizes the Kullback–
Leibler divergence between all P ∈ Πs and the reference matrix Q, that is,

P ∗ = arg min
P∈Πs

KL (P ||Q). (2.73)

See Peyre and Cuturi (2018) and the following remark for more details.

Remark 2.31. If one makes the ansatz

plj =
ulqlj
vj

,

then the minimization problem (2.73) becomes equivalent to

P ∗ = arg min
(u,v)>0

∑
l,j

plj(log ul − log vj)

subject to the additional constraints

P 1M = D(u)QD(v)−1 1M = p1, P
T 1L = D(v)−1QTD(u)1L = p0.
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Note that these constraint determine u > 0 and v > 0 up to a common
scaling factor. Hence (2.73) can be reduced to finding (u, v) > 0 such that

uT1L = 1, P1M = p1, PT1L = p0.

Hence we have shown that solving the Schrödinger system is equivalent to
solving the minimization problem (2.73) for discrete measures. Thus

min
P∈Πs

KL (P ||Q) = pT
1 log u− pT

0 log v.

Lemma 2.32. The Sinkhorn iteration (Sinkhorn 1967)

uk+1 := D(P 2k1M )−1 p1, (2.74)

P 2k+1 := D(uk+1)P 2k, (2.75)

vk+1 := D(p0)−1 (P 2k+1)T 1L, (2.76)

P 2k+2 := P 2k+1D(vk+1)−1, (2.77)

k = 0, 1, . . . , with initial P 0 = Q ∈ RL×M provides an algorithm for com-
puting P ∗, that is,

lim
k→∞

P k = P ∗. (2.78)

Proof. See, for example, Peyre and Cuturi (2018) for a proof of (2.78),
which is based on the contraction property of the iteration (2.74)–(2.77)
with respect to the Hilbert metric on the projective cone of positive vectors.

It follows from (2.78) that

lim
k→∞

uk = 1L, lim
k→∞

vk = 1M .

The essential idea of the Sinkhorn iteration is to enforce

P 2k+1 1M = p1, (P 2k)T 1L = p0

at each iteration step and that the matrix P ∗ satisfies both constraints
simultaneously in the limit k →∞. See Cuturi (2013) for a computationally
efficient and robust implementation of the Sinkhorn iteration.

Remark 2.33. One can introduce a similar iteration for the Schrödinger
system (2.58)–(2.61). For example, pick ψ̂(z0) = 1 initially. Then (2.58)

implies πψ0 = π0 and (2.60) πψ1 = π1. Hence ψ = l/β in the first iteration.

The second iteration starts with ψ̂ determined by (2.61) with ψ = l/β.
We again cycle through (2.58), (2.60) and (2.59) in order to find the next
approximation to ψ. The third iteration takes now this ψ and computes the
associated ψ̂ from (2.61) etc. A numerical implementation of this procedure
requires the approximation of two integrals which essentially leads back to
a Sinkhorn type algorithm in the weights of an appropriate quadrature rule.
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3. Numerical methods

Having summarized the relevant mathematical foundation for prediction, fil-
tering (data assimilation scenario (A)) and smoothing (scenario (B)) and the
Schrödinger problem (scenario (C)), we now discuss numerical approxima-
tions suitable for ensemble-based data assimilation. It is clearly impossible
to cover all available methods, and we will focus on a selection of approaches
which are built around the idea of optimal transport, ensemble transform
methods and Schrödinger systems. We will also focus on methods that can
be applied or extended to problems with high-dimensional state spaces even
though we will not explicitly cover this topic in this survey. See Reich and
Cotter (2015), van Leeuwen (2015) and Asch et al. (2017) instead.

3.1. Prediction

Generating samples from the forecast distributions q+(· |zi0) is in most cases
straightforward. The computational expenses can, however, vary dramatic-
ally, and this impacts on the choice of algorithms for sequential data assim-
ilation. We demonstrate in this subsection how samples from the prediction
PDF π1 can be used to construct an associated finite-state Markov chain
that transforms π0 into an empirical approximation of π1.

Definition 3.1. Let us assume that we have L ≥M independent samples
zl1 from the M forecast distributions q+(· |zj0), j = 1, . . . ,M . We introduce
the L×M matrix Q with entries

qlj := q+(zl1|z
j
0). (3.1)

We now consider the associated bi-stochastic matrix P ∗ ∈ RL×M , as defined
by (2.73), with the two probability vectors in (2.72) given by p1 = 1L/L ∈
RL and p0 = 1M/M ∈ RM , respectively. The finite-state Markov chain

Q+ := MP ∗ (3.2)

provides a sample-based approximation to the forward transition kernel
q+(z1|z0).

More precisely, the ith column of Q+ provides an empirical approximation
to q+(·|zi0) and

Q+ p0 = p1 =
1

L
1L,

which is in agreement with the fact that the zl1 are equally weighted samples
from the forecast PDF π1.

Remark 3.2. Because of the simple relation between a bi-stochastic mat-
rix P ∈ Πs with p0 in (2.72) given by p0 = 1M/M and its associated
finite-state Markov chain Q+ = MP , one can reformulate the minimization
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problem (2.73) in those cases directly in terms of Markov chains Q+ ∈ ΠM

with the definition of Πs adjusted to

ΠM :=

{
Q ∈ RL×M : Q ≥ 0, QT1L = 1M ,

1

M
Q1M = p1

}
. (3.3)

Remark 3.3. The associated backward transition kernel Q− ∈ RM×L
satisfies

Q−D(p1) = (Q+D(p0))T

and is hence given by

Q− = (Q+D(p0))TD(p1)−1 =
L

M
QT

+.

Thus

Q− p1 = D(p0)QT
+ 1L = D(p0)1M = p0,

as desired.

Definition 3.4. We can extend the concept of twisting to discrete Markov
chains such as (3.2). A twisting potential ψ gives rise to a vector u ∈ RL
with normalized entries

ul =
ψ(zl1)∑L
k=1 ψ(zk1 )

,

l = 1, . . . , L. The twisted finite-state Markov kernel is now defined by

Qψ+ := D(u)Q+D(v)−1, v := (D(u)Q+)T 1L ∈ RM , (3.4)

and thus 1T
L Q

ψ
+ = 1T

M , as required for a Markov kernel. The twisted forecast
probability is given by

pψ1 := Qψ+ p0

with p0 = 1M/M . Furthermore, if we set p0 = v then pψ1 = u.

3.1.1. Gaussian model errors (cont.)

The proposal density is given by (2.21) and it is easy to produce K > 1

samples from each of the M proposals q+(· |zj0). Hence we can make the total

sample size L = KM as large as desired. In order to produce M samples, z̃j1,
from a twisted finite-state Markov chain (3.4), we draw a single realization

from each of the M associated discrete random variables Z̃j1 , j = 1, . . . ,M ,
with probabilities

P[Z̃j1(ω) = zl1] = (Qψ+)lj .

We will provide more details when discussing the Schrödinger problem in
the context of Gaussian model errors in Section 3.4.1.
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3.1.2. SDE models (cont.)

The Euler–Maruyama method (Kloeden and Platen 1992)

Z+
n+1 = Z+

n + ftn(Z+
n ) ∆t+ (γ∆t)1/2 Ξn, Ξn ∼ N(0, I), (3.5)

n = 0, . . . , N − 1, will be used for the numerical approximation of (2.24)
with step-size ∆t := 1/N , tn = n∆t. In other words, we replace Z+

tn with its
numerical approximation Z+

n . A numerical approximation (realization) of
the whole solution path z[0,1] will be denoted by z0:N = Z+

0:N (ω) and can be
computed recursively due to the Markov property of the Euler–Maruyama
scheme. The marginal PDFs of Z+

n are denoted by πn.
For any finite number of time-steps N , we can define a joint PDF π0:N

on UN = RNz×(N+1) via

π0:N (z0:N ) ∝ exp

(
− 1

2∆t

N−1∑
n=0

‖ηn‖2
)
π0(z0) (3.6)

with

ηn := γ−1/2(zn+1 − zn − ftn(zn)∆t) (3.7)

and ηn = ∆t1/2Ξn(ω). Note that the joint PDF π0:N (z0:N ) can also be
expressed in terms of z0 and η0:N−1.

The numerical approximation of SDEs provides an example for which the
increase in computational cost for producing L > M samples from the PDF
π0:N versus L = M is non-trivial, in general.

We now extend Definition 3.1 to the case of temporally discretized SDEs
in the form of (3.5).

Definition 3.5. Let us assume that we have L = M independent numer-
ical solutions zi0:N of (3.5). We introduce an M ×M matrix Qn for each
n = 1, . . . , N with entries

qlj = q+(zln|z
j
n−1) := n(zln; zjn−1 + ∆tf(zjn−1), γ∆t I).

With each Qn we associate a finite-state Markov chain Q+
n as defined by

(3.2) for general transition densities q+ in Definition 3.1. An approximation
of the Markov transition from time t0 = 0 to t1 = 1 is now provided by

Q+ :=

N∏
n=1

Q+
n . (3.8)

Remark 3.6. The approximation (3.2) can be related to the diffusion map
approximation of the infinitesimal generator of Brownian dynamics

dZ+
t = −∇zU(Z+

t ) dt+
√

2 dW+
t (3.9)

with potential U(z) = − log π∗(z) in the following sense. First note that
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π∗ is invariant under the associated Fokker–Planck equation (2.26) with
(time-independent) operator L† written in the form

L†π = ∇z ·
(
π∗∇z

π

π∗

)
.

