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ON THE NASH EQUILIBRIA FOR THE
FCFS QUEUEING SYSTEM WITH
LOAD-INCREASING SERVICE RATE
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Abstract

We consider a service system (QS) that operates according to the first-come–first-served
(FCFS) discipline, and in which the service rate is an increasing function of the queue
length. Customers arrive sequentially at the system, and decide whether or not to join
using decision rules based upon the queue length on arrival. Each customer is interested
in selecting a rule that meets a certain optimality criterion with regard to their expected
sojourn time in the system; as a consequence, the decision rules of other customers must
be taken into account. Within a particular class of decision rules for an associated infinite-
player game, the structure of the Nash equilibrium routeing policies is characterized. We
prove that, within this class, there exist a finite number of Nash equilibria, and that at
least one of these is nonrandomized. Finally, with the aid of simulation experiments,
we explore the extent to which the Nash equilibria are characteristic of customer joining
behaviour under a learning rule based on system-wide data.
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1. Introduction

This paper looks at customer joining behaviour in a first-come–first-served (FCFS) single-
server queueing system, where the service rate responds to changes in the queue size. Customers
are prepared to join the system only if their expected time there is projected to be not too high.
However, due to the nature of the service rate function, the routeing decisions of customers that
arrive at the system in the future could affect the sojourn times of customers that are already
present in the system.

In order to make an assessment as to whether or not quality-of-service requirements will be
met upon joining such a system, assumptions regarding the form of the routeing decisions taken
by other customers (as to whether to join or balk) will have to be made. The routeing decision
to be made by each customer is whether or not to join the system on the basis of quantities that
may depend on the number of customers observed on arrival at the system.

This leads us to analyse the problem as an infinite-player noncooperative (stationary) game,
where the expected sojourn times at particular entry states are considered. Here, the aim is
to characterize the conditions under which Nash equilibrium routeing policies exist, and to
explore the structure of such policies.
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We also examine a scenario in which customers base their joining decisions on sample mean
sojourn times, at particular entry states, of customers that have previously passed through the
system. Thus, routeing decisions are subject to dynamic learning. Using simulation methods,
we explore the extent to which the long-term (nontransient) behaviour of the system under the
learning rule adheres to that under the Nash equilibria.

The seminal and most relevant work on the game-theoretic analysis of this class of queueing
system was carried out byAltman and Shimkin [2], who investigated a processor-sharing system.
They established the existence and uniqueness of a symmetric Nash equilibrium joining policy
for the stationary game; it was also demonstrated, via simulation methods (and, in [1], using
the theory of the stochastic approximations algorithm), that it can be used to characterize
the convergent behaviour of the system (in an almost-sure sense) when customers base their
joining decisions on a certain class of dynamic learning rule. (Later in the paper, we consider
this learning rule for our system.) Buche and Kushner [6] analysed a modified learning rule
for the processor-sharing system in which a discount factor was incorporated: this allowed
the most recent system data to be weighted more heavily than was that from the distant past.
Again, using theory related to stochastic approximations, they showed that their learning rule
converges to that of the symmetric Nash equilibrium in a weak sense.

The general theory developed in [2] was applied to a multiple-server retrial system in [4],
and to a FCFS system in which the service rate is nonincreasing in the system load in [5].
The analysis of the processor-sharing system was extended, in [3], to the case in which
customers arrive at the system with differing quality-of-service requirements (although with
the same exponential service distributions). Existence of a Nash equilibrium for this class-
heterogeneous scenario was established; uniqueness was also asserted, albeit under the proviso
that the interarrival times were also independent and identically exponentially distributed (in
order to facilitate a coupling argument).

The notion of individual optimality pertains neither to the processor-sharing system of [2] nor
to the one considered in this paper, unless the routeing decisions of future arrivals are taken into
account; this is because the sojourn time of a customer who enters such a system will depend
on the joining rules adopted by future customers. Systems in which the characterization of an
individually optimal policy is possible, without having to condition on the decision rules of
others, were considered in [9] and [10], for example. Lippman and Stidham [8] also considered
an exponential service system, consisting of a FCFS queue with a concave increasing, bounded
service rate. However, they made the key assumption that a ‘customer’s holding time is not
affected by future arrivals’: thus, individual optimality can be characterized there.

The rest of the paper is organized as follows. In Section 2, we specify the model in detail,
including a more thorough description of the decision rules used by the arriving customers. In
Section 3, the generic random variables, and various processes defined with respect to these,
will be introduced. In Section 4, we use coupling arguments to establish stochastic order
results for the sojourn time in QS with respect to the entry state. This is followed up, in
Section 5, by a discussion on monotonicity and continuity of the sojourn time with respect to
symmetric threshold policies. The properties established in these latter two sections are then
brought together in Section 6 to characterize the existence, and structure, of symmetric Nash
equilibrium joining policies for the stationary game. An algorithm for finding the symmetric
Nash equilibrium policies is outlined in Section 7. A simulation of the system under a similar
learning rule to the one proposed in [2] is presented in Section 8. Plots, against time, of
the empirical average sojourn times and of the entrance probabilities for various arrival states
are presented, and we argue that these show a close correspondence to the behaviour under the
stationary game when the Nash equilibrium is unique. We conclude our discussion in Section 9.
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2. The model

We let Z+ = {1, 2, . . . }, N = Z+ ∪ {0}, and R+ = {x ∈ R : x > 0} throughout the paper.
An arriving customer has to choose between either joining a shared service system, which is
a FCFS queue (denoted by QS), or balking. It is assumed that QS has a buffer size B, which
may be finite or infinite. Any customer who arrives when the buffer is full is not permitted to
enter the system.

