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SELÇUK BARLAK1 AND SVEN RAUM 2

1Abteilung für Mathematik und Ihre Didaktik, Auf dem Campus 1b, DE-24943

Flensburg, Germany (selcuk.barlak@uni-flensburg.de)
2Stockholm University, Department of Mathematics, Kräftriket 6, SE-106 91
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Abstract We completely classify Cartan subalgebras of dimension drop algebras with coprime

parameters. More generally, we classify Cartan subalgebras of arbitrary stabilised dimension drop

algebras that are non-degenerate in the sense that the dimensions of their fibres in the endpoints are
maximal. Conjugacy classes by an automorphism are parametrised by certain congruence classes of

matrices over the natural numbers with prescribed row and column sums. In particular, each dimension

drop algebra admits only finitely many non-degenerate Cartan subalgebras up to conjugacy. As a
consequence of this parametrisation, we can provide examples of subhomogeneous C∗-algebras with

exactly n Cartan subalgebras up to conjugacy. Moreover, we show that in many dimension drop algebras

two Cartan subalgebras are conjugate if and only if their spectra are homeomorphic.
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1. Introduction

Cartan subalgebras constitute a centrepiece of modern structure theory of von Neumann

algebras. They were introduced by Dixmier in [10] and related to measurable group

theory and ergodic theory by Singer in [37]. Thanks to Popa’s intertwining by bimodule

techniques introduced in [29, Theorem A.1] and [30, Theorem 2.1], which are particularly

well compatible with Cartan subalgebras, best possible classification results for Cartan

subalgebras in certain crossed product von Neumann algebras could be obtained [32, 33].

C∗-algebraic Cartan subalgebras find their origin in the notion of groupoid

C∗-algebras [34] and were introduced much later than their von Neumann algebraic

counterparts in [35] by Renault, building on Kumjian’s work on C∗-diagonals [20].

In analogy with Feldman–Moore’s work on measured equivalence relations and von

Neumann algebraic Cartan subalgebras [12, 13], Cartan subalgebras of C∗-algebras

connect to topological dynamics [22] and geometric group theory [23, 39, 43] and
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therefore provide structure that has similar potential as Cartan subalgebras in

von Neumann algebras. Besides classical applications of groupoid C∗-algebras, which

take a slightly different perspective, the potential of Cartan subalgebras in C∗-algebras

is visible through a characterisation of a positive solution of the infamous UCT problem

in [2, 3]. Moreover, (non-)existence and (non-)uniqueness results are discussed in [24],

where among others a classification of Cartan subalgebras in homogeneous C∗-algebras

in terms of principal bundles is provided. Recently in [18] yet another connection with

C∗-algebraic Cartan subalgebras was found. We say that two Cartan subalgebras in a

C∗-algebra B1, B2 ⊂ A are conjugate, if there is an automorphism α ∈ Aut(A) such that

α(B1) = B2. The C∗-superrigidity problem for torsion-free virtually abelian groups — i.e.,

to recover the group from its group C∗-algebras — can be solved assuming a classification

up to conjugacy for Cartan subalgebras in certain subhomogeneous C∗-algebras. This

parallels the importance of classification results for Cartan subalgebras in proofs of

W∗-superrigidity [5, 15], although taking very different forms. Work in [18] strongly

motivates us to study Cartan subalgebras in subhomogeneous C∗-algebras.

Further motivation for the study of Cartan subalgebras in C∗-algebras comes from

the recent breakthrough results in the structure and classification theory of simple

nuclear C∗-algebras achieved by many hands; see among others [11, 14, 25, 26, 36, 42].

Every simple nuclear C∗-algebras that is classifiable in the sense of the Elliott program

has a Cartan subalgebra. For UCT Kirchberg algebras this follows either by work of

Spielberg [41] or by combining results of Katsura [17] and Yeend [44, 45], while for

classifiable finite C∗-algebras this was proven by Li [21]. While existence of Cartan

algebras is settled, their classification is a wide open problem. Even for the Jiang–Su

algebra Z, [16], which plays a key role in the structure and classification theory of

simple nuclear C∗-algebras and which can be constructed as an inductive limit of prime

dimension drop algebras, we only know that uniqueness of Cartan subalgebras does not

hold [9, 21].

The purpose of this article is to understand Cartan subalgebras of stabilised dimension

drop algebras up to conjugacy by an automorphism. For this, we take a purely

C∗-algebraic approach and classify a large class of Cartan subalgebras of dimension drop

algebras and their stabilisations. Dimension drop algebras are arguably among the most

simple and at the same time most important subhomogeneous C∗-algebras, so that they

form a natural starting point for a systematic study of Cartan subalgebras in general

subhomogeneous C∗-algebras. We adopt the following notation from [16] for stabilised

dimension drop algebras throughout the article, denoting the algebra of matrices of size

m×m by Mm ,

Im,n,o = { f ∈ C([0, 1],Mm ⊗Mn ⊗Mo) | f (0) ∈ Mm ⊗ 1⊗Mo, f (1) ∈ 1⊗Mn ⊗Mo}.

We also write Im,n = Im,n,1 for the non-stabilised dimension drop algebras.

In this paper, we restrict our attention to what we term non-degenerate Cartan

subalgebras of stabilised dimension drop algebras. A Cartan subalgebra B ⊂ Im,n,o is

called non-degenerate if the fibres at the endpoints satisfy dim B0 = mo and dim B1 = no
and we call it degenerate otherwise, cf. Definition 3.5. Gábor Szabó kindly pointed out

to us that these are exactly the C∗-diagonals in the sense of Kumjian [20] inside Im,n,o,
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which are precisely the Cartan subalgebras with the unique extension property in the

sense of Anderson [1]; see Proposition 4.1. While Example 4.3 demonstrates the existence

of degenerate Cartan subalgebras in dimension drop algebras of the form Im,m , it turns

out that Cartan subalgebras of the most important class of dimension drop algebras are

all non-degenerate. In view of Proposition 4.1, the next theorem answers [4, Problem 7]

in the setting of stabilised dimension drop algebras.

Theorem A (See Theorem 4.5). The following three statements are equivalent for a

stabilised dimension drop algebra Im,n,o.

• m, n, o are pairwise coprime.

• Every Cartan subalgebra in Im,n,o is non-degenerate.

• Every Cartan subalgebra of Im,n,o is a C∗-diagonal, that is, it has the unique extension

property.

Our first main result provides a parametrisation of conjugacy classes of non-degenerate

Cartan subalgebras in terms of classical combinatorial objects explained below. We

emphasise that we classify Cartan subalgebras up to conjugacy by an automorphism.

This is in contrast to the usual conjugation by unitary results in von Neumann algebras

— see [38, 40] for an account on the model theoretic complexity of ‘conjugacy by an

automorphism’ and ‘conjugacy by a unitary’. As a consequence, our strategy for the

classification in Theorem B is substantially different from the strategy employed in a

von Neumann algebraic setup. We first provide a list of Cartan subalgebras in dimension

drop algebras which are explicitly described. Within this class we provide a classification

result. Only then we prove that every non-degenerate Cartan subalgebra of a dimension

drop algebra is conjugate to one coming from our list.

Theorem B (See Corollary 6.10). Conjugacy classes of non-degenerate Cartan subalgebras

in Im,n,o are parametrised by congruence classes of matrices in M(mo, n, no,m).

Here M(a, b, c, d) denotes the set of matrices of size a× c with entries in the natural

numbers such that each of the a rows sums to b and each of the c columns sums to

d. Note that in order to obtain a non-empty set, the compatibility condition ab = cd
is required, see Notation 6.8. Two matrices A, B ∈ Mm,n(N) are congruent if there are

permutation matrices ρ1 ∈ Sym(m) and ρ2 ∈ Sym(n) such that A = ρ1 Bρ2 or, in case

m = n, At
= ρ1 Bρ2, see Definition 6.6.

Thanks to the parametrisation provided by Theorem B, we are able to count Cartan

subalgebras in some families of dimension drop algebras. This allows us to solve the

C∗-algebraic analogue of a well-known open problem in von Neumann algebras, namely

to find for each n ∈ N some I I 1 factor with exactly n Cartan subalgebras up to (unitary)

conjugacy. In the von Neumann algebraic setting only partial results addressing this

problem are available [8, 19, 27, 31, 40]. In the C∗-algebraic context, Li–Renault [24]

translate conjugacy of Cartan subalgebras of homogeneous C∗-algebras into a problem

about principal bundles and then make use of known results on principle bundles to

provide examples of homogeneous C∗-algebras with exactly p(n) Cartan subalgebras up

to conjugacy for any n ∈ N>1, where p(n) denotes the number of partitions of n.
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Theorem C (See Corollary 6.14). For every n ∈ N there is a subhomogeneous C∗-algebra

that has exactly n Cartan subalgebras up to conjugacy.

In Remark 6.15, we show that Theorem C also allows one to construct C∗-algebras

with exactly continuum many Cartan subalgebras up to conjugacy.

Comparing von Neumann algebraic with C∗-algebraic Cartan subalgebras, it becomes

apparent that in the latter context there is one fundamental obstruction to conjugacy.

While all separable abelian diffuse (i.e., without minimal projections) von Neumann

algebras are pairwise isomorphic, separable abelian C∗-algebras are classified by the

homeomorphism type of their spectrum. In [18], it was already observed that plain

uniqueness of Cartan subalgebra results are too much to be expected in the setting

provided by C∗-superrigidity of virtually abelian groups. The second most optimistic

approach tries to prove that two Cartan subalgebras of a subhomogeneous C∗-algebra

are conjugate if and only if their spectra are homeomorphic — this statement would

suffice to prove C∗-superrigidity of virtually abelian groups based on results in [18].

Surprisingly, this statement holds true in all dimension drop algebras and most stabilised

dimension drop algebras, when one restricts to non-degenerate Cartan subalgebras.

Theorem D (See Theorem 7.8). Let Im,n,o be a stabilised dimension drop algebra such that

either (m, n) 6= (2, 2) or o = 1. Then two non-degenerate Cartan subalgebras of Im,n,o are

conjugate by an automorphism if and only if their spectra are homeomorphic.

In Proposition 7.9, we prove that the excluded cases I2,2,o, for o > 2, do not obey the

conclusion of Theorem D, hence rendering a general classification of Cartan subalgebras

by their spectrum too optimistic. Nevertheless, Theorem D is enough evidence to justify

the following question.

Question. In which subhomogeneous C∗-algebras are two Cartan algebras conjugate if

and only if their spectra are homeomorphic?

This article has six sections. After the introduction and some preliminaries, we study

in § 3 Cartan subalgebras of one-sided dimension drop algebras I1,n,m . It is at this

point where we introduce the notion of non-degenerate Cartan subalgebras in stabilised

dimension drop algebras, and then prove that one-sided dimension drop algebras have

a unique non-degenerate Cartan subalgebra up to conjugacy. This will be an important

tool in the remaining sections. Section 4 is devoted to the study of non-degenerate Cartan

subalgebras in stabilised dimension drop algebras, which culminates in Theorem A. In

§ 5, we introduce a class of Cartan subalgebras of dimension drop algebras that we term

twisted standard Cartan subalgebras and classify them up to conjugacy. We conclude

that section by proving that every non-degenerate Cartan subalgebra of a stabilised

dimension drop algebra is conjugate to a twisted standard Cartan subalgebra. In § 6, we

provide a parametrisation of conjugacy classes of twisted standard Cartan subalgebras by

congruence classes of matrices as described above. This leads to the proof of Theorem B.