Let zi, i = 1, . . . ,M , denote M samples from the invariant PDF π∗ and
define the symmetric matrix Q ∈ RM×M with entries

qlj = n(zl; zj , 2∆t I).

Then the associated (symmetric) matrix (3.2), as introduced in Defini-
tion 3.1, provides a discrete approximation to the evolution of a probability
vector p0 ∝ π0/π

∗ over a time-interval ∆t and, hence, to the semigroup
operator e∆tL with the infinitesimal generator L given by

Lg =
1

π∗
∇z · (π∗∇zg). (3.10)

We formally obtain

L ≈ Q+ − I
∆t

(3.11)

for ∆t sufficiently small. The symmetry of Q+ reflects the fact that L is
self-adjoint with respect to the weighted inner product

〈f, g〉π∗ =

∫
f(z) g(z)π∗(z) dz.

See Harlim (2018) for a discussion of alternative diffusion map approxima-
tions to the infinitesimal generator L and Appendix A.1 for an application to
the feedback particle filter formulation of continuous-time data assimilation.

We also consider the discretization

Z+
n+1 = Z+

n + (ftn(Z+
n ) + utn(Z+

n ))∆t+ (γ∆t)1/2 Ξn, (3.12)

n = 0, . . . , N − 1, of a controlled SDE (2.30) with associated PDF πu0:N
defined by

πu0:N (zu0:N ) ∝ exp

(
− 1

2∆t

N−1∑
n=0

‖ηun‖2
)
π0(z0), (3.13)

where

ηun := γ−1/2{zun+1 − zun − (ftn(zun) + utn(zun))∆t}

= ηn −
∆t

γ1/2
utn(zun).

Here zu0:N denotes a realization of the discretization (3.12) with control laws
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utn . We find that

1

2∆t
‖ηun‖2 =

1

2∆t
‖ηn‖2 −

1

γ1/2
utn(zun)Tηn +

∆t

2γ
‖utn(zun)‖2

=
1

2∆t
‖ηn‖2 −

1

γ1/2
utn(zun)Tηun −

∆t

2γ
‖utn(zun)‖2,

and hence

πu0:N (zu0:N )

π0:N (zu0:N )
= exp

(
1

2γ

N−1∑
n=0

(‖utn(zun)‖2∆t+ 2γ1/2utn(zun)Tηun)

)
, (3.14)

which provides a discrete version of (2.33) since ηun = ∆t1/2 Ξn(ω) are in-
crements of Brownian motion over time intervals of length ∆t.

Remark 3.7. Instead of discretizing the forward SDE (2.24) in order to
produce samples from the forecast PDF π1, one can also start from the
mean-field formulation (2.29) and its time discretization, for example,

zin+1 = zin + (ftn(zin) + utn(zin))∆t (3.15)

for i = 1, . . . ,M and

utn(z) = −γ
2
∇z log π̃n(z).

Here π̃n stands for an approximation to the marginal PDF πtn based on the
available samples zin, i = 1, . . . ,M . A simple approximation is obtained by
the Gaussian PDF

π̃n(z) = n(z; z̄n, P
zz
n )

with empirical mean

z̄n =
1

M

M∑
i=1

zin

and empirical covariance matrix

P zzn =
1

M − 1

M∑
i=1

zin(zin − z̄n)T.

The system (3.15) becomes

zin+1 = zin + (ftn(zin) + γ(P zzn )−1(zin − z̄n))∆t,

i = 1, . . . ,M , and provides an example of an interacting particle approxim-
ation. Similar mean-field formulations can be found for the backward SDE
(2.28).
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3.2. Filtering

Let us assume that we are given M samples, zi1, from the forecast PDF using
forward transition kernels q+(· |zi0), i = 1, . . . ,M . The likelihood function
l(z) leads to importance weights

wi ∝ l(zi1). (3.16)

We also normalize these importance weights such that (2.19) holds.

Remark 3.8. The model evidence β can be estimated from the samples,
zi1, and the likelihood l(z) as follows:

β̃ :=
1

M

M∑
i=1

l(zi1).

If the likelihood is of the form

l(z) ∝ exp

(
−1

2
(y1 − h(z))TR−1(y1 − h(z)

)
and the prior distribution in y = h(z) can be approximated as being Gaus-
sian with covariance

P hh :=
1

M − 1

M∑
i=1

h(zi1)(h(zi1)− h̄)T, h̄ :=
1

M

M∑
i=1

h(zi1),

then the evidence can be approximated by

β̃ ≈ 1

(2π)Ny/2|P yy|1/2
exp

(
−1

2
(y1 − h̄)T(P yy)−1(y1 − h̄)

)
with

P yy := R+ P hh.

Such an approximation has been used, for example, in Carrassi, Bocquet,
Hannart and Ghil (2017). See also Reich and Cotter (2015) for more details
on how to compute and use model evidence in the context of sequential data
assimilation.

Sequential data assimilation requires that we produce M equally weighted
samples ẑj1 ∼ π̂1 from theM weighted samples zi1 ∼ π1 with weights wi. This
is a standard problem in Monte Carlo integration and there are many ways
to tackle this problem, among which are multinomial, residual, systematic
and stratified resampling (Douc and Cappe 2005). Here we focus on those
resampling methods which are based on a discrete Markov chain P ∈ RM×M
with the property that

w =
1

M
P 1M , w =

(
w1

M
, . . . ,

wM

M

)T

. (3.17)
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The Markov property of P implies that PT1M = 1M . We now consider
the set of all Markov chains ΠM, as defined by (3.3), with p1 = w. Any
Markov chain P ∈ ΠM can now be used for resampling, but we seek the
Markov chain P ∗ ∈ ΠM which minimizes the expected distance between the
samples, that is,

P ∗ = arg min
P∈ΠM

M∑
i,j=1

pij‖zi1 − z
j
1‖

2. (3.18)

Note that (3.18) is a special case of the optimal transport problem (2.36)
with the involved probability measures being discrete measures. Resampling
can now be performed according to

P[Ẑj1(ω) = zi1] = p∗ij (3.19)

for j = 1, . . . ,M .
Since it is known that (3.18) converges to (2.36) as M → ∞ (McCann

1995) and since (2.36) leads to a transformation (2.38), the resampling step
(3.19) has been replaced by

ẑj1 =
M∑
i=1

zi1 p
∗
ij (3.20)

in the so-called ensemble transform particle filter (ETPF) (Reich 2013, Reich
and Cotter 2015). In other words, the ETPF replaces resampling with
probabilities p∗ij by its mean (3.20) for each j = 1, . . . ,M . The ETPF leads
to a biased approximation to the resampling step which is consistent in the
limit M →∞.

The general formulation (3.20) with the coefficients p∗ij chosen appropri-

ately2 leads to a large class of so-called ensemble transform particle filters
(Reich and Cotter 2015). Ensemble transform particle filters generally result
in biased and inconsistent but robust estimates, which have found applica-
tions to high-dimensional state space models (Evensen 2006, Vetra-Carvalho
et al. 2018) for which traditional particle filters fail due to the ‘curse of di-
mensionality’ (Bengtsson, Bickel and Li 2008). More specifically, the class of
ensemble transform particle filters includes the popular ensemble Kalman fil-
ters (Evensen 2006, Reich and Cotter 2015, Vetra-Carvalho et al. 2018, Car-
rassi, Bocquet, Bertino and Evensen 2018) and so-called second-order ac-
curate particle filters with coefficients p∗ij in (3.20) chosen such that the
weighted ensemble mean

z̄1 :=
1

M

M∑
i=1

wizi1

2 The coefficients p∗ij of an ensemble transform particle filter do not need to be non-

negative and only satisfy
∑M
i=1 p

∗
ij = 1 (Acevedo, de Wiljes and Reich 2017).
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and the weighted ensemble covariance matrix

P̃ zz :=
1

M

M∑
i=1

wi(zi1 − z̄1)(zi1 − z̄1)T

are exactly reproduced by the transformed and equally weighted particles
ẑj1, j = 1, . . . ,M , defined by (3.20), that is,

1

M

M∑
j=1

ẑj1 = z̄1,
1

M − 1

M∑
j=1

(ẑi1 − z̄1)(ẑi1 − z̄1)T = P̃ zz.

See the survey paper by Vetra-Carvalho et al. (2018) and the paper by
Acevedo et al. (2017) for more details. A summary of the ensemble Kalman
filter can be found in Appendix A.3.

In addition, hybrid methods (Frei and Künsch 2013, Chustagulprom,
Reich and Reinhardt 2016), which bridge between classical particle filters
and the ensemble Kalman filter, have recently been successfully applied to
atmospheric fluid dynamics (Robert, Leuenberger and Künsch 2018).

Remark 3.9. Another approach for transforming samples, zi1, from the
forecast PDF π1 into samples, ẑi1, from the filtering PDF π̂1 is provided
through the mean-field interpretation

d

ds
Z̆s = −∇z log

π̆s(Z̆s)

π̂1(Z̆s)
(3.21)

of the Fokker–Planck equation (2.26) for a random variable Z̆s with law π̆s,
drift term fs(z) = ∇z log π̂1 and γ = 2, that is,

∂sπ̆s = ∇z ·
(
π̆s∇z log

π̆s
π̂1

)
in artificial time s ≥ 0. It holds under fairly general assumptions that

lim
s→∞

π̆s = π̂1

(Pavliotis 2014) and one can set π̆0 = π1. The more common approach
would be to solve Brownian dynamics

dZ̆s = ∇z log π̂1(Zs) dt+
√

2 dW+
s

for each sample zi1 from π1, i.e. Z̆0(ω) = zi1, i = 1, . . . ,M , at initial time
and

ẑi1 = lim
s→∞

Z̆s(ω).