The departure process in QS at queue length x forms a Poisson process at rate µ(x), where
µ(x) is a strictly increasing, bounded function on x ∈ {1, 2, . . . , B}, with µ(0) = 0. We set
µ̄ = sup{µ(x), x = 1, 2, . . . }.

Let θ be the quality-of-service requirement. If an arriving customer perceives that the
(expected or empirical) sojourn time in QS is greater than this value, then it will be reluctant
to enter the system. It is assumed that µ(1)−1 < θ . This condition ensures that it is always
worthwhile for a customer to enter QS if the system is empty upon arrival.

Let the number of customers in QS at time t be denoted by X(t). Let Ak be the arrival time
of the kth customer to the system, where 0 = A0 < A1 < A2 < · · · ; denote this kth customer
by the label Ck , k ∈ N, where it is assumed that C0 arrives at time A0 (i.e. at time 0). We call
the sequence of customers C0, C1, . . . , Ck, . . . the (overall) arrival stream. The decision as to
whether or not Ck enters QS is taken on the basis of X(Ak), the queue length in QS just prior
to Ck’s arrival.

A customer within the arrival stream can either be controlled or uncontrolled, with probability
1 − p or p, respectively, independently of all other customers and irrespective of the state of
the system upon arrival. If the customer that arrives at time Ak , say, is uncontrolled, then it will
enter QS if and only if X(Ak) < B. We label the rth controlled customer who could potentially
arrive at (without necessarily entering) the system by C(r), r ∈ Z+.

We further define T (r) to be the arrival index corresponding to the rth controlled customer;
within the overall arrival stream, the rth controlled customer receives the label CT (r), and
arrives at time AT (r). The precise construction of the function T (·) : Z+ → N will be given in
Section 3.

A decision rule u(·) : {0, 1, . . . , B −1} → [0, 1] is defined to be a function that specifies the
probability that a customer obeying it enters QS. This probability is equal to u(x) if the number
of customers in QS is equal to x just prior to the customer’s arrival. Let U denote the set of
all such decision rules and define uk(·) to be the decision rule associated with customer Ck ,
k ∈ N, and u(r)(·), r ∈ Z+, to be the decision rule associated with the rth controlled customer
C(r). A policy π = (u(1), u(2), . . . , u(r), . . . ) ∈ U∞ is a collection of decision rules whose rth
member, u(r)(·), r ∈ Z+, represents the decision rule associated with C(r).

Let vk(x, π), x ∈ {0, 1, . . . , B −1}, be the sojourn time of Ck in QS, given that x customers
were present in QS just prior to Ck’s arrival and that any controlled customer arriving in the
future adheres to its own decision rule, inferred from π . Furthermore, define Vk(x, π) to be the
expected value of vk(x, π). We draw attention to the slight abuse of terminology, insofar as π

need only represent the collection (u(k′+1), u(k′+2), . . . ), where k′ := max{r ∈ N : T (r) ≤ k}:
for a given x, and by the assumption that Ck joins QS, (u(0), u(1), . . . , u(k′−1), u(k′)) does not
provide any additional information about vk(x, π).

Also, let v(k)(x, π), x ∈ {0, 1, . . . , B−1}, be the sojourn time of the kth controlled customer
to enter QS, given that x customers were present in QS just prior to the arrival of C(k) and that
any controlled customer arriving in the future adheres to its own decision rule, inferred from π .
Furthermore, we define V (k)(x, π) to be the expected value of v(k)(x, π). Here, π need only
represent (u(k+1), u(k+2), . . . ).
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There is no collaboration between customers, and each controlled customer seeks to choose
an optimal joining rule with regard to some measure of their projected sojourn time in QS and
the quality-of-service requirement. Bearing these points in mind, we are led to analyse this
system within the paradigm of the infinite-player noncooperative game.

A decision rule uk(·) for the kth customer in the overall arrival stream is said to be optimal
against the policy π if

uk(x) =

⎧⎪⎨⎪⎩
1 for Vk(x, π) < θ,

0 for Vk(x, π) > θ,

q ∈ [0, 1] for Vk(x, π) = θ,

with x ∈ {0, 1, . . . , B − 1}. The collection of all possible decision rules of Ck that are
optimal against π is denoted by Uk(π), while a policy π = (u(1), u(2), . . . ) is said to be a
Nash equilibrium policy if, for every r ∈ Z+, the decision rule of the rth controlled customer
u(r)(·) is optimal against π .

Under this regime, there is no guarantee that uncontrolled customers will ever exhibit optimal
behaviour.

3. Random variables and processes

Let {Mi, i ∈ Z+}, {Nj , j ∈ Z+}, {Uk, k ∈ Z+}, {Uφ
k , k ∈ N}, and {U ′

l , l ∈ Z+} be mutually
independent sequences of random variables, where

• {Mi, i ∈ Z+} is a sequence of independent and identically distributed (i.i.d.) random
variables with mean 0 < λ−1 < ∞;

• {Ak, k ∈ N}, the sequence of arrival times to the system, is such that A0 := 0 and
Ak := ∑k

i=1 Mi , k ∈ Z+;

• {Uk, k ∈ N} is a sequence of i.i.d. random variables, uniformly distributed on the interval
(0, 1], whose member Uk , for example, will be used to decide whether or not customer
Ck enters QS;

• {Uφ
k , k ∈ N} is a sequence of i.i.d. uniform random variables on (0, 1] used to determine

whether an arrival to the system is controlled or uncontrolled;

• {Nj , j ∈ Z+} is a sequence of i.i.d. exponential random variables with mean µ̄−1 < ∞;

• {Sl, l ∈ Z+}, the sequence of potential departure times for customers in QS, is such that
Sl := ∑l

j=1 Nj ; and

• {U ′
l , l ∈ Z+} is a sequence of i.i.d. uniform random variables on (0, 1] used to determine

whether a potential departure time corresponds to an actual departure or a dummy event.