Furthermore, it allows us to deduce some explicit counting results. In particular, we

obtain Theorem C. In § 7, we study the spectra of twisted standard Cartan subalgebras

and prove Theorem D.
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2. Preliminaries

In this section, we fix some notation used throughout this work and recall some important

definitions. For a natural number n > 1, we write n = {1, . . . , n}. If X is any set, we

denote by Sym(X) the set of all bijections of X . For short, Sym(n) = Sym(n). Identifying

a permutation σ ∈ Sym(n) with its permutation matrix satisfying

σi,i ′ = δσ(i ′),i =

 1, if σ(i ′) = i,

0, otherwise,

we obtain an embedding Sym(n)→ U(n). We moreover denote by ei j ∈ Mn the matrix

whose i jth entry is 1 and whose other entries are all zero. Similarly, ei ∈ C denotes the

ith standard vector.

Given an inclusion of C∗-algebras B ⊂ A, the normaliser of B in A is

NA(B) = {x ∈ A | x Bx∗, x∗Bx ⊂ B}.

We call B regular in A, if NA(B) generates A as a C∗-algebra. Moreover, if the inclusion

B ⊂ A is unital, we call

NB(A) = {u ∈ U(A) | u Bu∗ = B}

the unitary normaliser of B in A. The normaliser NA(B) is a closed subset of A that is

also closed under multiplication and the ∗-operation, and the unitary normaliser NA(B)
is a group, if it is defined. In particular, if B ⊂ A is regular, then span NA(B) is dense

in A.

We also denote by Aut(B ⊂ A) the set of all ∗-automorphisms of A that preserve B
setwise, that is, α ∈ Aut(A) belongs to Aut(B ⊂ A) exactly if α(B) = B. Furthermore,

we call B ⊂ A a MASA if B is a maximal abelian C∗-subalgebra of A.

Definition 2.1 (Cf. [35, Definition 5.1]). Let A be a C∗-algebra. A MASA B ⊂ A is said

to be a Cartan subalgebra if

(i) B contains an approximate unit for A;

(ii) B is regular; and

(iii) there exists a faithful conditional expectation A→ B.

In this case, (A, B) is called a Cartan pair.

Example 2.2. For m > 2, the maximal abelian C∗-subalgebra of diagonal matrices Dm ⊂

Mm is a Cartan subalgebra. More concretely, an element a =
∑m

i, j=1 λi, j ei j normalises

Dm if and only if for each i , λi, j 6= 0 for at most one j and for each j , λi, j 6= 0 for at most

one i . In other words, NMm (Dm) = Dm oSym(m), where Sym(m) acts by permutation

matrices. The unitary normaliser therefore satisfies NMm (Dm) = Tm oSym(m). It follows

that the set Aut(Dm ⊂ Mm) of automorphisms of Mm that preserve Dm is isomorphic

with (Tm/T)oSym(m). Up to (inner) conjugacy, Dm is the unique Cartan subalgebra

of Mm .

https://doi.org/10.1017/S147474801900032X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801900032X


730 S. Barlak and S. Raum

Recall that a C∗-algebra A is called n-subhomogeneous for n ∈ N, if all of its

irreducible representations have dimension at most n. We say that A is subhomogeneous

if it is n-subhomogeneous for some n ∈ N. Furthermore, A is called homogeneous if

there exists some n ∈ N such that all irreducible representations of A have dimension

n. Subhomogeneous C∗-algebras are exactly the C∗-subalgebras of homogeneous

C∗-algebras; see [6, IV.1.4.3].

Definition 2.3 (Cf. [16]). The dimension drop algebra with parameters m, n ∈ N>1 is

Im,n = { f ∈ C([0, 1],Mm ⊗Mn) | f (0) ∈ Mm ⊗ 1, f (1) ∈ 1⊗Mn}.

More generally, a stabilised dimension drop algebra is

Im,n,o = { f ∈ C([0, 1],Mm ⊗Mn ⊗Mo) | f (0) ∈ Mm ⊗ 1⊗Mo, f (1) ∈ 1⊗Mn ⊗Mo},

for parameters m, n, o ∈ N>1.

Let X ⊂ C([0, 1],Mn) be a subset. For a subinterval I ⊂ [0, 1], we define

X I = { f|I | f ∈ X, f|I ∈ C0(I,Mn)}.

We also write X{t} = X t . For x ∈ X , we denote by xt = x(t) ∈ X t .

We conclude this section with a few words about Cartan subalgebras in homogeneous

C∗-algebras over an interval. In [24], the relation between Cartan subalgebras in

homogeneous C∗-algebras over a space X and principal Aut(Dn ⊂ Mn)-bundles over X
was pointed out. In particular, in homogeneous C∗-algebras over contractible spaces,

there is a unique Cartan subalgebra.

Theorem 2.4 (Cf. [24, § 2]). Let A be a homogeneous C∗-algebra over a contractible space.

Then A admits a unique Cartan subalgebra up to conjugacy.

We need a stronger result for the special case of homogeneous C∗-algebras over an

interval, which immediately follows from Li–Renault’s.

Corollary 2.5. Let I be an interval and A = C0(I,Mm). Then A admits a unique Cartan

subalgebra up to conjugacy by an inner automorphism associated with a unitary in the

multiplier algebra of A, M(A) = Cb(I,Mm).

Proof. Let B ⊂ A be a Cartan subalgebra. Since the interval I is contractible, we can

apply Theorem 2.4 to obtain an automorphism α ∈ Aut(A) such that α(B) is the standard

Cartan subalgebra C = C0(I,Dm). Composing α with an automorphism in Aut(C ⊂ A),
we may assume that α|C0(I ) = id. We can then consider α as a continuous map I →
Aut(Mm) ∼= U(m)/T. Let (In)n∈N be an ascending sequence of closed intervals in I such

that
⋃

n In = I . Since U(m)� U(m)/T has the structure of a principal T-bundle, it has

the homotopy lifting property, so that we find for every n ∈ N a lift un ∈ C(In,U(m)) for

α|In . In other words, α|In = Ad un . Now define v1 = u1. If vn is defined, consider fn :=

(un+1|In )
∗vn ∈ C(In,T). Extend fn to an element gn ∈ C(In+1,T) and set vn+1 = un+1gn .

We obtain a family (vn)n of unitaries with vn ∈ C(In,U(m)) satisfying vn+1|In = vn and
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Ad vn = α|In ∈ Aut(C(In,Dm)). We can now define v ∈ Cb(I,Mm) by the requirement

v|In = vn for all n ∈ N and obtain a unitary satisfying Ad v = α. This proves that B
is unitarily conjugate to the standard Cartan subalgebra C ⊂ A via the unitary v ∈

M(A).

3. One-sided dimension drop algebras

In this section, we are going to investigate uniqueness of Cartan subalgebras in one of

the easiest possible subhomogeneous C∗-algebras, which we call here one-sided dimension

drop algebras.

Definition 3.1. The one-sided dimension drop algebra for m, n > 1 is

Jm,n = { f ∈ C([0, 1],Mm ⊗Mn) | f (0) ∈ Mm ⊗ 1}.

Remark 3.2. The one-sided dimension drop algebras are all stabilised dimension drop

algebras. We have Jm,n = I1,n,m .

Example 3.3. We are going to call the subalgebra

Cm,n = { f ∈ C([0, 1],Dm ⊗Dn) | f (0) ∈ Dm ⊗ 1} ⊂ Jm,n

the standard Cartan subalgebra of Jm,n . It is a Cartan subalgebra indeed, as the following

argument shows.

First we show that Cm,n ⊂ Jm,n is a MASA. This follows from the fact that for every

t ∈ (0, 1], the fibre Dm ⊗Dn = (Cm,n)t ⊂ (Jm,n)t = Mm ⊗Mn is a MASA. So if f ∈ C ′m,n ∩
Jm,n , then f (t) ∈ Dm ⊗Dn for all t ∈ (0, 1] and hence f (0) ∈ Dm ⊗Dn ∩Mm ⊗ 1 = Dm ⊗ 1.

This shows that f ∈ Cm,n . Second, the natural conditional expectation C([0, 1],Mm ⊗

Mn)→ C([0, 1],Dm ⊗Dn) restricts to a faithful conditional expectation Jm,n → Cm,n . It

remains to show that Cm,n is regular in Jm,n .

Let f ∈ Jm,n and ε > 0. Since f is continuous, there is δ > 0 such that ‖ f (t)− f (0)‖ < ε

for all t ∈ [0, δ]. Because (Cm,n)[δ,1] ⊂ (Jm,n)[δ,1] coincides with C([δ, 1],Dm ⊗Dn) ⊂

C([δ, 1],Mm ⊗Mn), there are finitely many f̃i ∈ N(Jm,n)[δ,1]((Cm,n)[δ,1]) and numbers

ci ∈ C such that ‖
∑

i ci f̃i − f |[δ,1]‖ < ε. In fact, we may choose the f̃i to be

in C([δ, 1], NMm (Dm)� NMn (Dn)), where NMm (Dm)� NMn (Dn) denotes the set of
elementary tensors. Now, extend each f̃i to the unique element fi ∈ Jm,n that is affine on

[0, δ] and satisfies fi (0) = (id⊗ tr)( f̃i (δ)). A short calculation shows that ‖ f −
∑

i ci fi‖ <

4ε. Since (id⊗ tr)(NMm (Dm)� NMn (Dn)) ⊂ NMm (Dm)⊗ 1, it follows that fi (t) normalises

(Cm,n)t for all t ∈ [0, 1]. We conclude that each fi ∈ NJm,n (Cm,n), which finishes the proof

that Cm,n is a Cartan subalgebra of Jm,n .

We first prove a uniqueness of Cartan subalgebras result in one-sided dimension

drop algebras of the form J1,n . For this, we introduce the following notation. If

u ∈ Cb((0, 1],Mn) is a unitary, then Ad u induces a unique automorphism of J1,n .

Indeed, if f ∈ J1,n and u ∈ Cb((0, 1],U(n)), then f (t)→ λ ∈ C as t → 0 implies that

also ut f (t)u∗t → λ as t → 1.
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Lemma 3.4. For every Cartan subalgebra B ⊂ J1,n, there is a unitary u ∈ Cb((0, 1],U(n))
such that (Ad u)(B) = C1,n. In particular, J1,n has a unique Cartan subalgebra up to

conjugacy by an automorphism.

Proof. A similar argument as in Example 3.3 shows that B(0,1] ⊂ J1,n|(0,1] = C((0, 1],Mn)

is a Cartan subalgebra. Hence, Corollary 2.5 provides us with a unitary u ∈ Cb((0, 1],Mn)

such that u B(0,1]u∗ = C0((0, 1],Dn). As discussed above, Ad u induces a unique

automorphism of J1,n , which then satisfies (Ad u)(B) = C1,n .

We would like to reduce considerations about Cartan subalgebras in general one-sided

dimension drop algebras, to the case considered in Lemma 3.4. We can do so for

the class of so-called non-degenerate Cartan subalgebras in stabilised dimension drop

algebras described in the next definition, which will be treated in the rest of the article.

Gábor Szabó kindly pointed out to us that non-degenerate Cartan subalgebras in Im,n,o
are exactly the C∗-diagonals in the sense of Kumjian [20], which are precisely the

Cartan subalgebras with the unique extension property in the sense of Anderson [1].

In stabilised dimension drop algebras with coprime parameters, every Cartan subalgebra

is non-degenerate, as we see in Theorem 4.5.

Definition 3.5. A Cartan subalgebra B ⊂ Jm,n is called non-degenerate, if dim B0 = m.

In analogy, a Cartan subalgebra B ⊂ Im,n,o is called non-degenerate, if dim B0 = mo and

dim B1 = no.

Before proving uniqueness of non-degenerate Cartan subalgebras in arbitrary stabilised

dimension drop algebras, let us analyse their normalisers.