In other words, formulation (3.21) replaces stochastic Brownian dynamics
with a deterministic interacting particle system. See Appendix A.1 and
Remark 4.3 for further details.
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3.3. Smoothing

Recall that the joint smoothing distribution π̂(z0, z1) can be represented
in the form (2.47) with modified transition kernel (2.10) and smoothing
distribution (2.8) at time t0 with weights γi determined by (2.9).

Let us assume that it is possible to sample from q̂+(z1|zi0) and that the
weights γi are available. Then we can utilize (2.47) in sequential data as-
similation as follows. We first resample the zi0 at time t0 using a discrete
Markov chain P ∈ RM×M satisfying

p̂0 =
1

M
P 1M , p̂0 := γ, (3.22)

with γ defined in (2.12). Again optimal transportation can be used to
identify a suitable P . More explicitly, we now consider the set of all Markov
chains ΠM, as defined by (3.3), with p1 = γ. Then the Markov chain P ∗

arising from the associated optimal transport problem (3.18) can be used
for resampling, that is,

P[Z̃j0(ω) = zi0] = p∗ij .

Once equally weighted samples ẑi0, i = 1, . . . ,M , from π̂0 have been determ-
ined, the desired samples ẑi1 from π̂1 are simply given by

ẑi1 := Ẑi1(ω), Ẑi1 ∼ q̂+(· |ẑi0),

for i = 1, . . . ,M .
The required transition kernels (2.10) are explicitly available for state

space models with Gaussian model errors and Gaussian likelihood functions.
In many other cases, these kernels are not explicitly available or are difficult
to draw from. In such cases, one can resort to sample-based transition
kernels.

For example, consider the twisted discrete Markov kernel (3.4) with twist-
ing potential ψ(z) = l(z). The associated vector v from (3.4) then gives rise
to a probability vector p̂0 = c v ∈ RM with c > 0 an appropriate scaling
factor, and

p̂1 := Qψ+p̂0 (3.23)

approximates the filtering distribution at time t1. The Markov transition

matrix Qψ+ ∈ RL×M together with p̂0 provides an approximation to the
smoothing kernel q̂+(z1|z0) and π̂0, respectively.

The approximations Qψ+ ∈ RL×M and p̂0 ∈ RM can be used to first

generate equally weighted samples ẑi0 ∈ {z1
0 , . . . , z

M
0 } with distribution p̂0

via, for example, resampling with replacement. If ẑi0 = zk0 for an index
k = k(i) ∈ {1, . . . ,M}, then

P[Ẑi1(ω) = zl1] = (Qψ+)lk
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for each i = 1, . . . ,M . The ẑi1 are equally weighted samples from the dis-
crete filtering distribution p̂1, which is an approximation to the continuous
filtering PDF π̂1.

Remark 3.10. One has to take computational complexity and robustness
into account when deciding whether to utilize methods from Section 3.2 or
this subsection to advance M samples zi0 from the prior distribution π0 into
M samples ẑi1 from the posterior distribution π̂1. While the methods from
Section 3.2 are easier to implement, the methods of this subsection benefit
from the fact that

M >
1

‖γ‖2
≥ 1

‖w‖2
≥ 1,

in general, where the importance weights γ ∈ RM and w ∈ RM are defined
in (2.12) and (3.17), respectively. In other words, the methods from this
subsection lead to larger effective sample sizes (Liu 2001, Agapiou et al.
2017).

Remark 3.11. We mention that finding efficient methods for solving the
more general smoothing problem (2.2) is an active area of research. See, for
example, the recent contributions by Guarniero et al. (2017) and Heng et al.
(2018) for discrete-time Markov processes, and Kappen and Ruiz (2016) as
well as Ruiz and Kappen (2017) for smoothing in the context of SDEs.
Ensemble transform methods of the form (3.20) can also be extended to the
general smoothing problem. See, for example, Evensen (2006) and Carrassi
et al. (2018) for extensions of the ensemble Kalman filter, and Kirchgessner,
Tödter, Ahrens and Nerger (2017) for an extension of the nonlinear ensemble
transform filter to the smoothing problem.

3.3.1. SDE models (cont.)
After discretization in time, smoothing leads to a change from the forecast
PDF (3.6) to

π̂0:N (z0:N ) :=
l(zN )π0:N (z0:N )

π0:N [l]

∝ exp

(
− 1

2∆t

N−1∑
n=0

‖ξn‖2
)
π0(z0) l(zN )

with ξn given by (3.7), or, alternatively,

π̂0:N

π0:N
(z0:N ) =

l(zN )

π0:N [l]
.

Remark 3.12. Efficient MCMC methods for sampling high-dimensional
smoothing distributions can be found in Beskos et al. (2017) and Beskos,
Pinski, Sanz-Serna and Stuart (2011). Improved sampling can also be
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achieved by using regularized Störmer–Verlet time-stepping methods (Reich
and Hundertmark 2011) in a hybrid Monte Carlo method (Liu 2001). See
Appendix A.2 for more details.

3.4. Schrödinger problem

Recall that the Schrödinger system (2.58)–(2.61) reduces in our context
to solving equations (2.64)–(2.65) for the unknown coefficients αi, i =
1, . . . ,M . In order to make this problem tractable we need to replace the
required expectation values with respect to q+(z1|zj0) by Monte Carlo ap-
proximations. More specifically, let us assume that we have L ≥M samples
zl1 from the forecast PDF π1. The associated L×M matrix Q with entries
(3.1) provides a discrete approximation to the underlying Markov process
defined by q+(z1|z0) and initial PDF (2.3).

The importance weights in the associated approximation to the filtering
distribution

π̂1(z) =
1

L

L∑
l=1

wl δ(z − zl1)

are given by (3.16) with the weights normalized such that

L∑
l=1

wl = L. (3.24)

Finding the coefficients {αi} in (2.64)–(2.65) can now be reformulated as
finding two vectors u ∈ RL and v ∈ RM such that

P ∗ := D(u)QD(v)−1 (3.25)

satisfies P ∗ ∈ ΠM with p1 = w in (3.3), that is, more explicitly

ΠM =

{
P ∈ RL×M : plj ≥ 0,

L∑
l=1

plj = 1,
1

M

M∑
j=1

plj =
wl

L

}
. (3.26)

We note that (3.26) are discrete approximations to (2.67) and (2.68), re-

spectively. The scaling factor ψ̂ in (2.58) is approximated by the vector v
up to a normalization constant, while the vector u provides an approxima-
tion to ψ in (2.59). Finally, the desired approximations to the Schrödinger
transition kernels q∗+(z1|zi0), i = 1, . . . ,M , are provided by the columns of
P ∗, that is,

P[Ẑi1(ω) = zl1] = p∗li

characterizes the desired equally weighted samples ẑi1, i = 1, . . . ,M , from
the filtering distribution π̂1. See the following subsection for more details.

The required vectors u and v can be computed using the iterative Sink-
horn algorithm (2.74)–(2.76) (Cuturi 2013, Peyre and Cuturi 2018).
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Remark 3.13. Note that one can replace the forward transition kernel
q+(z1|z0) in (3.1) with any suitable twisted prediction kernel (1.2). This
results in a modified matrix Q in (3.25) and weights wl in 3.26. The resulting
matrix (3.25) still provides an approximation to the Schrödinger problem.

Remark 3.14. The approximation (3.25) can be extended to an approx-
imation of the Schrödinger forward transition kernels (2.66) in the following
sense. We use αi = 1/vi in (2.66) and note that the resulting approxima-
tion satisfies (2.68) while (2.67) now longer holds exactly. However, since
the entries ul of the vector u appearing in (3.25) satisfy

ul =
wl

L

1∑M
j=1 q+(zl1|z

j
0)/vj

,

it follows that∫
q∗+(z1|zi0) dz1 ≈

1

L

L∑
l=1

l(zl1)

β

q+(zl1|zi0)/vi∑M
j=1 q+(zl1|z

j
0)/vj

≈ 1

L

L∑
l=1

wl
q+(zl1|zi0)/vi∑M
j=1 q+(zl1|z

j
0)/vj

=

L∑
l=1

p∗li = 1.

Furthermore, one can use such continuous approximations in combination
with Monte Carlo sampling methods which do not require normalized target
PDFs.

3.4.1. Gaussian model errors (cont.)

One can easily generate L, L ≥M , i.i.d. samples zl1 from the forecast PDF
(2.21), that is,

Z l1 ∼
1

M

M∑
j=1

n(· ; Ψ(zj0), γB),

and with the filtering distribution π̂1 characterized through the importance
weights (3.16).

We define the distance matrix D ∈ RL×M with entries

dlj :=
1

2
‖zl1 −Ψ(zj0)‖2B, ‖z‖2B := zTB−1z,

and the matrix Q ∈ RL×M with entries

qlj := e−dlj/γ .

The Markov chain P ∗ ∈ RL×M is now given by

P ∗ = arg min
P∈ΠM

KL(P ||Q)
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with the set ΠM defined by (3.26).
Once P ∗ has been computed, the desired Schrödinger transitions from

π0 to π̂1 can be represented as follows. The Schrödinger transition kernels
q∗+(z1|zi0) are approximated for each zi0 by

q̃∗+(z1|zi0) :=
L∑
l=1

p∗li δ(z1 − zl1), i = 1, . . . ,M. (3.27)

The empirical measure in (3.27) converges weakly to the desired q∗+(z1|zi0)
as L→∞ and

π̂1(z1) ≈ 1

M

M∑
i=1

δ(z − ẑi1),

with

ẑi1 = Ẑi1(ω), Ẑi1 ∼ q̃∗+(· |zi0), (3.28)

provides the desired approximation of π̂1 by M equally weighted particles
ẑi1, i = 1, . . . ,M .