We further define {tn, n ∈ Z+} to be the order statistics for the set {Ak}∪ {Sl}, where ti < tj
for i < j .

The specifications of the arrival decisions and departures from QS are presented at the end
of the section. These will provide further motivation for the formal definitions of the stochastic
processes, which are given next.

Definition 1. (Queue-length process.) For a given initial state X(0) = x0 and policy π , let
{X(t), t ≥ 0} be the queue-length process, where X(t) represents the number of customers in
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the system at time t . This process is defined to be left continuous and piecewise constant, with
its potential jumps described by the following relations, where 1{·} is the indicator function:

X(A+
k ) = X(Ak) + 1{Uk<uk(X(Ak))}, k ∈ N,

X(S+
l ) = X(Sl) − 1{U ′

l <µ(X(Sl))/µ̄}, l ∈ Z
+.

Note that if the {Ul} were chosen to be uniform on the interval [0, 1], rather than on (0, 1],
then we would also need to include X(Sl) > 0 inside the indicator function in the second of
the two relations.

Definition 2. (The remaining service transitions (RST) process.) Let {Z(t), t ≥ 0} be the RST
process. This process is defined to be left continuous, piecewise constant, and nonincreasing,
such that Z(0) = X(0) = x0 and its potential jumps satisfy the following relation:

Z(S+
l ) = Z(Sl) − 1{Z(Sl)>0,U ′

l <µ(X(Sl))/µ̄}, l ∈ Z
+.

When C0 is in the queue, Z(t) represents the number of customers present less those that are
queueing behind C0 (or the number of actual service transitions that still need to occur before
C0 exits) at time t , and Z(t) = 0 if customer C0 is not present at time t .

Definition 3. (Sojourn time.) If C0 enters QS then we define its sojourn time to be

v0 = min{t : Z(t) = 0}.
3.1. Arrivals at QS

At time Ak , customer Ck arrives at QS and enters the system with probability γ , say, which
depends on its decision rule and the value of X(Ak). The actual decision is based on the values
of the random variable Uk and γ in the following way:

Ck enters QS if and only if Uk ≤ γ.

The mapping T (·) : Z+ → N is defined more precisely as follows:

T (r) = min

{
n ∈ N :

n∑
l=0

1{Uφ
l >p} = r

}

for r ∈ Z+. The set of indices corresponding to controlled customers in the overall arrival
stream is

I = {m ∈ N : there exists an r ∈ Z
+ such that m = T (r)}.

Thus, for k ∈ I we have uk(x) = u(T −1(k))(x), and for k /∈ I we have uk(x) ≡ 1 for x ∈
{0, 1, . . . , B − 1}.
3.2. Service at QS

For ease of exposition, define xl to be equal to X(Sl), the queue length in QS just prior
to a potential departure at time Sl . If U ′

l ∈ (µ(xl)/µ̄, 1] then Sl is considered to be a dummy
service-completion instant; otherwise any customer at the server completes service and departs
from the system.

The above procedure utilizes a uniformization technique (see [7]). The fact that such a
procedure generates actual departure times, with the correct distribution, can be seen as follows.
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As long as the queue length remains at x ∈ Z+, the next potential departure is generated
according to a Poisson process with rate µ(x). Now consider a Poisson process in which events
occur at the uniform rate µ̄, the fastest rate at which departures could possibly occur. Whenever
the queue length is x and an event from the Poisson process with rate µ̄ occurs, it corresponds
to an actual departure with probability µ(x)/µ̄, independently of all other events. However,
since this corresponds to a Bernoulli sampling of a Poisson process, departures at queue length
x are Poisson with rate µ̄ × µ(x)/µ̄ = µ(x), as anticipated.

4. Monotonicity with respect to entry-queue size

We show, in the sense of stochastic dominance, and in the sense of expectation, that v0(x, π)

is an increasing function of x for any π that is a member of a certain class of policies. This
class is defined as follows.

Definition 4. Let T be the class of decision rules that are nonincreasing functions of the queue
length x ∈ {0, 1, . . . , B − 1}. Also, let T∞ be the class of policies in which the decision rule
for each controlled customer is a member of T. We note that the decision rule corresponding to
an uncontrolled customer trivially belongs to T; thus, with regard to the proofs in this section,
no special distinction need be made between controlled and uncontrolled customers.

Evaluating the distribution of v0(x, π) appears to be less than straightforward in any but the
simplest cases. This difficulty will be circumvented by using stochastic coupling and forward
induction techniques. The collections of random variables and stochastic processes (to which
we shall loosely refer as ‘systems’) upon which these stochastic comparisons will be based are
introduced next.

Definition 5. (System X.) This system is characterized by the sets of random variables,
decision rules, and stochastic processes listed below:

(I) M = {Mi}, N = {Nj }, U = {Uk}, Uφ = {Uφ
k }, and U′ = {U ′

l };
(II) the arrival time sequence A = {Ak} and the potential departure time sequence S = {Sl};

(III) the rule that customer C0 enters QS at time A0 = 0, with all other controlled customers
adhering to policy π ∈ T∞;

(IV) the queue-length process {X(t), t ≥ 0}, with X(0) = x;

(V) the RST process {Z(t), t ≥ 0}, with Z(0) = x; and

(VI) v0, the sojourn time of C0 in QS.