Lemma 3.6. Let B ⊂ Jm,n be a Cartan subalgebra containing the constant functions ei i ⊗

1. Then there exists ε > 0 such that ei j ⊗ 1 ∈ NJm,n (B)|[0,ε] for all i, j ∈ {1, . . . ,m}.

Proof. Let i, j ∈ {1, . . . ,m} and i 6= j . Since span NJm,n (B) ⊂ Jm,n is dense,

span(ei i ⊗ 1)NJm,n (B)(e j j ⊗ 1) is dense in (ei i ⊗ 1)Jm,n(e j j ⊗ 1). It follows that

{x0 | x ∈ span(ei i ⊗ 1)NJm,n (B)(e j j ⊗ 1)} = C(ei j ⊗ 1).

So there is some element x ∈ (ei i ⊗ 1)NJm,n (B)(e j j ⊗ 1) such that x0 = c(ei j ⊗ 1) for some

c 6= 0. Since NJm,n (B) is closed under scalar multiplication, we can assume that c = 1.

Since ei i ⊗ 1, e j j ⊗ 1 ∈ B ⊂ NJm,n (B), we actually have x ∈ NJm,n (B). In particular,

x∗x ∈ B and hence |x | ∈ B. Note that actually |x | ∈ (e j j ⊗ 1)B(e j j ⊗ 1). By continuity,

we find some ε > 0 such that ‖|x |t − (e j j ⊗ 1)‖ < 1/2 for all t ∈ [0, 2ε]. Let f ∈ C([0, 1])
be a function satisfying f |[0,ε] ≡ 1 and f |[2ε,1] ≡ 0, and consider v = x |x |−1 f ∈ NJm,n (B),
where |x |−1

∈ (e j j ⊗ 1)B(e j j ⊗ 1) is the inverse of |x | on [0, 2ε] and the expression |x |−1 f
is understood to be equal to 0 on [2ε, 1]. We obtain that for all t ∈ [0, ε], vt is a

partial isometry in (ei i ⊗ 1)(Mm ⊗Mn)(e j j ⊗ 1) such that v∗t vt = e j j ⊗ 1. It follows that

vtv
∗
t = ei i ⊗ 1, and hence there exists a unitary u ∈ C([0, 1]) such that vt = ut (ei j ⊗ 1) for

all t ∈ [0, ε]. Since B contains C([0, 1]), also u∗v ∈ NJm,n (B). This finishes the proof of

the lemma.
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Proposition 3.7. The one-sided dimension drop algebras have a unique non-degenerate

Cartan subalgebra up to conjugacy.

Proof. Let B ⊂ Jm,n be a non-degenerate Cartan subalgebra. We find a unitary u ∈
Jm,n such that (u Bu∗)0 = Dm ⊗ 1. By semiprojectivity of Cm , there exists ε ∈ (0, 1/3]
and projections f1, . . . , fm ∈ (Jm,n)[0,ε] such that f1(0), . . . , fm(0) are the minimal

projections of (u Bu∗)0 and ‖ fi (0)− fi (t)‖ < 1 for all i ∈ {1, . . . ,m} and all t ∈ [0, ε]. Then

fi (0) fi (t) fi (0) is invertible in fi (0)(Mm ⊗Mn) fi (0) and hence the polar decomposition of

the function t 7→ fi (0) fi (t), t ∈ [0, ε], provides us with partial isometries v1, . . . , vm ∈

(Jm,n)[0,ε] with support projection fi and range projection 1[0,ε] fi (0). The unitary

v = v1+ · · ·+ vm ∈ (Jm,n)[0,ε] satisfies vu B[0,ε]u∗v∗ ⊂ C([0, ε],Dm ⊗ 1). We can extend v

to a unitary in Jm,n such that vu|[2ε,1] = 1. Hence, from now on we may assume that

there is ε ∈ (0, 1] such that B[0,ε] contains the constant function with value ei i ⊗ 1 for all

i ∈ {1, . . . ,m}.
As (e11⊗ 1)(Jm,n)[0,ε](e11⊗ 1) ∼= J1,n , Lemma 3.4 applies to its Cartan subalgebra

(e11⊗ 1)B[0,ε]. We thus obtain a partial isometry u1 ∈ Cb((0, ε],Mm ⊗Mn) whose support

and range projection equal e11⊗ 1, which normalises (Jm,n)[0,ε] and satisfies

u1 B[0,ε]u∗1 = (e11⊗ 1)(Cm,n)[0,ε].

Put ui = (ei1⊗ 1)u1(e1i ⊗ 1) and u = u1+ · · ·+ um ∈ U(Cb((0, ε],Mm ⊗Mn)).

By construction, Ad u defines an automorphism of (Jm,n)[0,ε]. By making ε > 0 smaller

if necessary, we may assume by Lemma 3.6 that ei1⊗ 1 and e1i ⊗ 1 are elements of

N(Jm,n)[0,ε](B[0,ε]). It therefore follows that u B[0,ε]u∗ = (Cm,n)[0,ε]. We can now extend

Ad u to an automorphism of Jm,n which is the identity on [2ε, 1]. Conjugating B by this

automorphism, we may assume that B[0,ε] = (Cm,n)[0,ε].

Let 0 < δ < ε. By Theorem 2.4, there is a unitary u ∈ C([δ, 1],Mm ⊗Mn) such that

u B[δ,1]u∗ = C([δ, 1],Dm ⊗Dn). Then

u|[δ,ε] ∈ NC([δ,ε],Mm⊗Mn)(C([δ, ε],Dm ⊗Dn)) = C([δ, ε],NMm⊗Mn (Dm ⊗Dn)).

Hence, multiplying u with some unitary from C([δ, 1],NMm⊗Mn (Dm ⊗Dn)), we may

assume that u|[δ,ε] ≡ 1. Then u extends to a unitary in Jm,n that satisfies u|[0,ε] ≡ 1.

This unitary conjugates B onto the standard Cartan subalgebra of Jm,n .

4. Non-degenerate Cartan subalgebras

The main purpose of this section is to prove Theorem 4.5 characterising those stabilised

dimension drop algebras, in which every Cartan subalgebra is non-degenerate. We start

with a proposition characterising non-degenerate Cartan subalgebras as C∗-diagonals in

the sense of Kumjian [20].

Proposition 4.1. Let A ⊂ Im,n,o be a Cartan subalgebra of a stabilised dimension drop

algebra. Then A is non-degenerate if and only if it is a C∗-diagonal.

Proof. Pure states on Im,n,o are exactly of the form ϕ ◦ evt for some t ∈ [0, 1] and some

pure state ϕ of (Im,n,o)t . Similarly, pure states on A are all of the form ψ ◦ evt for some
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t ∈ [0, 1] and some pure state ψ of At . The claim now follows as A is a non-degenerate

Cartan subalgebra of Im,n,o if and only if At ⊂ (Im,n,o)t has the unique extension property

for all t ∈ [0, 1].

Lemma 4.2. Let B ⊂ Jm,n be a Cartan subalgebra such that B0 = C. Then m divides n.

Proof. Let E : Jm,n → B be the unique conditional expectation onto B. Using

Theorem 2.4, one checks that B(0,1] ⊂ (Jm,n)(0,1] ∼= C((0, 1],Mm ⊗Mn) is a Cartan

subalgebra, so that Bt ⊂ (Jm,n)t ∼= Mm ⊗Mn is a MASA for all t ∈ (0, 1]. Let (Et )t∈(0,1] be

the fibres of E, that is, Et : Mm ⊗Mn → Mm ⊗Mn is defined by Et ( f (t)) = E( f )(t) for all

f ∈ C0((0, 1],Mm ⊗Mn). For each t ∈ (0, 1], Et : Mm ⊗Mn → Mm ⊗Mn is a conditional

expectation onto some MASA. Let F : Mm ⊗Mn → Mm ⊗Mn be some limit point for this

family in the operator norm topology, as t approaches 0 via some sequence (tk)k∈N. Note

that such an F always exists due to compactness of the unit ball of B(Mm ⊗Mn) and that

F again is a conditional expectation onto some MASA C ⊂ Mm ⊗Mn . Further, F |Mm⊗1
takes values in B0 = C.

Since B ⊂ Jm,n is a Cartan subalgebra, its normaliser spans Jm,n . In particular,

(NJm,n (B))0 spans Mm ⊗ 1. But if x ∈ NJm,n (B), then x∗0 x0, x0x∗0 ∈ B0 = C1, showing that

the unitaries in (NJm,n (B))0 already span Mm ⊗ 1. However, (NJm,n (B))0 ⊂ NMm⊗Mn (C)∩
Mm ⊗ 1, showing that NMm⊗Mn (C)∩Mm ⊗ 1 spans Mm ⊗ 1 as well.

Write H = Cm
⊗Cn and consider the natural action of Mm ⊗Mn on H . Let

{ξi j | 1 6 i 6 m, 1 6 j 6 n} be an orthonormal basis of H whose associated orthogonal

projections pi j generate the MASA C . Define linear subspaces

Hi j = {(x ⊗ 1)ξi j | x ∈ Mm} ⊂ H

for i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. Denote by G = {u ∈ U(m) | u⊗ 1 ∈ NMm⊗Mn (C)}.
Observe that for each u ∈ G and i, j there are some k, l such that (u⊗ 1)ξi j ∈ Tξkl .

Assume that for fixed i, j there are u1, u2 ∈ G such that (u1⊗ 1)ξi j ∈ T(u2⊗ 1)ξi j . Then

u = u1u∗2 satisfies (u⊗ 1)ξi j ∈ Tξi j . It follows that

F(u⊗ 1)pi j =

(∑
k,l

pkl(u⊗ 1)pkl

)
pi j = pi j (u⊗ 1)pi j ∈ Tpi j .

In conclusion, F(u⊗ 1) ∈ T so that u ∈ T follows from faithfulness of F. This shows that

u1, u2 are linearly dependent. Since span G = Mm , we can find a basis (vk)k of Mm inside

G. By the previous calculation, ((vk ⊗ 1)ξi j )k is a basis of Hi j showing that dim Hi j = m2.

Further, the sum of all Hi j coincides with H . Observe also that the equality

Hi j = span{(u⊗ 1)ξi j | u ∈ G} = span{ξkl | ∃u ∈ G such that (u⊗ 1)ξi j = ξkl}

implies that two subspaces Hi j and Hkl are either equal or orthogonal. This shows that

m2 divides mn and hence m divides n.

We continue with the prototypical example of a degenerate Cartan subalgebra in Jm,m ,

which will be an important ingredient in the proof of Theorem 4.5.

https://doi.org/10.1017/S147474801900032X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801900032X


Cartan subalgebras in dimension drop algebras 735

Example 4.3. We provide an example of a Cartan subalgebra B ⊂ Mm ⊗Mm such that the

conditional expectation EB : Mm ⊗Mm → B satisfies EB |Mm⊗1 = tr (i.e., B and Mm ⊗ 1
are orthogonal in the sense of Popa [28]) and such that (Mm ⊗ 1)∩ NMm⊗Mm (B) generates

Mm ⊗ 1. Once this algebra is constructed, C([0, 1], B)∩ Jm,m provides an example of a

degenerate Cartan subalgebra in Jm,m . Let us explicitly check all properties of a Cartan

subalgebra:

• The conditional expectation EB : Mm ⊗Mm → B induces a conditional expectation

idC([0,1])⊗EB : C([0, 1],Mm ⊗Mm)→ C([0, 1], B), which restricts to a faithful

conditional expectation E : Jm,m → C([0, 1], B)∩ Jm,m thanks to the orthogonality

assumption EB |Mm⊗1 = tr.

• The algebra C([0, 1], B)∩ Jm,m ⊂ Jm,m is maximally abelian. Indeed, if f ∈ Jm,m
commutes with C([0, 1], B)∩ Jm,m ⊂ Jm,m , then f (t) ∈ B for all t ∈ (0, 1]. By

continuity, it follows that f (0) ∈ B ∩ (Mm ⊗ 1).