We remark that (3.27) has been used to produce the Schrödinger trans-
ition kernels for Example 2.5 and Figure 2.3(b) in particular. More spe-
cifically, we have M = 11 and used L = 11 000. Since the particles zl1 ∈ R,
l = 1, . . . , L, are distributed according to the forecast PDF π1, a function
representation of q̃∗+(z1|zi0) over all of R is provided by interpolating p∗li onto
R and multiplication of this interpolated function by π1(z).

For γ � 1, the measure in (3.27) can also be approximated by a Gaussian
measure with mean

z̄i1 :=
L∑
l=1

zl1p
∗
li

and covariance matrix γB, that is, we replace (3.28) with

Ẑi1 ∼ N(z̄i1, γB)

for i = 1, . . . ,M .

3.4.2. SDE (cont.)
One can also apply (3.25) in order to approximate the Schrödinger problem
associated with SDE models. We typically use L = M in this case and
utilize (3.8) in place of Q in (3.25). The set ΠM is still given by (3.26).

Example 3.15. We consider scalar-valued motion of a Brownian particle
in a bimodal potential, that is,

dZ+
t = Z+

t dt− (Z+
t )3 dt+ γ1/2 dW+

t (3.29)

with γ = 0.5 and initial distribution Z0 ∼ N(−1, 0.3). At time t = 2 we
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Figure 3.1. Histograms produced from M = 200 Monte Carlo samples of the initial
PDF π0, the forecast PDF π2 at time t = 2, the filtering distribution π̂2 at time
t = 2, and the smoothing PDF π̂0 at time t = 0 for a Brownian particle moving in
a double well potential.

measure the location y = 1 with measurement error variance R = 0.2. We
simulate the dynamics using M = 200 particles and a time-step of ∆t =
0.01 in the Euler–Maruyama discretization (3.5). One can find histograms
produced from the Monte Carlo samples in Figure 3.1. The samples from
the filtering and smoothing distributions are obtained by resampling with
replacement from the weighted distributions with weights given by (3.16).
Next we compute (3.8) from the M = 200 Monte Carlo samples of (3.29).
Eleven out of the 200 transition kernels from π0 to π2 (prediction problem)
and π0 to π̂2 (Schrödinger problem) are displayed in Figure 3.2.

The Sinkhorn approach requires relatively large sample sizes M in order
to lead to useful approximations. Alternatively we may assume that there

is an approximative control term u
(0)
t with associated forward SDE

dZ+
t = ft(Zt) dt+ u

(0)
t (Z+

t ) dt+ γ1/2 dW+
t , t ∈ [0, 1], (3.30)

and Z+
0 ∼ π0. We denote the associated path measure by Q(0). Girsanov’s
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Figure 3.2. (a) Approximations of typical transition kernels from time π0 to
π2 under the Brownian dynamics model (3.29). (b) Approximations of typical
Schrödinger transition kernels from π0 to π̂2. All approximations were computed
using the Sinkhorn algorithm and by linear interpolation between the M = 200
data points.
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theorem implies that the Radon–Nikodym derivative of Q with respect to
Q(0) is given by (compare (2.33))

dQ
dQ(0)

|z(0)
[0,1]

= exp(−V (0)),

where V (0) is defined via the stochastic integral

V (0) :=
1

2γ

∫ 1

0
(‖u(0)

t ‖2 dt+ 2γ1/2u
(0)
t · dW+

t )

along solution paths z
(0)
[0,1] of (3.30). Because of

dP̂
dQ(0)

|z(0)
[0,1]

=
dP̂
dQ |z(0)

[0,1]

dQ
dQ(0)

|z(0)
[0,1]

∝ l(z(0)
1 ) exp(−V (0)),

we can now use (3.30) to importance-sample from the filtering PDF π̂1.

The control u
(0)
t should be chosen such that the variance in the modified

likelihood function

l(0)(z
(0)
[0,1]) := l(z

(0)
1 ) exp(−V (0)) (3.31)

is reduced compared to the uncontrolled case u
(0)
t ≡ 0. In particular, the

filter distribution π̂1 at time t = 1 satisfies

π̂1(z
(0)
1 ) ∝ l(0)(z

(0)
[0,1])π

(0)
1 (z

(0)
1 ),

where π
(0)
t , t ∈ (0, 1], denote the marginal PDFs generated by (3.30).

We now describe an iterative algorithm for the associated Schrödinger
problem in the spirit of the Sinkhorn iteration from Section 2.3.2.

Lemma 3.16. The desired optimal control law can be computed iterat-
ively,

u
(k+1)
t = u

(k)
t + γ∇z logψ

(k)
t , k = 0, 1, . . . , (3.32)

for given u
(k)
t and the potential ψ

(k)
t obtained as the solutions to the back-

ward Kolmogorov equation

∂tψ
(k)
t = −L(k)

t ψ
(k)
t , L(k)

t g := ∇zg · (ft + u
(k)
t ) +

γ

2
∆zg, (3.33)

with final time condition

ψ
(k)
1 (z) :=

π̂1(z)

π
(k)
1 (z)

. (3.34)

Here π
(k)
1 denotes the time-one marginal of the path measure Q(k) induced

by (2.30) with control term ut = u
(k)
t and initial PDF π0. The recursion
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(3.32) is stopped whenever the final time condition (3.34) is sufficiently close
to a constant function.

Proof. The extension of the Sinkhorn algorithm to continuous PDFs and
its convergence has been discussed by Chen, Georgiou and Pavon (2016a).

Remark 3.17. Note that ψ
(k)
t needs to be determined up to a constant of

proportionality only since the associated control law is determined from ψ
(k)
t

by (3.32). One can also replace (3.33) with any other method for solving
the smoothing problem associated to the SDE (2.30) with Z+

0 ∼ π0, control

law ut = u
(k)
t , and likelihood function l(z) = ψ

(k)
1 (z). See Appendix A.4 for

a forward–backward SDE formulation in particular.

We need to restrict the class of possible control laws u
(k)
t in order to

obtain a computationally feasible implementations in practice. For example,
a simple class of control laws is provided by linear controls of the form

u
(k)
t (z) = −B(k)

t (z −m(k)
t )

with appropriately chosen symmetric positive definite matrices B
(k)
t and

vectors m
(k)
t . Such approximations can, for example, be obtained from the

smoother extensions of ensemble transform methods mentioned earlier. See
also the recent work by Kappen and Ruiz (2016) and Ruiz and Kappen
(2017) on numerical methods for the SDE smoothing problem.

4. DA for continuous-time data

In this section we focus on the continuous-time filtering problem over the
time interval [0, 1], that is, on the assimilation of data that arrive continu-
ously in time. If one is only interested in transforming samples from the
prior distribution at t = 0 into samples of the filtering distribution at time
t = 1, then all methods from the previous sections can be applied once the
associated filtering distribution π̂1 is available. However, it is more natural
to consider the associated filtering distributions π̂t for all t ∈ (0, 1] and to
derive appropriate transformations in the form of mean-field equations in
continuous time. We distinguish between smooth and non-smooth data yt,
t ∈ [0, 1].

4.1. Smooth data

We start from a forward SDE model (2.24) with associated path measure Q
over the space of continuous functions C. However, contrary to the previous
sections, the likelihood l is defined along a whole solution path z[0,1] as
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follows:

dP̂
dQ |z[0,1]

∝ l(z[0,1]), l(z[0,1]) := exp

(
−
∫ 1

0
Vt(zt) dt

)
with the assumption that Q[l] <∞ and Vt(z) ≥ 0. A specific example of a
suitable Vt is provided by

Vt(z) =
1

2
‖h(z)− yt‖2, (4.1)

where the data function yt ∈ R, t ∈ [0, 1], is a smooth function of time
and h(z) is a forward operator connecting the model states to the obser-
vations/data. The associated estimation problem has, for example, been
addressed by Mortensen (1968) and Fleming (1997) from an optimal con-
trol perspective and has led to what is called the minimum energy estimator.
Recall that the filtering PDF π̂1 is the marginal PDF of P̂ at time t = 1.

The associated time-continuous smoothing/filtering problems are based

on the time-dependent path measures P̂t defined by

dP̂t
dQ |z[0,1]

∝ l(z[0,t]), l(z[0,t]) := exp

(
−
∫ t

0
Vs(zs) ds

)
for t ∈ (0, 1]. We let π̂t denote the marginal PDF of P̂t at time t. Note
that π̂t is the filtering PDF, i.e. the marginal PDF at time t conditioned on
all the data available until time t. Also note that π̂t is different from the
marginal (smoothing) PDF of P̂ at time t.

We now state a modified Fokker–Planck equation which describes the
time evolution of the filtering PDFs π̂t.

Lemma 4.1. The marginal distributions π̂t of P̂t satisfy the modified
Fokker–Planck equation

∂tπ̂t = L†t π̂t − π̂t(Vt − π̂t[Vt]) (4.2)

with L†t defined by (2.25).

Proof. This can be seen by setting γ = 0 and ft ≡ 0 in (2.24) for simpli-
city and by considering the incremental change of measure induced by the
likelihood, that is,

π̂t+δt
π̂t
∝ e−Vtδt ≈ 1− Vt δt,

and taking the limit δt→ 0 under the constraint that π̂t[1] = 1 is preserved.