Definition 6. (System X̃.) This system is characterized in a similar way to X, except that the
quantities of (ĨI)–(ṼI), below, are defined in terms of those of (Ĩ) in the obvious way. That is,
the system depends on

(̃I) M̃ = {M̃i}, Ñ = {Ñj }, Ũ = {Ũk}, Ũφ = {Ũφ
k }, and Ũ′ = {Ũ ′

l }, which have the same
distributions as M, N , U, Uφ , and U′, respectively;

(ĨI) the arrival time sequence Ã = {Ãk} and the potential departure time sequence S̃ = {S̃l};
(ĨII) the same rule as in (III) for X, with Ã0 = 0;

(ĨV) the queue-length process {X̃(t), t ≥ 0}, with X̃(0) = x + 1;
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(Ṽ) the RST process {Z̃(t), t ≥ 0}, with Z̃(0) = x + 1; and

(ṼI) ṽ0, the sojourn time of C0 in QS.

We intend to relate X to X̃ using the following device.

Definition 7. (Coupling C.) Set

Mi = M̃i, i ∈ Z
+,

Nj = Ñj , j ∈ Z
+,

Uk = Ũk, k ∈ N,

U
φ
k = Ũ

φ
k , k ∈ N,

U ′
l = Ũ ′

l , l ∈ Z
+.

The effect of this procedure is that, under X, the arrival instants {Ak}, the potential departure
times {Sl}, the {Uk}, the positions of controlled customers in the overall arrival sequence, and
the {U ′

l } take the same values as their counterparts under X̃, at each realization.
The next result allows us to infer that, under the above coupling, v0 ≤ ṽ0.

Lemma 1. For the systems X and X̃ under coupling C, in which π ∈ T∞, one of the following
sets of relations will hold at each time t ∈ R+:

X(t) + 1 = X̃(t),

Z(t) + 1 = Z̃(t),
(1)

X(t) = X̃(t),

Z(t) = Z̃(t),
(2)

X(t) = X̃(t),

Z(t) + 1 = Z̃(t).
(3)

Proof. By definition of X and X̃,

Z(0+) = X(0+) = x + 1 < x + 2 = X̃(0+) = Z̃(0+).

Assume that tn+1 corresponds to an arrival with tn+1 = Ar , or a departure with tn+1 = Sm,
such that C0 is still present in QS under X. Before proceeding, we observe that if tn+1 does
indeed correspond to an arrival time then, due to the class of policies and the coupling being
considered, one of the following three scenarios must arise:

(i) Cr enters QS under both X and X̃,

(ii) Cr enters QS under X only, or

(iii) Cr balks under both X and X̃.

Case 1: Suppose that (1) holds at time t+n . First, we assume that tn+1 ∈ {Ak}. Then,
under (i),

X(t+n+1) = X(t+n ) + 1 = X̃(t+n ) = X̃(t+n+1) − 1;
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under (ii),

X(t+n+1) = X(t+n ) + 1 = X̃(t+n ) = X̃(t+n+1);
and, under (iii), the states of the queue-length processes for X and X̃ at time t+n+1 are the same
as they were at time t+n . Also, since Cr would queue behind C0 if it were to enter QS, there
would be no change in the RST processes in each of the above scenarios, i.e.

Z(t+n+1) = Z(t+n ) = Z̃(t+n ) − 1 = Z̃(t+n+1) − 1.

Thus, at time t+n+1, (1) holds under scenarios (i) and (iii), whereas (3) holds under scenario (ii).
Now assume that tn+1 ∈ {Sl}. Since xm < x̃m by assumption, we have µ(xm) < µ(x̃m). If

U ′
m ≤ µ(xm)/µ̄ then an actual departure occurs under both X and X̃. Therefore,

X(t+n+1) = X(t+n ) − 1 = (X̃(t+n ) − 1) − 1 = X̃(t+n+1) − 1,

Z(t+n+1) = Z(t+n ) − 1 = (Z̃(t+n ) − 1) − 1 = Z̃(t+n+1) − 1.

Thus, (1) holds at time t+n+1. If U ′
m ∈ (µ(xm)/µ̄, µ(x̃m)/µ̄] then an actual departure occurs

under X̃ but not under X. Therefore,

X(t+n+1) = X(t+n ) = X̃(t+n ) − 1 = X̃(t+n+1),

Z(t+n+1) = Z(t+n ) = Z̃(t+n ) − 1 = Z̃(t+n+1).

Thus, (2) holds at time t+n+1. Finally, if U ′
m > µ(x̃m)/µ̄ then the states of the processes remain

unchanged, i.e.
X(t+n+1) = X(t+n ) = X̃(t+n ) − 1 = X̃(t+n+1) − 1,

Z(t+n+1) = Z(t+n ) = Z̃(t+n ) − 1 = Z̃(t+n+1) − 1,

meaning that (1) holds at time t+n+1.

Case 2: Suppose that (2) holds at time t+n . It follows that (2) holds at time t+n+1 also, as the
following argument shows. Again, we first assume that tn+1 ∈ {Ak}.

Since the queue lengths are identical under both X and X̃, as are the decision rules for Cr ,
the decision as to whether or not to enter QS will be the same under both systems. Hence,

X(t+n+1) = X̃(t+n+1).

Again, since Cr would queue behind C0 were it actually to enter QS, the states of the RST
processes remain unchanged.