• In order to show that C([0, 1], B)∩ Jm,m is regular in Jm,m , we first observe that its

restriction to (0, 1] is a standard Cartan subalgebra, which is hence regular. It thus

suffices to show that every element x0 ∈ (Mm ⊗ 1)∩ NMm⊗Mm (B) can be extended to

some x ∈ NJm,m (C([0, 1], B)∩ Jm,m). But this is trivial: the constant function with value

x0 lies in NJm,m (C([0, 1], B).

Let us now construct B. We write H = Mm for the m×m-matrices endowed with the

scalar product

〈T̂ , Ŝ〉 = tr(S∗T ).
Let π : Mm → B(H) be the ∗-representation induced by left multiplication. Observe that

under the isomorphism between H and Cm
⊗Cm sending êi j to ei ⊗ e j , π corresponds to

the first tensor factor embedding into Mm ⊗Mm ∼= B(H).
Let λ ∈ T be a primitive mth root of unity and consider the element U =

diag(1, λ, λ2, . . . , λm−1) ∈ Mm . Further let V be defined as the permutation matrix

associated to the cycle (1 2 · · · m) ∈ Sym(m). Observe the commutation relation

U V = λV U.

Note also that elements of the form Û i V j for i, j ∈ {1, . . . ,m} form an orthonormal basis

of H . We consider the rank one projections pi j : H → CÛ i V j and let B be the subalgebra

of B(H) generated by them. Note that B is an abelian subalgebra of dimension m2 and

hence a MASA. For x ∈ Mm and ŷ ∈ H it holds that

pi jπ(x)pi j ŷ = 〈x̂U i V j , Û i V j 〉〈ŷ, Û i V j 〉Û i V j = tr(V− jU−i xU i V j )pi j ŷ = tr(x)pi j ŷ.

Hence, the conditional expectation EB : B(H)→ B restricted to π(Mm) is calculated as

EB(π(x)) =
m∑

i, j=1

pi jπ(x)pi j = tr(x),

showing that EB |π(Mm ) = tr. Next note that Mm = span{U i V j
| i, j ∈ {1, . . . ,m}} and the

commutation relation U V = λV U yields that π(U i V j ) ∈ NB(H)(B) as

π(U i V j )pklπ(U i V j )∗ ∈ Cp(k+i),(l+ j),

where the indices are considered mod m.
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Example 4.4. Let m, n ∈ N be non-coprime, say d 6= 1 divides m and n. By Example 4.3,

there is a Cartan subalgebra B ⊂ Jd,d satisfying dim B0 = 1. Writing Mm ∼= M m
d
⊗Md

and Mn ∼= Md ⊗M n
d
, then the same argument as in the beginning of Example 4.3 shows

that

{ f ∈ Jm,n | f (t) ∈ D m
d
⊗ Bt ⊗D n

d
} ⊂ Jm,n

is a degenerate Cartan subalgebra, since its dimension at 0 equals mn
d2 .

Theorem 4.5. The following three statements are equivalent for a stabilised dimension

drop algebra Im,n,o.

• m, n, o are pairwise coprime.

• Every Cartan subalgebra in Im,n,o is non-degenerate.

• Every Cartan subalgebra of Im,n,o is a C∗-diagonal, that is, it has the unique extension

property.

Proof. By Proposition 4.1, a Cartan subalgebra of Im,n,o is non-degenerate if and only it is

a C∗-diagonal. It hence suffices to prove the equivalence between the first two statements

of the theorem.

Assume that Im,n,o contains a degenerate Cartan subalgebra B. Possibly replacing Im,n,o
by In,m,o, we may assume that dim B0 6= mo. Restricting to the interval [0, 1

2 ], we obtain

a degenerate Cartan subalgebra of Jmo,n . Considering the case of one-sided dimension

drop algebras, we show that mo and n are not coprime, which implies that either m and

n or o and n are not coprime.

We let m, n ∈ N be arbitrary and assume that B ⊂ Jm,n is a degenerate Cartan

subalgebra. Our aim is to show that m, n are not coprime. Since B is degenerate, there is

a minimal projection p0 ∈ B0 with rank strictly bigger than one. Let p0, . . . , pK ∈ B0 be

the minimal projections and k ∈ {1, . . . , K }. Since the span of NJm,n (B) is dense in Jm,n ,

it follows that there is a non-zero element x ∈ p0 NMm⊗1(B0)pk . It follows that x∗x ∈
pk B0 pk = Cpk and xx∗ ∈ p0 B0 p0 = Cp0 are non-zero elements. So rank(pk) = rank(p0).

From

m =
K∑

k=0

rank(pk) = (K + 1) rank(p0)

it follows that rank(p0) divides m. Let us write d = rank(p0).

Extending p0 to an element p ∈ B such that p|[0,ε] is a projection, we consider

(pBp)[0,ε] ⊂ (pJm,n p)[0,ε], which is isomorphic with a Cartan subalgebra C ⊂ Jd,n
satisfying C0 = C1. So Lemma 4.2 applies to show that d divides n. Since d 6= 1, this

shows that m and n have a non-trivial common divisor.

Let us now assume that m, n, o are not pairwise coprime. Possibly changing the role of

m and n, we may assume without loss of generality that there is some d 6= 1 that divides

mo and n. Example 4.4 provides us with a degenerate Cartan subalgebra

B ⊂ { f ∈ C([0, 1
2 ],Mm ⊗Mn ⊗Mo) | f (0) ∈ Mm ⊗ 1⊗Mo} ∼= Jmo,n .

If u ∈ C([ 12 , 1],Mm ⊗Mn ⊗Mo) denotes a unitary such that

u 1
2
(Dm ⊗Dn ⊗Do)u∗1

2
= B 1

2
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and u1 = 1, then f ∈ C([0, 1],Mm ⊗Mn ⊗Mo) | f (t) ∈


Bt , if t ∈ [0, 1

2 ],

ut (Dm ⊗Dn ⊗Do)u∗t , if t ∈ [ 12 , 1),

1⊗Mn ⊗Mo, if t = 1.


is a degenerate Cartan subalgebra in Im,n,o.

5. Twisted standard Cartan subalgebras

In this section, we parametrise non-degenerate Cartan subalgebras of arbitrary stabilised

dimension drop algebras. It turns out that all non-degenerate Cartan subalgebras in

stabilised dimension drop algebras Im,n,o are twisted versions of the following standard

Cartan subalgebra inherited from the inclusion into C([0, 1],Mm ⊗Mn ⊗Mo).

Proposition 5.1. The C∗-subalgebra B := C([0, 1],Dm ⊗Dn ⊗Do)∩ Im,n,o ⊂ Im,n,o is a

Cartan subalgebra. Moreover, B has no non-trivial projections, or equivalently its

spectrum is connected.

Proof. We have to check that B ⊂ Im,n,o admits a faithful conditional expectation,

is a MASA and that it is regular. First note that the conditional expectation

C([0, 1],Mm ⊗Mn ⊗Mo)→ C([0, 1],Dm ⊗Dn ⊗Do) restricts to a faithful conditional

expectation Im,n,o → B. Further, B is a MASA in Im,n,o, since Bt ⊂ (Im,n,o)t is a MASA for

all t ∈ [0, 1]. It remains to show that B is regular in Im,n,o. A straightforward partition

of unity argument shows that to this end, it suffices to show that for each t ∈ [0, 1]
there is a neighbourhood V of t such that B|V ⊂ (Im,n,o)|V is regular. For t ∈ (0, 1)
we can find a neighbourhood V of t such that B|V ⊂ (Im,n,o)|V is isomorphic with

C([0, 1],Dm ⊗Dn ⊗Do) ⊂ C([0, 1],Mm ⊗Mn ⊗Mo). So it remains to treat the points 0
and 1. For each of them there is a neighbourhood V such that B|V ⊂ (Im,n,o)|V is the

standard Cartan subalgebra of a one-sided dimension drop algebra, which is regular by

Example 3.3.

The spectrum of B is homeomorphic with the quotient of m× n× o×[0, 1] by the

relations (i, j, k, 0) ∼ (i, j ′, k, 0) and (i, j, k, 1) ∼ (i ′, j, k, 1) for all i, i ′ ∈ m, all j, j ′ ∈
n, and all k ∈ o. It is hence connected. Equivalently, B does not have any non-trivial
projections.

Definition 5.2. Let Im,n,o be a stabilised dimension drop algebra. We call

C([0, 1],Dm ⊗Dn ⊗Do)∩ Im,n,o the standard Cartan subalgebra of Im,n,o.

Proposition 5.1 allows us to exhibit a (non-degenerate) Cartan subalgebra of a

dimension drop algebra, which is not conjugate to the standard Cartan subalgebra, simply

because it contains non-trivial projections.

Example 5.3. Let Im,n,o be a stabilised dimension drop algebra with m and n not coprime.

Then Im,n,o admits a non-degenerate Cartan subalgebra with a non-trivial projection and
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hence Im,n,o does not have a unique non-degenerate Cartan subalgebra up to conjugacy

by an automorphism. It suffices to consider the case m = n and o = 1. Since the tensor flip

on Mm ⊗Mm is inner, we may find a unitary u ∈ C([0, 1],Mm ⊗Mm) such that u0 = 1 and

u1 implements the tensor flip. Then B = { f ∈ Im,m | f (t) ∈ ut (Dm ⊗Dm)u∗t } is a Cartan

subalgebra of Im,m — this is proven verbatim as is Proposition 5.1. Now u(e11⊗ 1)u∗ ∈ B
is a non-trivial projection.

We are now going to expand the idea of Example 5.3 in order to obtain a finite

family of Cartan subalgebras of Im,n,o parametrised by elements of Sym(m× n× o). In

Theorem 5.10, we classify these up to conjugacy by an automorphism and in Theorem 5.11

we show that every non-degenerate Cartan subalgebra of Im,n,o is conjugate to one of the

following kinds.

Example 5.4. Let σ ∈ Sym(m× n× o). We identify σ with its permutation matrix and

hence a unitary in U(m)×U(n)×U(o). Let u ∈ C([ 13 ,
2
3 ],Mm ⊗Mn ⊗Mo) be a unitary

such that u 1
3
= σ and u 2

3
= 1. We set

Bσ,u = { f ∈ Im,n,o | f (t) ∈ Dm ⊗Dn ⊗Do for t ∈ [0, 1
3 ] ∪ [

2
3 , 1]

and f (t) ∈ ut (Dm ⊗Dn ⊗Do)u∗t for t ∈ [ 13 ,
2
3 ]}.

Note that extending u to an element in C([0, 1],Mm ⊗Mn ⊗Mo) that satisfies u
[0, 1

3 ]
≡ σ

and u
[

2
3 ,1]
≡ 1, we can equivalently write Bσ,u = u(Dm ⊗Dn ⊗Do)u∗ ∩ Im,n,o.

If v ∈ C([ 13 ,
2
3 ],Mm ⊗Mn ⊗Mo) is another unitary satisfying v 1

3
= σ and v 2

3
= 1, then

uv∗ extends to a unitary w ∈ Im,n,o such that w|
[0, 1

3 ]∪[
2
3 ,1]
= 1. Hence, Bσ,u = wBσ,vw∗.

We henceforth suppress the choice of u and write Bσ . Note that Dm ⊗Dn ⊗Do is

normalised by σ , so that B 1
3
= B 2

3
= Dm ⊗Dn ⊗Do. The proof of Proposition 5.1

therefore applies verbatim to show that Bσ is a Cartan subalgebra in Im,n,o.

Next, we argue that the choice of 1
3 and 2

3 is arbitrary. For every 0 < t1 < t2 < 1, there

is an orientation preserving homeomorphism of [0, 1] satisfying 1
3 7→ t1 and 2

3 7→ t2. It

extends to an automorphism α of Im,n,o, since it must fix the endpoints of [0, 1]. Replacing
1
3 by t1 and 2

3 by t2, we can apply the same construction as above to obtain a Cartan

subalgebra which is conjugate to Bσ by the automorphism α.

