EQUIVALENT CONDITIONS FOR A RING TO
BE A MULTIPLICATION RING

JOE LEONARD MOTT

In this paper a ring will always mean a commutative ring with identity ele-
ment. Furthermore, a ring R is called a multiplication ring if, whenever 4 and
B areideals of R and A4 is contained in B, there is an ideal C such that 4 = BC.
Noetherian multiplication rings have been studied by Asano (1), Krull (4, 5),
and Mori (6, 7). Krull also studied non-Noetherian multiplication rings (3).
In (8, 9), Mori studied non-Noetherian multiplication rings which did not
necessarily contain an identity element.

The notation and terminology used will be in general that of (10). In par-
ticular, the symbol C will mean “contained in or equal,” < will denote proper
containment, and ¢ will mean “not contained in or equal.” If 4 is an ideal of
R and P is a minimal prime ideal of A, then the intersection of all P-primary
ideals containing 4 is called an isolated P-primary component of 4 (2, p. 737).
The intersection of all isolated primary components of A is called the kernel
of 4 (2, p. 738).

This paper is concerned with equivalent conditions for a ring to be a multi-
plication ring. The conditions are contained in the following theorem.

THEOREM. The following statements are equivalent:

(I) 4 ring R is a multiplication ring.

(ID) If P is a prime 1deal of R containing an ideal A, then there is an ideal C
such that 4 = PC.

(I R is a ring in which the following three conditions are valid:

() every ideal is equal to its kernel,

(b) every primary ideal is a power of its radical, and

(¢) if P 1is a minimal prime ideal of an ideal B and n is the least positive integer
such that P* is an isolated primary component of B and if P* #= P"tY, then P
does not contain the intersection of the remaining isolated primary components of
B.

Proof. If R is a multiplication ring, then II follows. Therefore, suppose 11 is
valid in R. The following properties (i) through (x) are consequences of 11I:

(i) For any ideal 4 of R, R/ satisfies I1.

(i1) If R is an integral domain, then R is a Dedekind domain.
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(iti) There are no ideals between a maximal ideal M and its square (1, p. 85).
Furthermore, there are no ideals between M and M" except powers of M, and
R/M™ is a special primary ring (1, p. 83).

(iv) There is no prime ideal chain P; < P, < P3; < R.

If Py, Ps, and Pj are prime ideals such that P; C P» < P3; < R, then in the
Dedekind domain R/P;, Ps/P,; < P3/P;, and therefore P,/P; = P,/P,.
Consequently, P, = P..

(v) If M is a proper maximal ideal properly containing the prime ideal P,

then
P=NM"
n=1
and MP = P.
InR = R/P,

0=P=nNM",
n=1
and, consequently,
PO N M
n=1

Since P C M, there is an ideal C such that P = MC. Using the fact that P
is a prime ideal and M ¢ P, it follows that C C P, and P = MP. Therefore
P = MP = M?P, etc., so that

PC N M.
n=1
Hence
P =N M.
n=1

(vi) Every ideal is equal to its kernel.

If 4 is an ideal of R, suppose A # A*, where 4* denotes the kernel of 1.
Leta € A*\ 4, and consider the ideal A’ = A4:(a). Let M be a minimal prime
ideal of A’; then by a theorem of Krull (2, p. 738), M properly contains a
minimal prime ideal P of 4. Thus M is a maximal ideal,

P = m JMn,
n=1
and P = MP.Since A" C M,thereisanideal Csuchthat 4’ = MC.1f C C 4,
then 4’ = MA' = M24’, etc., so that

A"C N M =P
n=1

This would imply that M is not a minimal prime ideal of A’. Therefore, C ¢ A’,
and hence (¢)C ¢ A. On the other hand, (a)C C (¢) C P since a € 4* Asa
consequence, there is an ideal .S such that
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(@)C =PS=MPS=M@C= (a)1" C 4.

This contradiction proves 4 = A4*.

(vii) If M is a proper maximal ideal, and if 4 is an ideal contained in M",
then there is an ideal C such that 4 = M"™ C. Furthermore, if 4 ¢ M*+,
then C Z M.