Now assume that tn+1 ∈ {Sl}. Since xm = x̃m, we have µ(xm) = µ(x̃m). If U ′
m ≤ µ(xm)/µ̄

then there is an actual departure under both X and X̃, and so

X(t+n+1) = X(t+n ) − 1 = X̃(t+n ) − 1 = X̃(t+n+1),

Z(t+n+1) = Z(t+n ) − 1 = Z̃(t+n ) − 1 = Z̃(t+n+1).

If U ′
m > µ(xm)/µ̄ then there are no actual departures under either X or X̃, and so there is no

change in either the queue-length processes or the RST processes, i.e.

X(t+n+1) = X(t+n ) = X̃(t+n ) = X̃(t+n+1),

Z(t+n+1) = Z(t+n ) = Z̃(t+n ) = Z̃(t+n+1).
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Case 3: Suppose that (3) holds at time t+n . It follows that (3) holds at time t+n+1 also, as the
argument below shows. Once more, first assume that tn+1 ∈ {Ak}.

For the same reasons as in the previous case, the queue lengths remain equal, i.e.

X(t+n+1) = X̃(t+n+1),

and there are no changes in the RST processes.
Finally, assume that tn+1 ∈ {Sl}. Since xm = x̃m, we have µ(xm) = µ(x̃m). Again, for the

same reasons as in the previous case, if U ′
m ≤ µ(xm)/µ̄ then

X(t+n+1) = X(t+n ) − 1 = X̃(t+n ) − 1 = X̃(t+n+1),

Z(t+n+1) = Z(t+n ) − 1 = (Z̃(t+n ) − 1) − 1 = Z̃(t+n+1) − 1.

On the other hand, if U ′
m > µ(xm)/µ̄ then there is no change in either the queue-length

processes or the RST processes.

Recalling the definition of the sojourn time of C0 in QS, we now have the following lemma.

Lemma 2. For all π ∈ T∞ and k ∈ N, Vk(x, π) is strictly increasing in x, in the sense that,
for x ∈ {0, 1, . . . , B − 2}, there exist constants {δx} such that

Vk(x + 1, π) − Vk(x, π) ≥ δx > 0

uniformly in π .

Proof. Without loss of generality, and to be specific, consider customer C0 and the systems
X and X̃ under coupling C. From the definitions of v0 and ṽ0, and by Lemma 1, v0 ≤ ṽ0,

which implies that E[v0] ≤ E[ṽ0]. To establish the sharp inequality, define the event Dx :

Dx = {Sx+1 < A1, U
′
m ≤ µ(xm)/µ̄, m = 1, . . . , x + 1}.

This is the event that customer C1 arrives no earlier than the (x + 1)th departure under both
systems, where C0 leaves under X at time Sx+1 but becomes the only customer left in QS
under X̃ at that time. By conditioning on this event, and noting that v0 < ṽ0 on Dx and that
P(Dx) > 0, the result follows.

5. Monotonicity and continuity with respect to threshold policies

In this section, we examine the behaviour of the sojourn time in QS with respect to a certain
type of threshold rule, which is introduced below.

Definition 8. For L ∈ N and q ∈ [0, 1], an [L, q]-threshold decision rule u(·) is defined as
follows:

u(x) =

⎧⎪⎨⎪⎩
1 if x < L,

q if x = L,

0 if x > L.

This may be represented more compactly by [L, q], or indeed [g], where g = L+q. Of course,
for B < ∞, [B] is equivalent to [g] whenever g > B.
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We are ultimately interested in the characterization of symmetric policies: these are policies
in which every controlled customer adopts the same decision rule. A policy π in which the
decision rule for each controlled customer is given by [g] is denoted by [g]∞. We call this a
symmetric threshold policy.

We next introduce a further two systems, which will facilitate the proofs of the results of
this section.

Definition 9. (System G.) For this system, (I), (II), (IV), (V), and (VI) are exactly as in the
definition of X. However, (III) becomes

(III) the rule that customer C0 enters QS at time A0 = 0, with all other controlled customers
adhering to policy [g]∞, g ∈ [0, B).

Definition 10. (System G̃.) For this system, (Ĩ), (ĨI), and (ṼI) are precisely the same as in the
definition of X̃. However, the system is further characterized by

(ĨII) the rule that customer C0 enters QS at time Ã0 = 0, with all other controlled customers
adhering to the policy [g̃]∞, g < g̃ ≤ B (where the latter inequality is strict if B = ∞);

(ĨV) the queue-length process {X̃(t), t ≥ 0}, with X̃(0) = x; and

(Ṽ) the RST process {Z̃(t), t ≥ 0}, with Z̃(0) = x.

It is implicit from the definitions of g and g̃ that L < B. Note that, from now on, g ∈ [0, B]
will be taken to mean that 0 ≤ g ≤ B when B is finite, and that 0 ≤ g < B when B is infinite,
unless specified to the contrary.

The next two results will be used to infer results about Vk(·, [g]∞) on the intervals [0, 1]
and [1, B].
Lemma 3. For the systems G and G̃ under coupling C, the following set of relations holds at
each time t ∈ R+:

X(t) ≤ X̃(t), (4)

Z(t) ≥ Z̃(t). (5)

Proof. Assume that tn+1 corresponds to an arrival time with tn+1 = Ar , or to a potential
departure time with tn+1 = Sm, such that C0 is still present in QS under G̃.

First note that
Z(0+) = X(0+) = x + 1 = X̃(0+) = Z̃(0+).