Definition 5.5. The Cartan subalgebras of stabilised dimension drop algebras constructed

in Example 5.4 are called twisted standard Cartan subalgebras of Im,n,o.

In Theorem 5.10 we can classify the Cartan subalgebras constructed in Example 5.4;

we need two lemmas for its proof.

Lemma 5.6. Let Bσ ⊂ Im,n,o be a twisted standard Cartan subalgebra of a stabilised

dimension drop algebra. Let ϕ ∈ Homeo+([0, 1]) be an orientation preserving

homeomorphism of the interval. Then there is an automorphism α ∈ Aut(Bσ ⊂ Im,n,o)

such that α|C([0,1]) = ϕ
∗, that is, α is given by pre-composition with ϕ.
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Proof. Let Bσ be constructed from the unitary u ∈ C([ 13 ,
2
3 ],Mm ⊗Mn ⊗Mo) as described

in Example 5.4. We extend u to a unitary u ∈ C([0, 1],Mm ⊗Mn ⊗Mo) by putting u
[0, 1

3 ]
≡

σ and u
[

2
3 ,1]
≡ 1. Define the unitary v ∈ C([0, 1],Mm ⊗Mn ⊗Mo) by vt = uϕ(t) for all

t ∈ [0, 1]. Then we have (uv∗)0 = (uv∗)1 = 1, so that Ad(uv∗) defines an automorphism

of Im,n,o. Put α = Ad uv∗ ◦ϕ∗ ∈ Aut(Im,n,o) and note that α|C([0,1]) = ϕ
∗. We check that

α(Bσ ) = Bσ . Let f ∈ Bσ . The fact that ut ∈ {1, σ } for t ∈ [0, 1
3 ] ∪ [

2
3 , 1] implies that f (t) ∈

ut (Dm ⊗Dn ⊗Do)u∗t for all t ∈ [0, 1]. This implies

α( f )(t) = ut u∗ϕ(t) f (ϕ(t))uϕ(t)u∗t
∈ ut u∗ϕ(t)uϕ(t)(Dm ⊗Dn ⊗Do)u∗ϕ(t)uϕ(t)u

∗
t

= ut (Dm ⊗Dn ⊗Do)u∗t

for all t ∈ [0, 1]. Since α is an automorphism and Bσ is a MASA, this finishes the proof

of the lemma.

Notation 5.7. Note that the centre of Im,n,o is isomorphic with C([0, 1]). Hence, every

automorphism α of Im,n,o induces a homeomorphism of [0, 1]. We call α orientation

preserving, if this homeomorphism of [0, 1] is orientation preserving.

Lemma 5.8. Let 8 : [0, 1] → [0, 1] be the flip defined by 8(t) = 1− t, let

ν ∈ Sym(m×m× o) be the flip on m×m× o satisfying ν(i, j, k) = ( j, i, k) and let v ∈

C([0, 1],Mm ⊗Mm ⊗Mo) be the unitary that is constant as a function with value ν. Then

α = Ad v ◦8∗ ∈ Aut(Im,m,o) and α(Bσ ) = Bνσ−1ν for all σ ∈ Sym(m×m× o).

Proof. We first show that Ad v ◦8∗ ∈ Aut(C([0, 1],Mm ⊗Mm ⊗Mo)) normalises Im,m,o
and hence restricts to the order two automorphism α ∈ Aut(Im,m,o). For f ∈ Im,m,o we

have

(Ad v ◦8∗ f )(t) = ν f (1− t)ν ∈

 ν(1⊗Mm ⊗Mo)ν = Mm ⊗ 1⊗Mo, if t = 0,

ν(Mm ⊗ 1⊗Mo)ν = 1⊗Mm ⊗Mo, if t = 1.

So indeed, Ad v ◦8∗ f ∈ Im,m,o.

If u is a unitary defining Bσ as in Example 5.4 and f ∈ Bσ , then α( f )(t) = ν f (1− t)ν,

so that we obtain

α( f )(t) ∈ ν(Dm ⊗Dm ⊗Do)ν = Dm ⊗Dm ⊗Do

if t ∈ [0, 1
3 )∪ (

2
3 , 1], and

α( f )(t) ∈ νu1−t (Dm ⊗Dm ⊗Do)u∗1−tν = νu1−tσ
−1ν(Dm ⊗Dm ⊗Do)νσu∗1−tν,

if t ∈ [ 13 ,
2
3 ]. Since νu1− 1

3
σ−1ν = νσ−1ν and νu1− 2

3
σ−1ν = νσσ−1ν = 1, we see that

α(Bσ ) ⊂ Bνσ−1ν . Since α is an automorphism, this implies α(Bσ ) = Bνσ−1ν . This concludes

the proof.

Before we proceed to prove our next theorem, let us fix some notation for wreath

products.
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Notation 5.9. If F is some group, then F ∼Sym(n) =
⊕n

i=1 F oSym(n) denotes the

wreath product, where Sym(n) acts by permuting the copies of F . We also use the

notation Sym(n) ∼ F = Sym(n)n
⊕n

i=1 F for notational convenience.

Fixing m, n, o ∈ N>1, we obtain an embedding Sym(m× o) ∼ Sym(n) 6 Sym(m× n×
o). Concretely, an element of Sym(m× o) ∼ Sym(n) can be described as a pair (σ1, σ2) with

σ1 ∈ Sym(m× o) acting on the first and last coordinate of m× n× o and σ2 : m× n× o→
n is a map such that σ2(i, · , k) ∈ Sym(n) for all i ∈ m, k ∈ o. This way, σ2 acts on the

second coordinate of m× n× o. Similarly, we obtain an embedding Sym(m) ∼Sym(n×
o) 6 Sym(m× n× o).

We remark that considering permutations as unitaries, we have the equalities

Sym(m× o) ∼ Sym(n) = Sym(m× n× o)∩NMm⊗Mn⊗Mn (Dm ⊗ 1⊗Do)

and similarly

Sym(m) ∼Sym(n× o) = Sym(m× n× o)∩NMm⊗Mn⊗Mn (1⊗Dn ⊗Do).

Theorem 5.10. Let Im,n,o be a stabilised dimension drop algebra and σ, π ∈ Sym(m× n×
o).

• Bσ and Bπ are conjugate by an orientation preserving automorphism of Im,n,o if

and only if they define the same element in Sym(m× o) ∼ Sym(n)\Sym(m× n×
o)/Sym(m) ∼Sym(n× o).

• If m 6= n, then twisted standard Cartan subalgebras of Im,n,o are classified up to

conjugacy by elements of Sym(m× o) ∼ Sym(n)\Sym(m× n× o)/Sym(m) ∼Sym(n× o).

• If m = n and ν ∈ Sym(m×m× o) denotes the flip of the first two coordinates, then

Bσ and Bπ are conjugate if and only if σ ∈ (Sym(m× o) ∼ Sym(m)) · {π, νπ−1ν} ·

(Sym(m) ∼Sym(m× o)).

Proof. We first show that Bσ depends up to conjugacy by an orientation preserving

automorphism only on the class of σ in Sym(m× o) ∼ Sym(n)\Sym(m× n× o)/Sym(m) ∼

Sym(n× o). Indeed, if ρ1 ∈ Sym(m× o) ∼ Sym(n) and ρ2 ∈ Sym(m) ∼Sym(n× o), we

find a unitary v ∈ C([0, 1],Mm ⊗Mn ⊗Mo) such that v|
[0, 1

3 ]
= ρ1 and v|

[
2
3 ,1]
= ρ2. It

normalises Im,n,o and hence defines an automorphism α ∈ Aut(Im,n,o). If now Bσ is

constructed from a unitary u ∈ C([ 13 ,
2
3 ],Mm ⊗Mn ⊗Mo), then we obtain for f ∈ Bσ

v f (t)v∗ ∈



ρ1(Dm ⊗ 1⊗Do)ρ
−1
1 = Dm ⊗ 1⊗Do, if t = 0,

ρ1(Dm ⊗Dn ⊗Do)ρ
−1
1 = Dm ⊗Dn ⊗Do, if t ∈ (0, 1

3 ],

vt ut (Dm ⊗Dn ⊗Do)u∗t v
∗
t , if t ∈ [ 13 ,

2
3 ],

ρ2(Dm ⊗Dn ⊗Do)ρ
−1
2 = Dm ⊗Dn ⊗Do, if t ∈ [ 23 , 1),

ρ2(1⊗Dn ⊗Do)ρ
−1
2 = 1⊗Dn ⊗Do, if t = 1.

Since vt ut (Dm ⊗Dn ⊗Do)u∗t v
∗
t = vt utρ

−1
2 (Dm ⊗Dn ⊗Do)ρ2u∗t v

∗
t and v1/3u1/3ρ

−1
2 =

ρ1σρ
−1
2 as well as v2/3u2/3ρ

−1
2 = ρ21ρ−1

2 = 1, we conclude that α(Bσ ) = B
ρ1σρ

−1
2

.
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Let now α ∈ Aut(Im,n,o) be an orientation preserving automorphism in the sense of

Notation 5.7. Assume that α satisfies α(Bσ ) = Bπ . We can apply Lemma 5.6 and assume

that α|C([0,1]) = id. Let us consider the elements uσ , uπ ∈ C([ 13 ,
2
3 ],Mm ⊗Mn ⊗Mo) as

described in Example 5.4. The automorphism (Ad uπ )−1
◦α ◦Ad uσ normalises the

standard MASA C([1/3, 2/3],Dm ⊗Dn ⊗Do) and it is hence a continuous function with

values in ((Tm
×Tn

×To)/T) ·Sym(m× n× o). In particular, its permutational part is

constant. Let us denote it by [αt ], t ∈ [ 13 ,
2
3 ]. Evaluating at 1

3 and 2
3 , we obtain the

equality

[(Ad uπ )−1
1/3 ◦α1/3 ◦ (Ad uσ )1/3] = [(Ad uπ )−1

2/3 ◦α2/3 ◦ (Ad uσ )2/3].

The definitions of uσ and uπ give then π−1
◦ [α1/3] ◦ σ = [α2/3]. Put differently, we have

[α1/3] ◦ σ ◦ [α2/3]
−1
= π. (5.1)

Since α|(0,1/3] normalises the diagonal MASA C((0, 1/3],Dm ⊗Dn ⊗Do), it takes values

in ((Tm
×Tn

×To)/T) ·Sym(m× n× o) and thus its permutational part is constant, say

[α(0,1/3]] ≡ ρ1. Now α(0,1/3] is the restriction of an automorphism of Im,n,o, so that

ρ1 must normalise Dm ⊗ 1⊗Do. This implies ρ1 ∈ Sym(m× o) ∼ Sym(n). Similarly, we

obtain [α[2/3,1)] ≡ ρ2 ∈ Sym(m) ∼Sym(n× o). Combining this with (5.1), we obtain

π ∈
(
Sym(m× o) ∼ Sym(n)

)
σ
(
Sym(m) ∼Sym(n× o)

)
.

This proves the first statement of the theorem.

Assume now m 6= n. Then Mm ⊗ 1⊗Mo 6∼= 1⊗Mn ⊗Mo implies that every

automorphism of Im,n,o is orientation preserving. This proves the second statement of

the theorem.

Finally assume that m = n. Lemma 5.8 shows that Bσ is conjugate by a

non-orientation preserving automorphism of Im,m,o to Bνσ−1ν . Since the composition

of two non-orientation preserving automorphism of Im,m,o is orientation preserving and

ν(Sym(m× o) ∼ Sym(m))ν = Sym(m) ∼Sym(m× o), this proves the last statement of the

theorem.