We now derive a mean-field interpretation of (4.2) and rewrite (4.2) in
the form

∂tπ̂t = L†t π̂t +∇z · (π̂t∇zφt), (4.3)
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where the potential φt : RNz → R satisfies the elliptic PDE

∇z · (π̂t∇zφt) = −π̂t(Vt − π̂t[Vt]). (4.4)

Remark 4.2. Necessary conditions for the elliptic PDE (4.4) to be solv-
able and to lead to bounded gradients ∇zφ for given πt have been discussed
by Laugesen, Mehta, Meyn and Raginsky (2015). It is an open problem
to demonstrate that continuous-time data assimilation problems actually
satisfy such conditions.

With (4.3) in place, we formally obtain the mean-field equation

dZ+
t = {ft(Z+

t )−∇zφt(Z+
t )} dt+ γ1/2 dW+

t , (4.5)

and the marginal distributions πut of this controlled SDE agree with the

marginals π̂t of the path measures P̂t at times t ∈ (0, 1].
The control ut is not uniquely determined. For example, one can replace

(4.4) with

∇z · (πtMt∇zφt) = −πt(Vt − πt[Vt]), (4.6)

where Mt is a symmetric positive definite matrix. More specifically, let us
assume that πt is Gaussian with mean z̄t and covariance matrix P zzt and
that h(z) is linear, i.e. h(z) = Hz. Then (4.6) can be solved analytically
for Mt = P zzt with

∇zφt(z) =
1

2
HT(Hz +Hz̄t − 2yt).

The resulting mean-field equation becomes

dZ+
t =

{
ft(Z

+
t )− 1

2
P zzt HT(HZ+

t +Hz̄t − 2yt)

}
dt+ γ1/2 dW+

t , (4.7)

which gives rise to the ensemble Kalman–Bucy filter upon Monte Carlo
discretization (Bergemann and Reich 2012). See Section 5 below and Ap-
pendix A.3 for further details.

Remark 4.3. The approach described in this subsection can also be ap-
plied to standard Bayesian inference without model dynamics. More spe-
cifically, let us assume that we have samples zi0, i = 1, . . . ,M , from a prior
distribution π0 which we would like to transform into samples from a pos-
terior distribution

π∗(z) :=
l(z)π0(z)

π0[l]

with likelihood l(z) = π(y|z). One can introduce a homotopy connecting π0

with π∗, for example, via

π̆s(z) :=
l(z)s π0(z)

π0[ls]
(4.8)
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with s ∈ [0, 1]. We find that

∂π̆s
∂s

= π̆s(log l − π̆s[log l]). (4.9)

We now seek a differential equation

d

ds
Z̆s = us(Z̆s) (4.10)

with Z̆0 ∼ π0 such that its marginal distributions π̆s satisfy (4.9) and, in

particular, Z̆1 ∼ π∗. This condition together with Liouville’s equation for
the time evolution of marginal densities under a differential equation (4.10)
leads to

−∇z · (π̆s us) = π̆s(log l − π̆s[log l]). (4.11)

In order to define us in (4.10) uniquely, we make the ansatz

us(z) = −∇zφs(z) (4.12)

which leads to the elliptic PDE

∇z · (π̆s∇zφs) = π̆s(log l − π̆s[log l]) (4.13)

in the potential φs. The desired samples from π∗ are now obtained as
the time-one solutions of (4.10) with ‘control law’ (4.12) satisfying (4.13)
and initial conditions zi0, i = 1, . . . ,M . There are many modifications
of this basic procedure (Daum and Huang 2011, Reich 2011, El Moselhy
and Marzouk 2012), some of them leading to explicit expressions for (4.10)
such as Gaussian PDFs (Bergemann and Reich 2010) and Gaussian mix-
ture PDFs (Reich 2012). We finally mention that the limit s → ∞ in
(4.8) leads, formally, to the PDF π̆∞ = δ(z − zML), where zML denotes the
minimizer of V (z) = − log π(y|z), i.e. the maximum likelihood estimator,
which we assume here to be unique, for example, V is convex. In other
words these homotopy methods can be used to solve optimization problems
via derivative-free mean-field equations and their interacting particle ap-
proximations. See, for example, Zhang, Taghvaei and Mehta (2019) and
Schillings and Stuart (2017) as well as Appendices A.1 and A.3 for more
details.

4.2. Random data

We now replace (4.1) with an observation model of the form

dYt = h(Z+
t ) dt+ dV +

t ,

where we set Yt ∈ R for simplicity and V +
t denotes standard Brownian

motion. The forward operator h : RNz → R is also assumed to be known.
The marginal PDFs π̂t for Zt conditioned on all observations ys with s ∈
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[0, t] satisfy the Kushner–Stratonovitch equation (Jazwinski 1970)

dπ̂t = L†t π̂t dt+ (h− π̂t[h])(dYt − π̂t[h] dt) (4.14)

with L† defined by (2.25). The following observation is important for the
subsequent discussion.

Remark 4.4. Consider state-dependent diffusion

dZ+
t = γt(Z

+
t ) ◦ dU+

t , (4.15)

in its Stratonovitch interpretation (Pavliotis 2014), where U+
t is scalar-

valued Brownian motion and γt(z) ∈ RNz×1. Here the Stratonovitch inter-
pretation is to be applied to the implicit time-dependence of γt(z) through
Z+
t only, that is, the explicit time-dependence of γt remains to be Itô-

interpreted. The associated Fokker–Planck equation for the marginal PDFs
πt takes the form

∂tπt =
1

2
∇z · (γt∇z · (πtγt)), (4.16)

and expectation values ḡ = πt[g] evolve in time according to

πt[g] = π0[g] +

∫ t

0
πs[Atg] ds (4.17)

with operator At defined by

Atg =
1

2
γT
t ∇z(γT

t ∇zg).

Now consider the mean-field equation

d

dt
Z̃t = −1

2
γt(Z̃t) Jt, Jt := π̃−1

t ∇z · (π̃tγt), (4.18)

with π̃t the law of Z̃t. The associated Liouville equation is

∂tπ̃t =
1

2
∇z · (π̃tγtJt) =

1

2
∇z · (γt∇z · (γtπ̃t)).

In other words, the marginal PDFs and the associated expectation values
evolve identically under (4.15) and (4.18), respectively.

We now state a formulation of the continuous-time filtering problem
in terms of appropriate mean-field equations. These equations follow the
framework of the feedback particle filter (FPF) as first introduced by Yang
et al. (2013) and theoretically justified by Laugesen et al. (2015). See Crisan
and Xiong (2010) and Xiong (2011) for an alternative formulation.

Lemma 4.5. The mean-field SDE

dZ+
t = ft(Z

+
t ) dt+ γ1/2 dW+

t −Kt(Z
+
t ) ◦ dIt (4.19)
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with

dIt := h(Z+
t ) dt− dYt + dU+

t ,

U+
t standard Brownian motion, and Kt := ∇zφt, where the potential φt

satisfies the elliptic PDE

∇z · (πt∇zφt) = −πt(h− πt[h]), (4.20)

leads to the same evolution of its conditional marginal distributions πt as
(4.14).

Proof. We set γ = 0 and ft ≡ 0 in (4.19) for simplicity. Then, following
(4.16) with γt = Kt, the Fokker–Planck equation for the marginal distribu-
tions πt of (4.19) conditioned on {Ys}s∈[0,t] is given by

dπt = ∇z · (πtKt(h(z) dt− dYt)) +∇z · (Kt∇z · (πtKt)) dt (4.21)

= (πt[h] dt− dYt)∇z · (πtKt) +∇z · (πtKt(h(z)− πt[h]) dt

+∇z · (Kt∇z · (πtKt)) dt (4.22)

= πt(h− πt[h])(dYt − πt[h] dt), (4.23)

as desired, where we have used (4.20) twice to get from (4.22) to (4.23).
Also note that both Yt and U+

t contributed to the diffusion-induced final
term in (4.21) and hence the factor 1/2 in (4.16) is replaced by one.

Remark 4.6. Using the reformulation (4.18) of (4.15) in Stratonovitch
form with γt = Kt together with (4.20), one can replace Kt ◦ dU+

t with
1
2Kt(πt[h]− h) dt, which leads to the alternative

dIt =
1

2
(h+ πt[h]) dt− dYt

for the innovation It, as originally proposed by Yang et al. (2013) in their
FPF formulation. We also note that the feedback particle formulation (4.19)
can be extended to systems for which the measurement and model errors
are correlated. See Nüsken, Reich and Rozdeba (2019) for more details.

The ensemble Kalman–Bucy filter (Bergemann and Reich 2012) with the
Kalman gain factor Kt being independent of the state variable z and of the
form

Kt = P zht (4.24)

can be viewed as a special case of an FPF. Here P zht denotes the covariance
matrix between Zt and h(Zt) at time t.

5. Numerical methods

In this section we discuss some numerical implementations of the mean-
field approach to continuous-time data assimilation. An introduction to
standard particle filter implementations can, for example, be found in Bain
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and Crisan (2008). We start with the continuous-time formulation of the
ensemble Kalman filter and state a numerical implementation of the FPF
using a Schrödinger formulation in the second part of this section. See
also Appendix A.1 for some more details on a particle-based solution of the
elliptic PDEs (4.4), (4.13) and (4.20), respectively.

5.1. Ensemble Kalman–Bucy filter

Let us start with the ensemble Kalman–Bucy filter (EnKBF), which arises
naturally from the mean-field equations (4.7) and (4.19), respectively, with
Kalman gain (4.24) (Bergemann and Reich 2012). We state the EnKBF
here in the form

dZit = ft(Z
i
t) dt+ γ1/2 dW+

t −KM
t dIit (5.1)

for i = 1, . . . ,M and

KM
t :=

1

M − 1

M∑
i=1

Zit(h(Zit)− h̄Mt )T, h̄Mt :=
1

M

M∑
i=1

h(Zit).