Now suppose that
X(t+n ) ≤ X̃(t+n ), (6)

Z(t+n ) ≥ Z̃(t+n ).

Case 1: Relation (6) is strict. First assume that tn+1 ∈ {Ak}. If X̃(t+n ) < B then Cr enters
QS under neither, one, or both of G and G̃ (noting that the last of these scenarios certainly occurs
if Cr is uncontrolled); it follows that

X(t+n+1) ≤ X̃(t+n+1)

(which holds with equality when Cr enters QS under G only and X(t+n ) = X̃(t+n ) − 1). If
X̃(t+n ) = B then Cr can only enter QS under G (and will certainly enter under G if Cr is
uncontrolled). Hence,

X(t+n+1) ≤ X̃(t+n+1) = B.
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Since Cr can never queue ahead of C0 in any of these scenarios, there can be no change in the
RST processes, meaning that

Z(t+n+1) = Z(t+n ) ≥ Z̃(t+n ) = Z̃(t+n+1).

Now assume that tn+1 ∈ {Sl}. Since xm < x̃m, we have µ(xm) < µ(x̃m). If U ′
m ≤ µ(xm)/µ̄

then an actual departure occurs under both G and G̃, and so

X(t+n+1) = X(t+n ) − 1 < X̃(t+n ) − 1 = X̃(t+n+1),

Z(t+n+1) = Z(t+n ) − 1 ≥ Z̃(t+n ) − 1 = Z̃(t+n+1).

If U ′
m ∈ (µ(xm)/µ̄, µ(x̃m)/µ̄] then an actual departure occurs under G̃ but not under G, and so

X(t+n+1) = X(t+n ) ≤ X̃(t+n ) − 1 = X̃(t+n+1),

Z(t+n+1) = Z(t+n ) ≥ Z̃(t+n ) > Z̃(t+n ) − 1 = Z̃(t+n+1).

If U ′
m > µ(xm)/µ̄ then there is no change, i.e. (4) holds strictly, and (5) also holds at time t+n+1.

Case 2: Relation (6) holds with equality. First assume that tn+1 ∈ {Ak}. Now Cr enters
QS under neither or both of G and G̃, or just G̃ alone (and the second of these scenarios will
certainly hold if X(t+n ) = X̃(t+n ) < B and Cr is uncontrolled). Therefore,

X(t+n+1) ≤ X̃(t+n+1).

As in the previous case, Cr is unable to queue ahead of C0 and, so, (5) again holds at time t+n+1.
Finally, assume that tn+1 ∈ {Sl}. Since xm = x̃m, we have µ(xm) = µ(x̃m). If U ′

m ≤
µ(xm)/µ̄ then an actual departure occurs under both G and G̃, and so

X(t+n+1) = X(t+n ) − 1 = X̃(t+n ) − 1 = X̃(t+n+1),

Z(t+n+1) = Z(t+n ) − 1 ≥ Z̃(t+n ) − 1 = Z̃(t+n+1).

If U ′
m > µ(xm)/µ̄ then there is no change, i.e. (4) holds with equality, and (5) holds at time t+n+1.

Lemma 4. For the systems G and G̃ under coupling C, with 0 < g < g̃ ≤ 1, the following set
of relations holds at each time t ∈ R+ throughout the sojourn of C0 (in either system):

X(t) = X̃(t), (7)

Z(t) = Z̃(t). (8)

Proof. Since X(0) = x = X̃(0), arrivals into QS , actual departures, and dummy events will
coincide in the two systems during the sojourn of C0, at least until such time that a disparity
in the arrival decisions occurs. However, since 0 < g < g̃ ≤ 1, the first opportunity for a
customer to enter QS under G̃, but not under G, is when the queues are completely empty, and
C0 will obviously have left by this time. Therefore, as a result, the relations (7) and (8) hold.

Next, we define the following quantity for the ensuing discussion, where [g̃] = [L̃, q̃]:
q̂ := 1 − (1 − q̃) 1{L=L̃} .
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Lemma 5. For each k ∈ N and x ∈ {0, 1, . . . , B − 1},
(i) Vk(x, [g]∞) is constant in g on [0, 1] and

(ii) Vk(x, [g]∞) is strictly decreasing in g on [1, B].
Proof. Without loss of generality, and to be specific, consider customer C0 and the systems

G and G̃ under coupling C. From the definitions of v0 and ṽ0, and by invoking Lemma 3, it is
easy to see that

E[v0] ≥ E[ṽ0],
which holds with equality whenever 0 ≤ g < g̃ ≤ 1, by Lemma 4, thereby establishing part (i).
We thus assume that 1 ≤ g < g̃ and define the following events: for x < L,

Fα = {AL−x < S1; AL−x+1 > Sx+1; U
φ
L−x > p; UL−x ∈ (q, q̂];

U ′
1 ∈ (µ(X(S1))/µ̄, µ(X̃(S1))/µ̄];

U ′
m ≤ µ(X(Sm))/µ̄, m = 2, . . . , x + 1}.

Any realization of the systems on Fα under coupling C results in the following occurrences, in
the order presented.

1. L − x − 1 customers enter QS under both G and G̃, resulting in the queue size increasing to
L and C0 remaining at position x + 1 in both cases.

2. A controlled customer enters QS under G̃ but not under G. This results in the queue size
under G̃ increasing from L to L + 1, but remaining at L under G, with C0 still at position x + 1
in both cases.

3. A departure occurs under G̃ but not under G. This results in the queue size being equal to L

in both cases, C0 remaining at position x + 1 under G, and C0 moving to position x (or indeed
exiting the system if x = 0) under G̃.