We now address the complete classification of Cartan subalgebras of stabilised

dimension drop algebras. It turns out that the twisted standard Cartan subalgebras

exhaust all examples of non-degenerate Cartan subalgebras in there.

Theorem 5.11. Every non-degenerate Cartan subalgebra of a stabilised dimension drop

algebra is conjugate to a twisted standard Cartan subalgebra.

Proof. Let B ⊂ Im,n,o be a non-degenerate Cartan subalgebra. By Proposition 3.7, there

are automorphisms α ∈ Aut((Im,n,o)[0, 1
3 ]
) and β ∈ Aut((Im,n,o)[ 23 ,1]

) such that

α(B
[0, 1

3 ]
) = { f ∈ C([0, 1

3 ],Dm ⊗Dn ⊗Do) | f (0) ∈ Dm ⊗ 1⊗Do}

and

β(B
[

2
3 ,1]
) = { f ∈ C([ 23 , 1],Dm ⊗Dn ⊗Do) | f (1) ∈ 1⊗Dn ⊗Do}.
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Extending α and β to automorphisms of Im,n,o that satisfy α|
[

2
3 ,1]
= id and β|

[0, 1
3 ]
= id,

we may assume that the restrictions to [0, 1
3 ] and [ 23 , 1] of B and the standard Cartan

subalgebra of Im,n,o coincide.

By Theorem 2.4, there is a unitary u ∈ (Im,n,o)[ 13 ,
2
3 ]

such that

u B
[

1
3 ,

2
3 ]

u∗ = C([ 13 ,
2
3 ],Dm ⊗Dn ⊗Do).

Then

u 2
3
∈ NMm⊗Mn⊗Mo(Dm ⊗Dn ⊗Do) = (Tm

×Tn
×To)oSym(m× n× o).

Multiplying u with an element from C([ 13 ,
2
3 ],T

m
×Tn

×To)oSym(m× n× o), we may

hence assume that u 2
3
= 1. Similarly, we obtain

u 1
3
∈ (Tm

×Tn
×To)oSym(m× n× o).

Since Tm
×Tn

×To is connected, we may multiply u with a function from

C([ 13 ,
2
3 ],T

m
×Tn

×To) to assume that in addition u 1
3
= π ∈ Sym(m× n× o). It follows

that f ∈ B satisfies

f (t) ∈

Dm ⊗Dn ⊗Do, t ∈ [0, 1
3 ] ∪ [

2
3 , 1],

u∗t (Dm ⊗Dn ⊗Do)ut , t ∈ [ 13 ,
2
3 ],

and that B is the twisted standard Cartan subalgebra associated with π−1. This

completes the proof of the theorem.

6. Counting Cartan subalgebras

Let us start this section by counting conjugacy classes of non-degenerate Cartan

subalgebras in the example of I2,2, which is the easiest non-trivial case of all dimension

drop algebras.

Example 6.1. I2,2 has at least 2 non-degenerate Cartan subalgebras up to conjugacy by

an automorphism. These are the standard Cartan subalgebra and the Cartan subalgebra

constructed in Example 5.3. Indeed, both are not conjugate to each other, since their

spectra are not homeomorphic. Theorem 5.11 implies that these are all non-degenerate

Cartan subalgebras of I2,2 up to conjugacy. For this, we have to prove that

Sym(2) ∼ Sym(2)\Sym(2× 2)/Sym(2) ∼Sym(2)

has cardinality 2. This follows from a counting argument. The group

Sym(2) ∼Sym(2) = (Sym(2)⊕Sym(2))oSym(2)

has cardinality 2 · 2 · 2 = 8, while Sym(2× 2) has cardinality 4 · 3 · 2 = 24. It follows that

the quotient Sym(2× 2)/Sym(2) ∼Sym(2) has cardinality 3. Since Sym(2) ∼ Sym(2) acts

non-trivially on this set, we infer that the orbit space has cardinality at most 2. Combined

with the initial observation that I2,2 has at least 2 non-conjugate Cartan subalgebras,

this shows that I2,2 has exactly 2 non-conjugate non-degenerate Cartan subalgebras.
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6.1. Matrix combinatorics and Cartan subalgebras

In order to count conjugacy classes of non-degenerate Cartan subalgebras in any other

— more complicated — case than the one described in Example 6.1, it is necessary to

improve on the inexplicit parametrisation provided by double cosets of permutations. It

turns out to be advantageous to replace permutations by their permutation matrices and

then compress their information. Indeed, Theorem 6.7 will describe conjugacy classes

of non-degenerate Cartan subalgebras of dimension drop algebras in terms of certain

congruence classes of matrices resulting from the following procedure. This in turn will

lead to the desired parametrisation in Theorem 6.10.

Definition 6.2. Let σ ∈ Sym(m× n× o). We identify σ with its associated permutation

matrix (σ(i, j,k)(i ′, j ′,k′))(i, j,k),(i ′, j ′,k′)∈m×n×o satisfying

σ(i, j,k)(i ′, j ′,k′) = δσ(i ′, j ′,k′),(i, j,k).

The matrix A = (A(i,k),( j ′,k′))(i,k)∈m×o,( j ′,k′)∈n×o with entries

A(i,k),( j ′,k′) =
∑

i ′∈m, j∈n

σ(i, j,k)(i ′, j ′,k′)

is called the reduced matrix of σ .

We start with a lemma that will be used in the proof of key Proposition 6.4.

Lemma 6.3. Let C, D ∈ Mm,n({0, 1}) be matrices such that in each row and each column

there is at most one non-zero entry. If
∑

i∈m, j∈n Ci j =
∑

i∈m, j∈n Di j , then there are

permutation matrices ρ1 ∈ Sym(m), ρ2 ∈ Sym(n) such that C = ρ1 Dρ2.

Proof. First note that the assumptions imply that C and D have the same number

of non-zero rows and non-zero columns. We can hence find a permutation matrix ρ2 ∈

Sym(n) such that C and Dρ2 have the same non-zero columns. Further, we can find a

permutation matrix ρ′1 ∈ Sym(m) such that C and ρ′1 Dρ2 have the same non-zero rows.

Since the non-zero columns of ρ′1 Dρ2 and Dρ2 are the same, we infer that C and ρ′1 Dρ2
have the same non-zero rows and non-zero columns. Restricting to these non-zero rows

and columns we obtain two {0, 1}-valued matrices with exactly one non-zero entry in each

row and each column — these are permutation matrices. So we can replace ρ′1 with some

other ρ1 ∈ Sym(m) and obtain C = ρ1 Dρ2.

Proposition 6.4. Let σ, π ∈ Sym(m× n× o). Let A, B ∈ Mm×o, n×o(N) be the reduced

matrices of σ and π , respectively. Then the following statements are equivalent.

(i) σ, π define the same element in Sym(m× o) ∼ Sym(n)\Sym(m× n× o)/
Sym(m) ∼Sym(n× o).

(ii) There are elements ρ1 ∈ Sym(m× o), ρ2 ∈ Sym(n× o) such that ρ1 Aρ2 = B.

Proof. We first show that (i) implies (ii). Let

ρ ∈ Sym(m) ∼Sym(n× o) =
(⊕

n×o

Sym(m)
)
oSym(n× o)
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and denote by C the reduced matrix of σρ. Consider ρ as an element in Sym(m× n× o)
and denote by ρ1 : m× n× o→ m and ρ2 ∈ Sym(n× o) the first and second coordinate
of ρ as described in Notation 5.9. Recall that for fixed ( j, k) ∈ n× o, the map ρ1(·, j, k) :
m → m is a bijection. For all i ∈ m, j ′ ∈ n, k, k′ ∈ o

C(i,k),( j ′,k′) =
∑

i ′∈m, j∈n

(σρ)(i, j,k)(i ′, j ′,k′) (definition of reduced matrix)

=

∑
i ′∈m, j∈n

(σ )(i, j,k)ρ(i ′, j ′,k′) (multiplication of permutation matrices)

=

∑
i ′∈m, j∈n

(σ )(i, j,k)(ρ1(i ′, j ′,k′),ρ2( j ′,k′)) (splitting ρ in coordinates)

=

∑
i ′∈m, j∈n

(σ )(i, j,k)(i ′,ρ2( j ′,k′)) (ρ1(·, j ′, k′) is a bijection)

= (Aρ2)(i,k)( j ′,k′) (multiplication with permutation matrices).

So C = Aρ2. Similarly for ρ ∈ Sym(m× o) ∼ Sym(n) written in coordinates ρ1 ∈

Sym(m× o) and ρ2 : m× o× n→ n, we obtain that the associated matrix of ρσ is ρ1 A.

This shows the first implication.

Let us now prove that (ii) implies (i). To this end, take σ, π ∈ Sym(m× n× o) with

reduced matrices A and B, respectively and assume that there are ρ1 ∈ Sym(m× o) and

ρ2 ∈ Sym(n× o) such that ρ1 Aρ2 = B. By the previous paragraph, we can replace π by

ρ−1
1 πρ−1

2 and assume that A = B. By the definition of reduced matrices, for all (i, k) ∈
m× o and all ( j ′, k′) ∈ n× o we have∑

i ′∈m, j∈n

σ(i, j,k)(i ′, j ′,k′) =
∑

i ′∈m, j∈n

π(i, j,k)(i ′, j ′,k′).

Put differently, the matrices C, D ∈ Mn,m({0, 1}) defined by

C j i ′ = σ(i, j,k)(i ′, j ′,k′) and D j i ′ = π(i, j,k)(i ′, j ′,k′)

have the same sum of their entries. C and D are matrices with entries in {0, 1} and on

each row and on each column there is at most one non-zero entry. Hence, Lemma 6.3

provides us with permutations ρ1(i, ·, k) ∈ Sym(n) and ρ2(·, j ′, k′) ∈ Sym(m) such that

C = ρ1(i, ·, k)Dρ2(·, j ′, k′). Since (i, k) ∈ m× o and ( j ′, k′) ∈ n× o were arbitrary, we

can put these permutations together and obtain elements ρ1 ∈
⊕

m×o Sym(n) and ρ2 ∈⊕
n×o Sym(m) such that σ = ρ1πρ2. This finishes the proof of the lemma.

Lemma 6.5. Let σ ∈ Sym(m×m) with reduced matrix A. Denote by ν ∈ Sym(m×m) the

flip. The reduced matrix of νσ−1ν is At.

Proof. For all i, j, k, l ∈ m, we have

(νσ−1ν)(i, j)(k,l) = σ
−1
ν−1(i, j)ν(k,l) (multiplication with permutation matrices)

= σ−1
( j,i)(l,k) (definition of ν)

= σ(l,k)( j,i) (inverses of permutation matrices).
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So the reduced matrix of νσ−1ν satisfies∑
j,k∈m

(νσ−1ν)(i, j)(k,l) =
∑

j,k∈m

σ(l,k)( j,i) = Ali = At
il ,

which proves the lemma.

Let us give a name to the relation on Mm,n(N) described by Proposition 6.4 and

Lemma 6.5. It does resemble, but is not exactly the same as usual notions of congruence:

while on non-square matrices it agrees with a common notion of matrix congruence, we

additionally call a square matrix and its transpose congruent.

Definition 6.6. Let A, B ∈ Mm,n(N). We call A, B congruent to each other if there are

permutations ρ1 ∈ Sym(m), ρ2 ∈ Sym(n) such that ρ1 Aρ2 = B or ρ1 Atρ2 = B, where the

latter makes sense only in case m = n.

Theorem 6.7. Let Bσ , Bπ ⊂ Im,n,o be two twisted standard Cartan subalgebras. Then Bσ
is conjugate to Bπ if and only if the reduced matrices of σ and π are congruent.

Proof. This follows from combining Theorem 5.10 with Proposition 6.4 and Lemma 6.5.

In order to obtain a useful parametrisation of non-degenerate Cartan subalgebras, we

have to identify those matrices that can arise as the reduced matrix of a permutation.