The innovations dIit take different forms depending on whether the data are
smooth in time, that is,

dIit =
1

2
(h(Zit) + h̄Mt − 2yt) dt,

or contains stochastic contributions, that is,

dIit =
1

2
(h(Zit) + h̄Mt ) dt− dyt, (5.2)

or, alternatively,
dIit = h(Zit) dt+ dU it − dyt,

where U it denotes standard Brownian motion. The SDEs (5.1) can be dis-
cretized in time by any suitable time-stepping method such as the Euler–
Maruyama scheme (Kloeden and Platen 1992). However, one has to be
careful with the choice of the step-size ∆t due to potentially stiff contri-
butions from KM

t dIit . See, for example, Amezcua, Kalnay, Ide and Reich
(2014) and Blömker, Schillings and Wacker (2018).

Remark 5.1. It is of broad interest to study the stability and accuracy of
interacting particle filter algorithms such as the discrete-time EnKF and the
continuous-time EnKBF for fixed particle numbers M . On the negative side,
it has been shown by Kelly, Majda and Tong (2015) that such algorithms
can undergo finite-time instabilities, while it has also been demonstrated
(González-Tokman and Hunt 2013, Kelly, Law and Stuart 2014, Tong, Ma-
jda and Kelly 2016, de Wiljes, Reich and Stannat 2018) that such algorithms
can be stable and accurate under appropriate conditions on the dynamics
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and measurement process. Asymptotic properties of the EnKF and EnKBF
in the limit of M → ∞ have also been studied, for example, by Le Gland,
Monbet and Tran (2011), Kwiatowski and Mandel (2015) and de Wiljes
et al. (2018).

5.2. Feedback particle filter

A Monte Carlo implementation of the FPF (4.19) faces two main obstacles.
First, one needs to approximate the potential φt in (4.20) with the density
πt, which is only available in terms of an empirical measure

πt(z) =
1

M

M∑
i=1

δ(z − zit).

Several possible approximations have been discussed by Taghvaei and Mehta
(2016) and Taghvaei, de Wiljes, Mehta and Reich (2017). Here we would
like to mention in particular an approximation based on diffusion maps,
which we summarize in Appendix A.1. Second, one needs to apply suitable
time-stepping methods for the SDE (4.19) in Stratonovitch form. Here we
suggest using the Euler–Heun method (Burrage, Burrage and Tian 2004),

z̃in+1 = zin + ∆tftn(zin) + (γ∆t)1/2ξin −Kn(zin)∆Iin,

zin+1 = zin + ∆tftn(zin) + (γ∆t)1/2ξin −
1

2
(Kn(zin) +Kn(z̃in+1))∆Iin,

i = 1, . . . ,M , with, for example,

∆Iin =
1

2
(h(zin) + h̄Mn )∆t−∆yn.

While the above implementation of the FPF requires one to solve the
elliptic PDE (4.20) twice per time-step, we now suggest a time-stepping
approach in terms of an associated Schrödinger problem. Let us assume
that we have M equally weighted particles zin representing the conditional
filtering distribution at time tn. We first propagate these particles forward
under the drift term alone, that is,

ẑin+1 := zin + ∆t ftn(zin), i = 1, . . . ,M.

In the next step, we draw L = KM with K ≥ 1 samples z̃ln+1 from the
forecast PDF

π̃(z) :=
1

M

M∑
i=1

n(z; ẑin+1, γ∆tI)

and assign importance weights

wln+1 ∝ exp

(
−∆t

2
(h(z̃ln+1))2 + ∆ynh(z̃ln+1)

)
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with normalization (3.24). Recall that we assumed that yt ∈ R for simplicity
and ∆yn := ytn+1 − ytn . We then solve the Schrödinger problem

P ∗ = arg min
P∈ΠM

KL(P ||Q) (5.3)

with the entries of Q ∈ RL×M given by

qli = exp

(
− 1

2γ∆t
‖z̃ln+1 − ẑin+1‖2

)
and the set ΠM defined by (3.26). The desired particles zin+1 = Zin+1(ω) are
finally given as realizations of

Zin+1 =

L∑
l=1

z̃ln+1p
∗
li + (γ∆t)1/2Ξin, Ξin ∼ N(0, I), (5.4)

for i = 1, . . . ,M .
The update (5.4), with P ∗ defined by (5.3), can be viewed as data-driven

drift correction combined with a standard approximation to the Brownian
diffusion part of the underlying SDE model. It remains to be investigated in
what sense (5.4) can be viewed as an approximation to the FPF formulation
(4.19) as M →∞ and ∆t→ 0.

Remark 5.2. One can also use the matrix P ∗ from (5.3) to implement a
resampling scheme

P[Zin+1(ω) = z̃ln+1] = p∗li (5.5)

for i = 1, . . . ,M . Note that, contrary to classical resampling schemes based
on weighted particles (z̃ln+1, w

l
n+1), l = 1, . . . , L, the sampling probabilities

p∗li take into account the underlying geometry of the forecasts ẑin+1 in state
space.

Example 5.3. We consider the SDE formulation

dZt = f(Zt) dt+ γ1/2 dWt

of a stochastically perturbed Lorenz-63 model (Lorenz 1963, Reich and
Cotter 2015, Law et al. 2015) with diffusion constant γ = 0.1. The sys-
tem is fully observed according to

dYt = f(Zt) dt+R1/2 dVt

with measurement error variance R = 0.1, and the system is simulated over
a time interval t ∈ [0, 40 000] with step-size ∆t = 0.01. We implemented
a standard particle filter with resampling performed after each time-step
and compared the resulting RMS errors with those arising from using (5.4)
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Figure 5.1. RMS errors as a function of sample size, M , for a standard particle
filter, the EnKBF, and implementations of (5.4) (Schrödinger transform) and (5.5)
(Schrödinger resample), respectively. Both Schrödinger-based methods outperform
the standard particle filter for small ensemble sizes. The EnKBF diverged for the
smallest ensemble size of M = 5 and performed worse than all other methods for
this highly nonlinear problem.

(Schrödinger transform) and (5.5) (Schrödinger resample), respectively. See
Figure 5.1. It can be seen that the Schrödinger-based methods outperform
the standard particle filter in terms of RMS errors for small ensemble sizes.
The Schrödinger transform method is particularly robust for very small
ensemble sizes while Schrödinger resample performs better at larger sample
sizes. We also implemented the EnKBF (5.1) and found that it diverged for
the smallest ensemble size of M = 5 and performed worse than the other
methods for larger ensemble sizes.

6. Conclusions

We have summarized sequential data assimilation techniques suitable for
state estimation of discrete- and continuous-time stochastic processes. In
addition to algorithmic approaches based on the standard filtering and
smoothing framework of stochastic analysis, we have drawn a connection
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to a boundary value problem over joint probability measures first formu-
lated by Erwin Schrödinger. We have argued that sequential data assimila-
tion essentially needs to approximate such a boundary value problem with
the boundary conditions given by the filtering distributions at consecutive
observation times.

Application of these techniques to high-dimensional problems arising, for
example, from the spatial discretization of PDEs requires further approxim-
ations in the form of localization and inflation, which we have not discussed
in this survey. See, for example, Evensen (2006), Reich and Cotter (2015)
and Asch et al. (2017) for further details. In particular, the localization
framework for particle filters as introduced by Chen and Reich (2015) and
Reich and Cotter (2015) in the context of scenario (A) could be generalized
to scenarios (B) and (C) from Definition 2.4.

Finally, the approaches and computational techniques discussed in this
paper are also relevant to combined state and parameter estimation.
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Appendices

A.1. Mesh-free approximations to Fokker–Planck and backward
Kolmogorov equations

In this appendix we discuss two closely related approximations, first to the
Fokker–Planck equation (2.26) with the (time-independent) operator (2.25)
taking the special form

L†π = −∇z · (π∇z log π∗) + ∆zπ = ∇z ·
(
π∗∇z

π

π∗

)
and, second, to its adjoint operator L given by (3.10).

The approximation to the Fokker–Planck equation (2.26) with drift term

ft(z) = ∇z log π∗(z) (A.1)

can be used to transform samples xi0, i = 1, . . . ,M from a (prior) PDF π0

into samples from a target (posterior) PDF π∗ using an evolution equation
of the form

d

ds
Z̆s = Fs(Z̆s), (A.2)
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with Z̆0 ∼ π̆0 := π0 such that

lim
s→∞

Z̆s ∼ π∗.

The evolution of the marginal PDFs π̆s is given by Liouville’s equation

∂sπ̆s = −∇z · (π̆sFs). (A.3)

We now choose Fs such that the Kullback–Leibler divergence KL (π̆s||π∗) is
non-increasing in time, that is,

d

ds
KL (π̆s||π∗) =

∫
π̆s

{
Fs · ∇z log

π̆s
π∗

}
dz ≤ 0. (A.4)

A natural choice is

Fs(z) := −∇z log
π̆s
π∗

(z),

which renders (A.3) formally equivalent to the Fokker–Planck equation
(2.26) with drift term (A.1) (Reich and Cotter 2015, Peyre and Cuturi 2018).

Let us now approximate the evolution equation (A.2) over a reproducing
kernel Hilbert space (RKHS) H with kernel k(z − z′) and inner product
〈f, g〉H, which satisfies the reproducing property

〈k(· − z′), f〉H = f(z′). (A.5)

Following Russo (1990) and Degond and Mustieles (1990), we first introduce
the approximation

π̃s(z) :=
1

M

M∑
i=1

k(z − zis) (A.6)

to the marginal densities π̆s. Note that (A.5) implies that

〈f, π̃s〉H =
1

M

M∑
i=1

f(zis).