4. A further x departures occur under both systems (before the next arrival), resulting in C0
leaving under G̃ (if it is still present), but residing at the head of the queue under G, at time Sx+1.

For L ≤ x < B,

Fβ = {Sx−L+1 < A1 < Sx−L+2; Sx+1 < A2; U
φ
1 > p; U1 ∈ (q, q̂];

U ′
m ≤ µ(X(Sm))/µ̄, m = 1, . . . , x + 1, m 
= x − L + 2;

U ′
m ∈ (µ(X(Sm))/µ̄, µ(X̃(Sm))/µ̄], m = x − L + 2},

which, under coupling C, results in the following occurrences, in the order presented.

1. The queue size under both G and G̃ decreases from x + 1 to L, and C0 moves to position L

in both cases.

2. A controlled customer enters QS under G̃ but not under G; the resulting queue sizes are L

and L + 1 under G and G̃, respectively, and C0 remains at position L in both cases.

3. A departure occurs under G̃ but not under G. This results in the queue size being equal to L

in both cases, C0 remaining at position L under G, and C0 moving to position L − 1 (or even
exiting the system if L = 1) under G̃.
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4. A further L − 1 departures occur under both G and G̃ before the second arrival, resulting
in C0 leaving under G̃ (if it is still present), but residing at the head of the queue under G, at
time Sx+1.

Define
Fζ = 1{x<L} Fα + 1{x≥L} Fβ.

By conditioning on Fζ , it is easy to establish that E[v0] > E[ṽ0], and (ii) follows.

Note that, in the above proof, for clarity of exposition µ(xm) and µ(x̃m) have been written
more explicitly as µ(X(Sm)) and µ(X̃(Sm)), in order to avoid confusion with the ‘x’ that
appears in the indexing of the random variables.

We next show that, when other controlled customers adhere to the decision rule [g], the
expected sojourn time of a customer in QS, for particular entry states x, is a continuous function
of g. This result is established under the proviso that the following, not very restrictive, condition
holds.

Condition 1. (Stability condition.) Under system G, there exists a bound Dx such that

E

[ ∞∑
k=1

1{Ak≤v0}
]

≤ Dx

uniformly in g ∈ [0, B].
This condition says that the expected number of arrival instants that occur during the sojourn

of C0 in QS, when controlled customers adopt the threshold decision rule [g], is bounded above
by Dx , over all g ∈ [0, B]. This condition will certainly be satisfied in the case in which the
interarrival times, which are given by the Mi , are exponential. To see this, consider a system
similar to G except that its service rate is always µ(1). We flag quantities that are associated
with this system with a superscript ‘∗’. Under a coupling similar to C between this system
and G, it can be shown that v0 ≤ v∗

0 for all g ∈ [0, B]. However, it is also clear that v∗
0 only

depends on the Nj and the U ′
l and, therefore, is independent of the arrival instants Ak .

Hence,

E

[ ∞∑
k=1

1{Ak≤v0}
]

≤ E

[ ∞∑
k=1

1{Ak≤v∗
0 }

]

=
∫ ∞

0
E

[ ∞∑
k=1

1{Ak≤t}
]
fv∗

0
(t) dt

= λ

∫ ∞

t=0
tfv∗

0
(t) dt

= λ E[v∗
0 ],

where fv∗
0
(·) is the probability density function of v∗

0 . However, E[v∗
0 ] is just the expected value

of the sum of x + 1 i.i.d. exponential random variables, each with mean µ(1)−1. Thus,

E

[ ∞∑
k=1

1{Ak≤v0}
]

≤ λ
x + 1

µ(1)
.
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Lemma 6. Suppose that the stability condition holds. Then, for every k ∈ N and x ∈
{0, 1, . . . , B − 1}, Vk(x, [g]∞) is continuous in g ∈ [0, B].

Proof. Without loss of generality, and to be specific, consider customer C0 and the systems
G and G̃ under coupling C, with the additional restrictions that g = L + q and g̃ = L + q̃,
0 ≤ q < q̃ ≤ 1. Define

k0 = inf{k ∈ Z
+ : Ak < v0, X(Ak) = L, Uk ∈ (q, q̃], Uφ

k > p},
where inf ∅ := ∞. Indeed, if k0 = ∞ then v0 = ṽ0. For k0 = k < ∞, we have ṽ0 > Ak and

E[ṽ0 − v0 | k0 = k] = E[ṽ0 − Ak | k0 = k] − E[v0 − Ak | k0 = k]
≤ (L + 1)/µ(1).

This follows from the fact that, on the first line, the first term on the right-hand side is bounded
above by the expected time taken to serve L+ 1 customers at the slowest possible rate of µ(1),
and from the fact that the second term on the right-hand side is bounded below by 0.

It is easy to deduce that {Ak < v0} is independent of {Uk ∈ (q, q̃]} (noting that the former
is equivalent to {Z(Ak) > 0}). Therefore,

P(k0 = k) ≤ P(Ak < v0, Uk ∈ (q, q̃])
= P(Ak < v0) P(Uk ∈ (q, q̃])
= (q̃ − q) P(Ak < v0)

and, hence,

E[ṽ0 − v0] ≤ L + 1

µ(1)

∞∑
k=1

P(k0 = k)

≤ (q̃ − q)
L + 1

µ(1)

∞∑
k=1

P(Ak < v0).

By the monotone convergence theorem,
∑∞

k=1 P(Ak < v0) can be expressed as

E

[ ∞∑
k=1

1{Ak<v0}
]
.