The following notation from matrix combinatorics allows us to describe them concisely.

Notation 6.8. Let a, b, c, d ∈ N. We let

M(a, b, c, d)

=

{
A ∈ Ma,c(N) | ∀i ∈ {1, . . . , a} :

c∑
j=1

Ai j = b and ∀ j ∈ {1, . . . , c} :
a∑

i=1

Ai j = d
}
.

Theorem 6.7 together with Theorem 5.11 associates with every non-degenerate Cartan

subalgebra in Im,n,o the congruence class of a matrix in M(mo, n, no,m). The next

proposition shows that this assignment is surjective.

Proposition 6.9. The image of the map Sym(m× n× o)→ Mm×o, n×o(N) assigning to a

permutation its reduced matrix is precisely M(mo, n, no,m).

Proof. It is clear that the reduced matrix of every element in Sym(m× n× o) lies in

M(mo, n, no,m). We have to show that every element of M(mo, n, no,m) arises in this

way. Let A ∈ M(mo, n, no,m). Define a matrix Ã ∈ Mm×o, n×o(Mn,m({0, 1})) as follows.

Fix (i, k) ∈ m× o and ( j ′, k′) ∈ n× o. Let M ∈ Mn,m({0, 1}) be the diagonal matrix whose

first A(i,k),( j ′,k′) diagonal entries are one and whose other entries are all zero. Equipping

m× o and n× o with the respective lexicographical order, we moreover set

r =
∑

(t,u)<(i,k)

A(t,u),( j ′,k′) and s =
∑

(t,u)<( j ′,k′)

A(i,k),(t,u).
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The (i, k), ( j ′, k′)th entry of Ã is now given as

Ã(i,k),( j ′,k′) = (1 2 · · · n)r M(1 2 · · · m)s,

where (1 2 · · · m) ∈ Sym(m) and (1 2 · · · n) ∈ Sym(n) are the respective full shift

permutation matrices. Since the sum in every row of A is n and the sum of every column

of A is m, it follows that every row and every column of Ã, when interpreted as a matrix

in Mm×n×o({0, 1}), has exactly one non-zero entry. In other words, Ã is a permutation

matrix and thus corresponds to some π ∈ Sym(m× n× o). By construction, A is the

reduced matrix of π . This concludes the proof.

Theorem 6.10. Conjugacy classes of non-degenerate Cartan subalgebras in Im,n,o are

parametrised by congruence classes of matrices in M(mo, n, no,m).

Proof. This follows from Theorems 5.11 and 6.7 together with Proposition 6.9.

6.2. The asymptotic number of Cartan subalgebras

Theorem 6.10 in principle allows to apply results from enumerative combinatorics

providing asymptotic formulae for the cardinality of M(a, b, c, d) (see Notation 6.8).

We refer to [7] and references therein for the reader who wants to know more about this

topic. However, there is no exact formula for the number of such matrices. Further, the

congruence relation introduced in Definition 6.6 does not make part of the combinatorics

literature, which obstructs a direct application. Crude lower bounds on the number of

congruence classes in M(mo, n, no,m) can for example be given by appealing to the

possible entries of a matrix in M(mo, n, no,m) as a subset of {1, . . . , n}. Despite this

lower bound, it appears to be an interesting combinatorial problem to derive asymptotic

formula for congruence classes in M(a, b, c, d).

6.3. Explicit formula

In Example 6.1, we saw that the dimension drop algebra I2,2 has exactly 2 Cartan

subalgebras up to conjugacy. This is the base case for two one-parameter series of

dimension drop algebras that admit an explicit formula for the number of their Cartan

subalgebras. Both results have interesting consequences.

The next proposition counts the number of Cartan subalgebras in stabilisations I2,2,o of

I2,2, making use of Theorem 6.10. In § 7, these results will provide examples of stabilised

dimension drop algebras for which we will not be able to recover Cartan subalgebras up

to conjugacy from the homeomophism type of their spectra. We denote by p the partition

function, which counts the number of partitions of a non-negative integer.

Proposition 6.11. In I2,2,o there are p(2o) non-degenerate Cartan subalgebras up to

conjugacy.

Proof. By Theorem 6.10, it suffices to classify congruence classes of matrices in

M(2o, 2, 2o, 2). We provide a symmetric normal form for congruence classes in

M(2o, 2, 2o, 2) only using the Sym(2o)×Sym(2o) action. A normal form is given by block
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diagonal matrices with the following blocks ordered by increasing size.

(
2
)
,

(
1 1
1 1

)
,

1 1 0
1 0 1
0 1 1

 ,


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 , . . .
Fix o ∈ N and assume that we have normal forms in M(2o′, 2, 2o′, 2) for o′ < o. Let

A ∈ M(2o, 2, 2o, 2). We may replace A by a congruent matrix, so that A11 6= 0 holds.

If A11 = 2, then it is the only non-zero entry in the first row and the first column of

A, so A is block diagonal and we may apply the induction hypothesis to the matrix

obtained from A by erasing the first row and the first column in order to obtain a normal

form for A. If A11 = 1, then we may further arrange for A12 = 1 = A21 by passing to

a congruent matrix. Assume now that we arrived at a matrix congruent to A which

satisfies A11 = Ak,k−1 = Ak−1,k = 1 for all k 6 k0 for some k0 > 2. If Ak0,k0 = 1, then A is

block diagonal and we obtain a normal form as before. Otherwise, we can replace A by

a congruent matrix that satisfies Ak0,k0+1 = Ak0+1,k0 = 1. This algorithm terminates and

proves that A is congruent to a normal form as described before.

Next we show that the provided normal forms are pairwise non-congruent. To this

end, associate with a matrix in M(2o, 2, 2o, 2) the graph whose vertices are indexed by

2o× 2o and whose edges are given by the rule (i, j) ∼ (i ′, j ′) if and only if the following

two conditions are satisfied: Ai j = 1 = Ai ′ j ′ and at the same time i = i ′ or j = j ′. Then

the multiset of the size of connected components of this graph is a congruence invariant

of A. It distinguishes the normal forms provided before, because the block of size k× k,

k > 2 described above produces a single non-trivial connected component with 2k vertices.

Since the size of the blocks of our normal forms runs through all positive natural numbers

and they have to fill the diagonal of a 2o× 2o matrix, we conclude that there are p(2o)
congruence classes in M(2o, 2, 2o, 2). This finishes the proof of the proposition.

Remark 6.12. Proposition 6.11 provides the exceptional examples of stabilised dimension

drop algebras in which isomorphism and conjugacy of non-degenerate Cartan subalgebras

is not the same. This is formally stated in Proposition 7.9, which stands in contrast to

the positive result provided by Theorem 7.8.

The following proposition treats the other class of dimension drop algebras admitting

an explicit computation of the number of their Cartan subalgebras.

Proposition 6.13. The dimension drop algebra I2,n has exactly b n
2 c+ 1 non-degenerate

Cartan subalgebras up to conjugacy. In particular, if n is odd, then I2,n has n+1
2 Cartan

subalgebras up to conjugacy.

Proof. Example 6.1 showed that there are exactly 2 non-degenerate Cartan subalgebras

in I2,2, so that we may assume n > 3. By Theorem 6.10, we have to count congruence

classes in M(2, n, n, 2). We provide a normal form. Let A ∈ M(2, n, n, 2). Let k = |{ j ∈ n |
A1 j = 2}|. Replacing A by a congruent matrix, we may assume that A11, A12, . . . , A1k = 2.

Since each column of A sums to 2, all entries of A are elements of {0, 1, 2}. Moreover, each
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row of A sums to n, so that we have k = |{ j ∈ n | A1 j = 0}|. Replacing A by a congruent

matrix, we may assume that A1,k+1, A1,k+2, . . . , A1,2k = 0. Note that A1,2k+1, . . . , A1,n =

1 follows. Moreover, A2 j = 2− A1 j for all j ∈ n. This is our normal form for A. Two

different normal forms are distinguished by |{(i, j) ∈ 2× n | Ai j = 2}| ∈ 2Z, which hence

is a complete invariant for congruence classes in M(2, n, n, 2). So indeed there are exactly

b
n
2 c+ 1 congruence classes.

Let us now consider the case when n is odd. In this case, Theorem 4.5 shows that all

Cartan subalgebras in I2,n are non-degenerate. Further,⌊
n
2

⌋
+ 1 =

n+ 1
2

,

which finishes the proof of the proposition.

Corollary 6.14. For every n ∈ N there is a subhomogeneous C∗-algebra that has exactly n
Cartan subalgebras up to conjugacy.

Proof. In [24, § 2.2], examples of homogeneous C∗-algebras without any Cartan

subalgebras are presented. Furthermore, every homogeneous C∗-algebras over a

contractible space has a unique Cartan subalgebra up to conjugacy; see Theorem 2.4.

For n > 1, the dimension drop algebra I2,2n+1 has exactly n+ 1 Cartan subalgebras up

to conjugacy by Proposition 6.13.

Remark 6.15. Based on Corollary 6.14 it is possible to provide examples of C∗-algebras

with exactly continuum many Cartan subalgebras up to conjugacy. Let A =
⊕

n>2 I2,2n+1.

Every automorphism α ∈ Aut(A) satisfies α(I2,2n+1) = I2,2n+1 for all n > 2, since I2,2n+1
is 2n+ 1-subhomogeneous. Further, it is easy to check that a Cartan subalgebra of A is a

direct sum of Cartan subalgebras of I2,2n+1 for n > 2. Combining these two observations

with Proposition 6.13, we find that Cartan subalgebras of A are parametrised by the

product set
∏

n>2 1+ n whose cardinality is the continuum.

7. Isomorphism and conjugacy

Our next aim is to show that although dimension drop algebras do not have a unique

Cartan subalgebra up to conjugacy, often the next to best possible result is true. Often

Cartan subalgebras in dimension drop algebras are classified by their spectrum — which

is their only intrinsic invariant. We start by giving a concrete model for the spectrum of

the twisted standard Cartan subalgebras considered in Example 5.4

Proposition 7.1. Let σ ∈ Sym(m× n× o). Then the spectrum of the twisted standard

Cartan subalgebra Bσ ⊂ Im,n,o is homeomorphic with(
(m× n× o)×

(
[0, 1−] t [1+, 2]

))
/ ∼,

where the equivalence relation ∼ is given by the following three types of identifications.

(i, j, k, 0) ∼ (i, j ′, k, 0) for all i ∈ m, j, j ′ ∈ n and k ∈ o,
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(i, j, k, 2) ∼ (i ′, j, k, 2) for all i, i ′ ∈ m and j ∈ n, k ∈ o,

(σ (i, j, k), 1−) ∼ (i, j, k, 1+) for all i ∈ m, j ∈ n and k ∈ o.

Proof. Let us first recall the definition of the twisted standard Cartan subalgebra

associated with σ . We fix a unitary

u ∈ C([ 13 ,
2
3 ],Mm ⊗Mn ⊗Mo)

such that u 1
3
= σ and u 2

3
= 1. Then

Bσ = { f ∈ Im,n,o | f (t) ∈ Dm ⊗Dn ⊗Do for t ∈ [0, 1
3 ] ∪ [

2
3 , 1]

and f (t) ∈ ut (Dm ⊗Dn ⊗Do)u∗t for t ∈ [ 13 ,
2
3 ]}.

The spectrum of Bσ |[0, 1
3 ]

is homeomorphic with m× n× o×[0, 1−]/ ∼, with the

identifications given by

(i, j, k, 0) ∼ (i, j ′, k, 0) for all i ∈ m, j, j ′ ∈ n and k ∈ o.

Similarly, the spectrum of (Bσ )[ 23 ,1]
is homeomorphic with m× n× o×[1+, 2]/ ∼, with

the identifications given by

(i, j, k, 2) ∼ (i ′, j, k, 2) for all i, i ′ ∈ m and j ∈ n, k ∈ o.