Given some evolution equations

d

ds
zis = uis

for the particles zis, i = 1, . . . ,M , we find that (A.6) satisfies Liouville’s
equation, that is,

∂sπ̃s = −∇z · (π̃sF̃s)

with

F̃s(z) =

∑M
i=1 k(z − zis)uis∑M
i=1 k(z − zis)

.
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We finally introduce the functional

V({zls}) :=

〈
π̃s, log

π̃s
π∗

〉
H

=
1

M

M∑
i=1

log
1
M

∑M
j=1 k(zis − z

j
s)

π∗(zis)

as an approximation to the Kullback–Leibler divergence in the RKHS H
and set

uis := −M∇zisV({zls}), (A.7)

which constitutes the desired particle approximation to the Fokker–Planck
equation (2.26) with drift term (A.1). Time-stepping methods for such
gradient flow systems have been discussed by Pathiraja and Reich (2019).

We also remark that an alternative interacting particle system, approxim-
ating the same asymptotic PDF π∗ in the limit s→∞, has been proposed
recently by Liu and Wang (2016) under the notion of Stein variational des-
cent. See Lu, Lu and Nolen (2019) for a theoretical analysis of Stein vari-
ational descent, which implies in particular that Stein variational descent
can be viewed as a Lagrangian particle approximation to the modified evol-
ution equation

∂sπ̆s = ∇z ·
(
π̆2
s∇z log

π̆s
π∗

(z)

)
= ∇z · (π̆s(∇zπ̆s − π̆s∇z log π∗))

in the marginal PDFs π̆s, that is, one uses

Fs(z) := −π̆s∇z log
π̆s
π∗

(z)

in (A.2). The Kullback–Leibler divergence is still non-increasing since (A.4)
becomes

d

ds
KL (π̆s||π∗) = −

∫
‖Fs‖2 dz ≤ 0.

A numerical discretization is obtained through the approximation

Fs(z
′) ≈

∫
Fs(z) k(z − z′) dz,

that is, one views the kernel k(z− z′) as a regularized Dirac delta function.
This approximation leads to another vector field

F̂s(z
′) := −

∫
π̆s(z){∇z log π̆s(z)−∇z log π∗(z)}k(z − z′) dz

=

∫
π̆s(z){∇zk(z − z′) + k(z − z′)∇z log π∗(z)}dz.

On extending the RKHS H and its reproducing property (A.5) component-
wise to vector-valued functions, it follows that

d

ds
KL (π̆s||π∗) = −

∫
Fs · F̂s dz = −〈F̂s, F̂s〉H ≤ 0
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along transformations induced by the vector field F̂s. See Liu and Wang
(2016) for more details.

We now turn our attention to the dual operator Lt, defined by (3.10),
which also arises from (4.6) and (4.20), respectively. More specifically, let
us rewrite (4.20) in the form

Atφt = −(h− πt[h]) (A.8)

with the operator At defined by

Atg :=
1

πt
∇z · (πt∇zg).

Then we find that At is of the form of Lt with πt taking the role of π∗.
We also recall that (3.11) provides an approximation to Lt and hence

to At. This observation allows one to introduce a sample-based method
for approximating the potential φ defined by the elliptic partial differential
equation (A.8) for a given function h(z).

Here we instead follow the presentation of Taghvaei and Mehta (2016)
and Taghvaei et al. (2017) and assume that we have M samples zi from a
PDF π. The method is based on

φ− eεAφ

ε
≈ h− π[h] (A.9)

for ε > 0 sufficiently small and upon replacing eεA with a diffusion map
approximation (Harlim 2018) of the form

eεAφ(z) ≈ Tεφ(z) :=

M∑
i=1

kε(z, z
i)φ(zi). (A.10)

The required kernel functions kε(z, z
i) are defined as follows. Let

nε(z) := n(z; 0, 2ε I)

and

pε(z) :=
1

M

M∑
j=1

nε(z − zj) =
1

M

M∑
j=1

n(z; zj , 2ε I).

Then

kε(z, z
i) :=

nε(z − zi)
cε(z) pε(zi)1/2

with normalization factor

cε(z) :=
M∑
l=1

nε(z − zl)
pε(zl)1/2

.

In other words, the operator Tε reproduces constant functions.
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The approximations (A.9) and (A.10) lead to the fixed-point problem3

φj =
M∑
i=1

kε(z
j , zi)φi + ε∆hi , j = 1, . . . ,M, (A.11)

in the scalar coefficients φj , j = 1, . . . ,M , for given

∆hi := h(zi)− h̄, h̄ :=
1

M

M∑
l=1

h(zl).

Since Tε reproduces constant functions, (A.11) determines φi up to a con-
stant contribution, which we fix by requiring

M∑
i=1

φi = 0.

The desired functional approximation φ̃ to the potential φ is now provided by

φ̃(z) =

M∑
i=1

kε(z, z
i){φi + ε∆hi}. (A.12)

Furthermore, since

∇zkε(z, zi) =
−1

2ε
kε(z, z

i)

(
(z − zi)−

M∑
l=1

kε(z, z
l)(z − zl)

)

=
1

2ε
kε(z, z

i)

(
zi −

M∑
l=1

kε(z, z
l)zl
)
,

we obtain

∇zφ̃(zj) =

M∑
i=1

∇zkε(zj , zi) ri =

M∑
i=1

zi aij ,

with

ri = φi + ε∆hi

and

aij :=
1

2ε
kε(z

j , zi)

(
ri −

M∑
l=1

kε(z
j , zl) rl

)
.

3 It would also be possible to employ the approximation (3.11) in the fixed-point problem
(A.11), that is, to replace kε(z

j , zi) by (Q+)ji in (3.11) with ∆t = ε and π∗ = πt.
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We note that
M∑
i=1

aij = 0

and

lim
ε→∞

aij =
1

M
∆hi

since

lim
ε→∞

kε(z
j , zi) =

1

M
.

In other words,

lim
ε→∞

∇zφ̃(zj) =
1

M

M∑
i=1

zi (h(zi)− h̄) = KM

independent of zj , which is equal to an empirical estimator for the covariance
between z and h(z) and which, in the context of the FPF, leads to the
EnKBF formulations (5.1) of Section 5.1. See Taghvaei et al. (2017) for more
details and Taghvaei, Mehta and Meyn (2019) for a convergence analysis.

A.2. Regularized Störmer–Verlet for HMC

One is often faced with the task of sampling from a high-dimensional PDF
of the form

π(x) ∝ exp(−V (x)), V (x) :=
1

2
(x− x̄)TB−1(x− x̄) + U(x),

for known x̄ ∈ RNx , B ∈ RNx×Nx , and U : RNx → R. The hybrid
Monte Carlo (HMC) method (Neal 1996, Liu 2001, Bou-Rabee and Sanz-
Serna 2018) has emerged as a popular Markov chain Monte Carlo (MCMC)
method for tackling this problem. HMC relies on a symplectic discretization
of the Hamiltonian equations of motion

d

dτ
x = M−1p,

d

dτ
p = −∇xV (x) = −B−1(x− x̄)−∇xU(x)

in an artificial time τ (Leimkuhler and Reich 2005). The conserved energy
(or Hamiltonian) is provided by

H(x, p) =
1

2
pTM−1p+ V (x). (A.13)

The symmetric positive definite mass matrix M ∈ RNx×Nx can be chosen
arbitrarily, and a natural choice in terms of sampling efficiency is M = B−1
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(Beskos et al. 2011). However, when also taking into account computational
efficiency, a Störmer–Verlet discretization

pn+1/2 = pn −
∆τ

2
∇xV (xn), (A.14)

qn+1 = qn + ∆τM̃−1pn+1/2, (A.15)

pn+1 = pn+1/2 −
∆τ

2
∇xV (xn+1), (A.16)

with step-size ∆τ > 0, mass matrix M = I in (A.13) and modified mass
matrix

M̃ = I +
∆τ2

4
B−1 (A.17)

in (A.15) emerges as an attractive alternative, since it implies

H(xn, pn) = H(xn+1, pn+1)

for all ∆τ > 0 provided U(x) ≡ 0. The Störmer–Verlet formulation (A.14)–
(A.16) is based on a regularized formulation of Hamiltonian equations of
motion for highly oscillatory systems as discussed, for example, by Reich
and Hundertmark (2011).

Energy-conserving time-stepping methods for linear Hamiltonian systems
have become an essential building block for applications of HMC to infinite-
dimensional inference problems, where B−1 corresponds to the discretiza-
tion of a positive, self-adjoint and trace-class operator B. See, for example,
Beskos et al. (2017).

Note that the Störmer–Verlet discretization (A.14)–(A.16) together with
(A.17) can be easily extended to inference problems with constraints g(x) =
0 (Leimkuhler and Reich 2005) and that (A.14)–(A.16) conserves equilibria,4

that is, points x∗ with ∇V (x∗) = 0, regardless of the step-size ∆τ .
HMC methods, based on (A.14)–(A.16) and (A.17), can be used to sample

from the smoothing distribution of an SDE as considered in Sections 2.2
and 3.3.