The proof of the above statement will be by induction. The statement is
obviously true for n = 1. Suppose 4 C M* implies 4 = M*C. Then if
A C M*¥1, A = M*Csince M*+1 C M*. If M*+t1 = M* obviously 4 = M*+1C.
Suppose that M*+1 £ M* Since M*t! is an M-primary ideal containing
A = M*C and M* ¢ M**1, it follows that C C M. Hence C = MC’ and
A = MFIC,

If 4AC M* and 4 M1, then 4 = M"C by the above, but C Z M
because if C C M, then C = MB and this would imply that 4 = M"*B C
M+,

(viil) If M is a maximal ideal and M" # M"+! for each positive integer #,
then

P=n M
n=1

is a prime ideal.

Suppose x ¢ P and v § P. Then there are positive integers k and # such that
x € M* and y € M", but x § M*+! and y ¢ M™t. Consequently, there are
ideals B and C, not contained in M, such that (x) = M*B and (y) = M"C.
Therefore, (xy) = M"t*BC, where BC Z M. As a result, xy ¢ P and P is a
prime ideal.

(ix) If Q is a P-primary ideal, then Q is a power of P.

It is well known that if P is a non-maximal prime ideal in a ring in which
every ideal is equal to its kernel, then P = P?and Q = P (9, p. 99). Assume P
is a maximal ideal. The following two cases will be considered: (@) P" % P"+!
for every positive integer n and (b) P" = P"*+! for some positive integer #.

If P* ¢ P"+1 for each positive integer %, then Q is not contained in every
power of P since Q is not contained in the prime ideal

P'=N P
n=1

Therefore, there is an integer k such that Q C P* but Q ¢Z P*+! This implies
Q = P*C, where C Z P. If C is a proper ideal of R, any proper prime divisor
P of C must contain Q and hence must contain the maximal ideal P. This
would imply P = P’ and therefore C C P. This contradiction shows that
C = Rand Q = P~

If P* = P! for some integer %, suppose k is the least positive integer such
that P*¥ = P*+1, There are two cases to consider here. Either Q C P* or

Q ¢ P
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If Q C P¥ = P then for each a¢ € P* there is an ideal C such that (a) =
P*C = P*(C = P*(a). Therefore, there is an element p € P such that a =
pa = pa, etc. Consequently, a € Q since p°* € Q for some integer s. Hence
P* C Q and, as a result, Q = P~

If Q = P¥ then Q + P* is a P-primary ideal properly containing P* (10,
p. 154). Therefore, by (iii) Q + P* = P! {or some integer ¢ > k. Thus, there is
an integer m such that ¢ > m > k and Q C P™ but Q ¢ P™*'. There is an
ideal C such that Q = P"C and C ¢ P. As before, it will follow that C = R
and Q = P™

(x) If P is a minimal prime ideal of an ideal B and # is the least positive in-
teger such that P" is an isolated primary component of B andi f P* # P"+}
then P does not contain the intersection of the remaining isolated primary
components of B.

Since B is equal to its kernel, let B = P" /N B’, where

B =NP*

is the intersection of all the isolated primary components of B except P,
Since B C P* and B (Z P**!, there is an ideal C such that B = P"C, where
C @ P. 1t follows that C C P,*® for each « since B C P, and P" {{ P,.
Therefore C C B’ and B’ (Z P since C  P.

Properties (vi), (ix), and (x) show that Il implies I11.

Assume III is valid and A4 and B are ideals such that 4 < B. Since 4 and B
are equal to their kernels, let

5= (0 n(pr)
and
A= (Qr) (e

where P’ is a minimal prime ideal of .4 but not of B, P’ is a minimal prime
ideal of B but not of A4, and P is a minimal prime ideal of both 4 and B. Also,
the exponents Aa, ua, s, and v, denote the least positive integers such that
P, Pg%8 are isolated primary components of B and P,*®, P.,””’" are isolated
primary components of .. Clearly Ao < po lor each « since P« C P~ Let