These parts are glued by the spectrum of (Bσ )[ 13 , 2
3 ]

: the identification has to be made

in accordance with its minimal projections. Since Bσ = uC([ 13 ,
2
3 ],Dm ⊗Dn ⊗Do)u∗, its

minimal projections are given by functions ( fi jk)(i, j,k)∈m×n×o satisfying fi jk(t) = ut (ei i ⊗

e j j ⊗ ekk)u∗t and hence evaluating to

fi jk(
1
3 ) = σ(ei i ⊗ e j j ⊗ ekk)σ

−1
= ei ′i ′ ⊗ e j ′ j ′ ⊗ ek′k′

fi jk(
2
3 ) = ei i ⊗ e j j ⊗ ekk,

where we write σ(i, j, k) = (i ′, j ′, k′). This proves the statement of the proposition.

Notation 7.2. Given σ ∈ Sym(m× n× o), we fix notation for certain points in the space(
(m× n× o)×

(
[0, 1−] t [1+, 2]

))
/ ∼,

described in Proposition 7.1. We denote by (i, ∗, k, 0) the class of the points (i, j, k, 0) for
i ∈ m, j ∈ n, k ∈ o. Analogously, we denote by (∗, j, k, 2) the class of the points (i, j, k, 2)
for i ∈ m, j ∈ n, k ∈ o.

Having the model of Proposition 7.1 at hand, we can describe the spectrum of a

twisted standard Cartan subalgebra as the geometric realisation of a graph. Let us fix

the formalism of a graph that we use in the sequel.

Notation 7.3. A graph 0 is a triple 0 = (V(0),E(0), a) with V(0) interpreted as the set

of vertices, E(0) interpreted as the set of edges and a : E(0)→ P62(V(0)) the adjacency

map. We call

|{e ∈ E(0) | v ∈ a(e)}|
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the valency of v ∈ V(0). A graph all of whose vertices have the same valency n ∈ N is

called n-regular.

We say that two vertices v1, v2 of 0 are adjacent if there is an edge e of 0 such that

a(e) = {v1, v2}. A bi-partite graph is a graph 0 admitting a partition V(0) = V1 t V2
such that no vertex from Vi is adjacent to a vertex of Vi , i ∈ {1, 2}. If all vertices from V1
have valency m and all vertices from V2 have valency n, we call 0 an (m, n)-semi-regular

bi-partite graph.

If 0 is a finite bi-partite graph and v1, v2, . . . , vm, w1, . . . , wn is an enumeration of

the vertices such that the sets {v1, . . . , vm} and {w1, . . . , wn} witness the fact that 0 is

bi-partite, then the adjacency matrix of 0 is the m× n matrix whose i, jth entry is the

number of edges connecting vi and w j . Vice versa, if A ∈ Mm,n(N), then the bi-partite

graph associated with A has vertices indexed by (m×{r})∪ (n×{c}) and edges indexed

by (i, j, k) with k ∈ Ai j and a(i, j, k) = {(i, r), ( j, c)}.

Notation 7.4. Let 0 be a graph as described in the formalism of Notation 7.3. We

adopt the following notation for the geometric realisation |0| of 0. It is the unique up

to homeomorphism 1-dimensional CW-complex whose 0-cells are indexed by V(0) and

whose 1-cells are indexed by E(0), with the 1-cell of e ∈ E(0) attached to a(e). Note that

the latter could be a one-point set, in which case the 1-cell is glued to this single 0-cell,

giving rise to a loop.

Proposition 7.5. Let σ ∈ Sym(m× n× o). Let 0 be the bi-partite graph associated with

the reduced matrix of σ . Then the spectrum of Bσ is homeomorphic with the geometric

realisation of 0.

Proof. We write A for the reduced matrix of σ . Denote by X the spectrum of Bσ as

described in Proposition 7.1 and by Y the geometric realisation of 0. In order to show

that X and Y are homeomorphic, it suffices to obtain a description of X as a CW-complex

combinatorially isomorphic to the CW-complex described in Notation 7.4.

Let us start by fixing the CW-structure on X . The 0-cells of X are the points

{(i, ∗, k, 0) ∈ X | i ∈ m, k ∈ o} ∪ {(∗, j, k, 2) ∈ X | j ∈ n, k ∈ o}.

To define the 1-cells of X , recall that X is a quotient of

(m× n× o)×
(
[0, 1−] t [1+, 2]

)
with respect to an equivalence relation that identifies in particular the points

(σ (i, j, k), 1−) and (i, j, k, 1+) for all i ∈ m, j ∈ n and k ∈ o. We take the 1-cells of X
to be the image of

{σ(i, j, k)}× [0, 1−] ∪ {(i, j, k)}× [1+, 2]

in X . This way, 1-cells of X are naturally indexed by m× n× o. Further, the 1-cell indexed

by (i, j, k) is glued to the 0-cells (σ (i, j, k)1, ∗, σ (i, j, k)3) and (∗, j, k).
Recall also the CW-structure on Y . Its 0-cells are indexed by

{(i, k, r) | i ∈ m, k ∈ o} ∪ {( j, k, c) | j ∈ n, k ∈ o},
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coming from the rows and columns of A. There are A(i,k)( j ′,k′) 1-cells glued between the

0-cells (i, k, r) and ( j ′, k′, c).
We can now establish a combinatorial isomorphism between the CW-complexes

underlying X and Y . Fixing the natural bijection between the 0-cells of X

{(i, ∗, k, 0) ∈ X | i ∈ m, k ∈ o} ∪ {(∗, j, k, 2) ∈ X | j ∈ n, k ∈ o}

and those of Y
{(i, k, r) | i ∈ m, k ∈ o} ∪ {( j, k, c) | j ∈ n, k ∈ o},

it suffices to show that the number of 1-cells glued between two 0-cells is preserved by

this bijection.

For i ∈ m, j ′ ∈ n and k, k′ ∈ o, the 1-cells between (i, ∗, k, 0) and (∗, j ′, k′, 2) is the

cardinality of the set {(a, b, c) ∈ m× n× o | σ(a, b, c)1 = i, σ (a, b, c)3 = k, b = j ′, c = k′}.
This cardinality is calculated as∑

i ′∈m

δσ(i ′, j ′,k′)1,iδσ(i ′, j ′,k′)3,k =
∑

i ′∈m, j∈n

δσ(i ′, j ′,k′),(i, j,k)

=

∑
i ′∈m, j∈n

σ(i, j,k)(i ′, j ′,k′)

= A(i,k),( j ′,k′),

where we adopted the permutation matrix notation from Definition 6.2. So the number of

1-cells between (i, ∗, k, 0) and (∗, j ′, k′, 2) equals the number A(i,k)( j ′,k′) of 1-cells between

(i, k, r) and ( j ′, k′, c). This is what we had to show.

Proposition 7.6. Let 0, 3 be graphs with geometric realisations X and Y , respectively.

Assume that either

• all vertices of 0 and 3 have valency at least 3, or

• both 0 and 3 are bi-partite and (2, n)-semi-regular for some n > 3.

If X ∼= Y , then 0 ∼= 3.

Proof. We consider the space X with its structure of a 1-dimensional CW-complex. Set

V = {x ∈ X | x is branch point},

E = π0(X \V),

where a branch point is a point without any neighbourhood locally homeomorphic to an

interval and π0 denotes the set of connected components of a space. If all vertices of 0

have valency at least 3, then V consists of the 0-cells of X . Further for each connected

component e ∈ π0(X \ V ), the closure e is a 1-cell of X and each 1-cell of X arises uniquely

in this way. Hence, the homeomorphism type of X recovers its CW-structure and therefore

the isomorphism type of 0. If thus vertices of 3 are also assumed to have valency at least

3, then X ∼= Y implies 0 ∼= 3.

Assume now that 0 and 3 are bi-partite and (2, n)-semi-regular for some n > 3.

We associate with 0 and 3 the unique n-regular graphs 0̃ and 3̃ whose barycentric
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subdivision are 0 and 3, respectively. Then X is homeomorphic with the geometric

realisation of 0̃ and Y is homeomorphic with the geometric realisation of 3̃. Hence, by

the first statement of the proposition, X ∼= Y implies 0̃ ∼= 3̃. This in turn implies 0 ∼= 3,

which finishes the proof of the proposition.

We are now ready to assemble the information obtained in this section so far and prove

the following theorem. It shows that in most stabilised dimension drop algebras conjugacy

of non-degenerate Cartan subalgebras is equivalent to homeomorphism of their spectra.

However, the excluded cases I2,2,o for o > 2 do not satisfy this property, as we see in

Proposition 7.9. We make use of the next remark in the proof of Theorem 7.8.

Remark 7.7. Let A, B ∈ Mm,n(N) be two matrices and consider their associated bi-partite

graphs 0,3, respectively. Then A is congruent to B if and only if 0 ∼= 3.

Theorem 7.8. Let Im,n,o be a stabilised dimension drop algebra such that either (m, n) 6=
(2, 2) or o = 1. Then two non-degenerate Cartan subalgebras of Im,n,o are conjugate by

an automorphism if and only if their spectra are homeomorphic.

Proof. Two conjugate non-degenerate Cartan subalgebras are isomorphic and hence have

homeomorphic spectra. We have to show the converse implication. Let (m, n, o) ∈ N3
>1.

If m = 1 or n = 1, then Theorem 3.7 shows that there is a unique non-degenerate Cartan

subalgebra in Im,n,o up to conjugacy. If m = n = 2 and o = 1, then Example 6.1 shows

that I2,2,1 = I2,2 has exactly 2 non-degenerate Cartan subalgebras up to conjugacy and

their spectra are not homeomorphic by Example 5.3.

It remains to treat the cases when m, n > 2 and m > 3 or n > 3. By Theorem 6.10,

non-degenerate Cartan subalgebras of Im,n,o are classified by congruence classes of

matrices in M(mo, n, no,m). From Proposition 7.5 we know that the spectrum of a

non-degenerate Cartan algebra B is the geometric realisation of the bi-partite graph

0 associated with some A ∈ M(mo, n, no,m). Thanks to our assumption on m and n,

Proposition 7.6 applies and yields that the homeomorphism type of the spectrum of B
recovers the isomorphism class of 0. Now we can recover the congruence class of A by

Remark 7.7, which finishes the proof of the theorem.

We finish this article, by pointing out that the conclusion of Theorem 7.8 does not hold

for the dimension drop algebras omitted from its statement.

Proposition 7.9. Let o > 2. In I2,2,o there are non-conjugate non-degenerate Cartan

subalgebras with homeomorphic spectra. More precisely, I2,2,o admits exactly p(2o)
pairwise non-conjugate non-degenerate Cartan subalgebras and their spectra assume

exactly 2o different homeomorphism types.

Proof. Proposition 6.11 says that there are p(2o) non-degenerate Cartan subalgebras

in I2,2,o up to conjugacy. At the same time, it follows from Proposition 7.1 that the

spectrum of a non-degenerate Cartan subalgebra of I2,2,o is the geometric realisation of

a 2-regular bi-partite graph with 2o vertices of each kind. It follows that its spectrum is

a disjoint union of up to 2o circles. It remains to check that for each 1 6 k 6 2o there

is a non-degenerate Cartan subalgebra of I2,2,o whose spectrum is homeomorphic with a
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disjoint union of exactly k circles. Such is associated — following the terminology of the

proof of Proposition 6.11 — with a block diagonal matrix in M(2o, 2, 2o, 2) with exactly

k blocks taken from

(
2
)
,

(
1 1
1 1

)
,

1 1 0
1 0 1
0 1 1

 ,


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

 , . . .
Since p(2o) > 2o for o > 2, the proof is finished.
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