A.3. Ensemble Kalman filter

We summarize the formulation of an ensemble Kalman filter in the form
(3.20). We start with the stochastic ensemble Kalman filter (Evensen 2006),
which is given by

Ẑj1 = zj1 −K(h(zj1) + Θj − y1), Θj ∼ N(0, R), (A.18)

4 Note that equilibria of the Hamiltonian equations of motion correspond to MAP es-
timators of the underlying Bayesian inference problem.
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with Kalman gain matrix

K = P zh(P hh +R)−1 =
1

M − 1

M∑
i=1

zi1 (h(zi1)− h̄)T(P hh +R)−1

and

P hh :=
1

M − 1

M∑
l=1

h(zl1) (h(zl1)− h̄)T, h̄ :=
1

M

M∑
l=1

h(zl1).

Formulation (A.18) can be rewritten in the form (3.20) with

p∗ij = δij −
1

M − 1
(h(zi1)− h̄)T(P hh +R)−1(h(zj1)− y1 + Θj), (A.19)

where δij denotes the Kronecker delta, that is, δij = 0 if i 6= j and δii = 1.
More generally, one can think about ensemble Kalman filters and their

generalizations (Anderson 2010) as first defining appropriate updates ŷi1 to
the predicted yi1 = h(zi1) using the observed y1, which is then extrapolated
to the state variable z via linear regression, that is,

ẑj1 = zj1 +
1

M − 1

M∑
i=1

zi1(h(zi1)− h̄)T(P hh)−1(ŷj1 − y
j
1), (A.20)

which can be reformulated in the form (3.20) (Reich and Cotter 2015). Note
that the consistency result

Hẑi1 = ŷi1

follows from (A.20) for linear forward maps h(z) = Hz.
Within such a linear regression framework, one can easily derive ensemble

transformations for the particles zi0 at time t = 0. We simply take the
coefficients p∗ij , as defined for example by an ensemble Kalman filter (A.19),

and apply them to zi0, that is,

ẑj0 =
M∑
i=1

zi0 p
∗
ij .

These transformed particles can be used to approximate the smoothing dis-
tribution π̂0. See, for example, Evensen (2006) and Kirchgessner et al.
(2017) for more details.

Finally, one can also interpret the ensemble Kalman filter as a continuous
update in artificial time s ≥ 0 of the form

dzis = −P zhR−1 dIis (A.21)

with the innovations Iis given either by

dIis =
1

2
(h(zis) + h̄s) ds− y1 ds (A.22)
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or, alternatively, by

dIis = h(zis) ds+R1/2 dV i
s − y1 ds,

where V i
s stands for standard Brownian motion (Bergemann and Reich 2010,

Reich 2011, Bergemann and Reich 2012). Equation (A.21) with innovation
(A.22) can be given a gradient flow structure (Bergemann and Reich 2010,
Reich and Cotter 2015) of the form

1

ds
dzis = −P zz∇ziV({zjs}), (A.23)

with potential

V({zj}) :=
1− α

4

M∑
j=1

(h(zj)− y1)TR−1(h(zj)− y1)

+
(1 + α)M

4
(h̄− y1)TR−1(h̄− y1)

and α = 0 for the standard ensemble Kalman filter, while α ∈ (0, 1) can be
seen as a form of variance inflation (Reich and Cotter 2015).

A theoretical study of such dynamic formulations in the limit of s → ∞
and α = −1 has been initiated by Schillings and Stuart (2017). There
is an interesting link to stochastic gradient methods (Bottou, Curtis and
Nocedal 2018), which find application in situations where the dimension
of the data y1 is very high and the computation of the complete gradi-
ent ∇zh(z) becomes prohibitive. More specifically, the basic concepts of
stochastic gradient methods can be extended to (A.23) if R is diagonal, in
which case one would pick at random paired components of h and y1 at the
kth time-step of a discretization of (A.23), with the step-size ∆sk chosen
appropriately. Finally, we also point to a link between natural gradient
methods and Kalman filtering (Ollivier 2018) which can be explored further
in the context of the continuous-time ensemble Kalman filter formulation
(A.23).

A.4. Numerical treatment of forward–backward SDEs

We discuss a numerical approximation of the forward–backward SDE prob-
lem defined by the forward SDE (2.24) and the backward SDE (2.54) with
initial condition Z+

0 ∼ π0 at time t = 0 and final condition Y1(Z+
1 ) =

l(Z+
1 )/β at time t = 1. Discretization of the forward SDE (2.24) by the

Euler–Maruyama method (3.5) leads to M numerical solution paths zi0:N ,
i = 1, . . . ,M , which, according to Definition 3.5, lead to N discrete Markov
transition matrices Q+

n ∈ RM×M , n = 1, . . . , N .
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The Euler–Maruyama method is now also applied to the backward SDE
(2.54) and yields

Yn = Yn+1 −∆t1/2ΞT
nVn.

Upon taking conditional expectation we obtain

Yn(Z+
n ) = E[Yn+1|Z+

n ] (A.24)

and

∆t1/2E[ΞnΞT
n ]Vn(Z+

n ) = E[(Yn+1 − Yn)Ξn|Z+
n ],

respectively. The last equation leads to

Vn(Z+
n ) = ∆t−1/2E[(Yn+1 − Yn)Ξn|Z+

n ]. (A.25)

We also have YN (Z+
N ) = l(Z+

N )/β at final time t = 1 = N∆t. See page 45
in Carmona (2016) for more details.

We finally need to approximate the conditional expectation values in
(A.24) and (A.25), for which we employ the discrete Markov transition
matrix Q+

n+1 and the discrete increments

ζij :=
1

(γ∆t)1/2
(zin+1 − zjn −∆tftn(zjn)) ∈ RM .

Given yjn+1 ≈ Y (zjn+1) at time level tn+1, we then approximate (A.24) by

yjn :=
M∑
i=1

yin+1(Q+
n+1)ij (A.26)

for n = N − 1, . . . , 0. The backward iteration is initiated by setting yiN =
l(ziN )/β, i = 1, . . . ,M . Furthermore, a Monte Carlo approximation to

(A.25) at zjn is provided by

∆t1/2
M∑
i=1

{ξij(ξij)T(Q+
n+1)ij}vjn =

M∑
i=1

(yin+1 − yjn)ξij(Q
+
n+1)ij

and, upon assuming invertibility, we obtain the explicit expression

vjn := ∆t−1/2

( M∑
i=1

ξij(ξij)
T(Q+

n+1)ij

)−1 M∑
i=1

(yin+1 − yjn)ξij(Q
+
n+1)ij (A.27)

for n = N − 1, . . . , 0.
Recall from Remark 2.20 that yjn ∈ R provides an approximation to

ψtn(zjn) and vjn ∈ RNz an approximation to γ1/2∇zψtn(zjn), respectively,
where ψt denotes the solution of the backward Kolmogorov equation (2.31)
with final condition ψ1(z) = l(z)/β. Hence, the forward solution paths zi0:N ,
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i = 1, . . . ,M , together with the backward approximations (A.26) and (A.27)
provide a mesh-free approximation to the backward Kolmogorov equation
(2.31). Furthermore, the associated control law (2.32) can be approxim-
ated by

utn(zin) ≈ γ1/2

yin
vin.

The division by yin can be avoided by means of the following alternative
formulation. We introduce the potential

φt := logψt, (A.28)

which satisfies the modified backward Kolmogorov equation

0 = ∂tφt + Ltφt +
γ

2
‖∇zφt‖2

with final condition φ1(z) = log l(z), where we have ignored the constant
log β. Hence Itô’s formula applied to φt(Z

+
t ) leads to

dφt = −γ
2
‖∇zφt‖2 dt+ γ1/2∇zφt · dW+

t (A.29)

along solutions Z+
t of the forward SDE (2.24). It follows from

dP̂
dQu

|z[0,1]
=
l(z1)

β

π0(z0)

q0(z0)
exp

(
1

2γ

∫ 1

0
(‖ut‖2 dt− 2γ1/2ut · dW+

t )

)
,

with ut = γ∇zφt, q0 = π̂0, and

log
l(z1)

β
− log

π̂0(z0)

π0(z0)
=

∫ 1

0
dφt

that P̂ = Qu, as desired.
The backward SDE associated with (A.29) becomes

dYt = −1

2
‖Vt‖2 dt+ Vt · dW+

t (A.30)

and its Euler–Maruyama discretization is

Yn = Yn+1 +
∆t

2
‖Vn‖2 −∆t1/2ΞT

nVn.

Numerical values (yin, v
i
n) can be obtained as before with (A.26) replaced by

yjn :=

M∑
i=1

(
yin+1 +

∆t

2
‖vjn‖2

)
(Q+

n+1)ij

and the control law (2.32) is now approximated by

utn(zin) ≈ γ1/2vin.
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We re-emphasize that the backward SDE (A.30) arises naturally from
an optimal control perspective onto the smoothing problem. See Carmona
(2016) for more details on the connection between optimal control and back-
ward SDEs. In particular, this connection leads to the following alternative
approximation

utn(zjn) ≈
M∑
i=1

zin+1{(Q̂+
n+1)ij − (Q+

n+1)ij}

of the control law (2.32). Here Q̂+
n+1 denotes the twisted Markov transition

matrix defined by

Q̂+
n+1 = D(yn+1)Q+

n+1D(yn)−1, yn = (y1
n, . . . , y

M
n )T.

Remark. The backward SDE (A.30) can also be utilized to reformulate
the Schrödinger system (2.58)–(2.61). More specifically, one seeks an initial

πψ0 which evolves under the forward SDE (2.24) with Z+
0 ∼ πψ0 such that

the solution Yt of the associated backward SDE (A.30) with final condition

Y1(z) = log π̂1(z)− log πψ1 (z)

implies π0 ∝ πψ0 exp(Y0). The desired control law in (2.30) is provided by

ut(z) = γ∇zYt(z) = γ1/2Vt(z).
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