- (om0 7).
Then for x € BC,
X = z: biciy
- A

where b, € B and ¢; € C for each 4. Therefore b, € Pla ¢, € Pl and
c; € P.""7 for each «, 7, and consequently b,¢c; € P,**and b,¢; € P.”"’". Hence
x € Pleand x € P,””’ for each «, 7, and, as a result, BC C 4. It is obvious

that 4 C C.
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Any minimal prime ideal P of BC must contain B or C. If B C P, then P
is a minimal prime of B and also of 4. Hence P = P, for some a. If B P,
then C C P and P is a minimal prime ideal of 4 and also of C. In this case
P = P."” for some 7. In particular, any minimal prime ideal of BC must be a
minimal prime ideal of 4. Therefore, let

o= ()0 (08)

be the kernel of BC and let u,” and »,” be the minimal exponents such that
P and P”’7 are isolated primary components of BC. Clearly, u. < o’ and
v, < v./. Furthermore, P””"" is an isolated primary component of C, since
A C CCP"” and P"’is an isolated primary component of A. Thus, since
B P,” and BC C P,””’7, it follows that C C P '"”7. This being the case, one
concludes that »,” < », and hence », = v,. If Pje = P, "' then clearly
Ba = po'. Suppose that Plle # Pla*! Since every ideal is equal to its kernel,
every non-maximal prime is idempotent. Thus, one sees that P, is a maximal
ideal. Let
¢ = p Paﬂa‘)\‘S) N ( N P:,VT) ,
“a T

B =(nN Ps”) N (Q Pi*Y,

d+#a
and
A = P Py
0re) N (0F7)
Then by 1II(¢), Pq 2D A4’, and since P, is maximal, P/ + A’ = R. Thus
A =Pt A =Prte.A' Similarly B' @ P,P)*+ B’ = R, and B = P, N\ B’
= P.B’. One sees that C’ ¢ P, since 4" C C" and A"  P,. Therefore,

Prara 4 ' = R and C = Pl (' = Pl (.

As a consequence, BC = P« B'C’ where B'C’  P,. Thus P, is an isolated
primary component of BC and u, = w.’. We have shown that p, = .’ and
v. = v,” for each a, 7. Thus the kernels of BC and 4 are equal and hence
BC = A. Then I follows from III and the proof of the theorem is complete.

As a corollary to this theorem, a generalization of a theorem due to Asano
(1, p. 85) can be given.

CoROLLARY. If R is a ring wn which

(1) to every ideal A contained in a prime ideal P there is an ideal C such that
A = PC, and

2) 0) = 0: N\ Qs...MN\Q,, where Q; is Pprimary for each 1,
then R is a direct sum of finitely many Dedekind domains and special primary
rings. Consequently every ideal is a product of prime ideals (1, p. 83).

Proof. Suppose the representation of the 0-ideal is an irredundant represen-
tation and P; # P, for ¢ # j. By the theorem above, R is a multiplication ring,
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and from the properties of a multiplication ring, one sees that Q; + Q; = R
for 7 # j. Therefore, R is a direct sum, R = R; ® R,... ® R,, where R; is
isomorphic to R/Q;. If P;is non-maximal, then Q; = P; and R/(Q; is a Dede-
kind domain. If P, is maximal, then Q; is a power of P; and R/Q; is a primary
ring in which there are no ideals between the unique maximal ideal and its
square. In this case, R/Q; is a special primary ring.

It is well known that a multiplication ring is a subring of a cartesian product
of Dedekind domains and special primary rings (3, p. 323). The following
example, suggested to the author by Professor L. I. Wade, is an example of a
multiplication ring which is not equal to a cartesian product of Dedekind
domains and special primary rings.

Let R denote the set of all sequences ¢ = {a;} where the a; are taken from
the field of two elements and a, = @y11 = @pys = .. . for some n. Fora = {a;}
and b = {b,}, define ¢ 4+ b = {a; + b;} and a-b = {a;b;}. Thus R is a ring
in which every element is idempotent. Consequently if A is an ideal of R
contained in the ideal B, 4 = BA. [tisclear that R is a subring of the cartesian
product R’ of countably many copies of the field of integers modulo 2. How-
ever, R # R’, since R’ contains uncountably many elements and R contains
only countably many elements.
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