Furthermore, observe that q̃ − q = g̃ − g. Thus,

E[ṽ0 − v0] ≤ (g̃ − g)
L + 1

µ(1)
Dx,

as required.

6. Structure and existence of the Nash equilibrium

In this section, we first explore the required structure of any candidate symmetric Nash
equilibrium policy (SNEP) within the T∞ class. We then go on to prove that there exist a
finite number of SNEPs within this class, and that at least one of these is characterized by a
nonrandomized threshold.
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Lemma 7. Suppose that π ∈ T∞. Then

(a) any decision rule of Ck optimal against π must be a threshold decision rule, and

(b) the set of decision rules of Ck optimal against π , i.e. Uk(π), can be found in the following
way, where L̂ := min{L ∈ Z+ : Vk(L, π) ≥ θ}:

(i) if Vk(L̂, π) = θ then Uk(π) = {[L̂, q] : 0 ≤ q ≤ 1};
(ii) otherwise Uk(π) = {[L̂, 0]}.

Proof. The proof follows from the definition of an optimal decision rule and the monotonicity
result of Lemma 2. Since Vk(L, π) ≥ (L + 1)/µ̄ → ∞ as L → ∞, L̂ is well defined.

In the following discussion, the best response map of an arbitrary controlled customer C(k),
say, is constructed against the background of other controlled customers adhering to the policy
[g]∞. For simplicity, and without loss of generality, we construct this map for customer C0:
this is as if to say that C(k) corresponds to C0 in the overall arrival stream.

We define the mapping l(·) (as introduced in [2] but with a slight modification) as follows.
For g ∈ [0, B], let

l(g) = min{n ∈ N : n < B, V0(n, [g]∞) ≥ θ}
with min ∅ := B. Since V0(x, ·) ≥ (x + 1)/µ̄ → ∞ as x → ∞, l(·) is well defined.
Furthermore, let g1, g2, . . . , gJ be the points of discontinuity of l(g) for g ∈ [0, B], where

0 =: g0 ≤ g1 < g2 < · · · < gJ−1 < gJ ≤ gJ+1 := B.

Notice that g1 = 0 if there is a point of discontinuity at the origin, and that gJ = B if there is
one at B whenever B is finite.

Following methodology similar to that in [2], we define the point-to-set mapping

G∗(g) : [0, B] → 2[0,B]

as
G∗(g) = {g′ ∈ [0, B] : [g′] is optimal for C0 against [g]∞}.

Since [g]∞ is a member of T∞, we can invoke Lemma 7 to deduce that G∗(·) is given by

G∗(g) =

⎧⎪⎨⎪⎩
{l(g) + q, 0 ≤ q ≤ 1} if V0(l(g), [g]∞) = θ, l(g) < B,

l(g) if V0(l(g), [g]∞) > θ, l(g) < B,

B if l(g) = B.

By the aforementioned properties of V0(·, [g]∞), and provided that Condition 1 holds, it can
easily be deduced that

l(g) =
{

l(0), 0 ≤ g ≤ 1,

l(0) + j, g > 1, gj < g ≤ gj+1.

Thus, G∗(g) can be re-expressed as

G∗(g) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

l(0) if g < g1,

[l(0) + j − 1, l(0) + j ] if g = gj , j = 1, . . . , J,

[l(0), l(0) + 1] if g0 = g1 and g ≤ 1,

l(0) + j if gj < g < gj+1, j = 2, . . . , J,

l(0) + 1 if g0 < g1 < g < g2, or g0 = g1 and 1 < g < g2.
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Observe that the graph of G∗(·) is staircase arc-connected and nondecreasing whenever g0 < g1;
a similar structure will hold when g0 = g1, except that we have a rectangular region with
bottom-left and top-right coordinates given by (0, l(0)) and (1, l(0) + 1), respectively.

Define the map H(g) := G∗(g)−g, with the same domain as G∗(·). Here, G∗(g)−g is taken
to mean [min{G∗(g)} − g, max{G∗(g)} − g]. The graph of the map H(·) has a ‘sawtooth-like’
structure except in the case that g0 = g1, when this is modified to include a rhombus on the
interval [0, 1] with corners at (0, l(0)), (0, l(0) + 1), (1, l(0) − 1), and (1, l(0)). We shall
employ this construction in the proof of the following theorem.

Theorem 1. Suppose that Condition 1 holds. Then, in the class of policies T∞,

(i) there exist a finite number of SNEPs, and

(ii) at least one of the SNEPs is nonrandomized.

Proof. The thresholds associated with the SNEPs correspond to the zeros of the map H(·).
By Lemma 5(i), and using the fact that l(0) ≥ 1, we have min{H(g)} > 0 for all g ∈ [0, 1).
Thus, we restrict our discussion to g ∈ [1, B].

Suppose that B is finite. Then, since min{G∗(1)} ≥ 1 and max{G∗(B)} ≤ B, we have
min{H(1)} ≥ 0 and max{H(B)} ≤ 0. Thus, by the structure of the graph of H(·), and the
intermediate value theorem, there must exist a g∗ ∈ [1, B] for which 0 ∈ H(g∗).

Now suppose that B is infinite. Notice that V0(x, [g]∞) is bounded below by (x + 1)/µ̄,
which is independent of g, and that (x + 1)/µ̄ → ∞ as x → ∞. Thus, there exists some
n ∈ Z+ for which V0(n, [g]∞) > θ for all g ≥ 0. This implies that l(g) ≤ n for all g ≥ 0
and, so, the number of (vertical) jump points of G∗(·) (and H(·)), which is given by J , must be
finite. Therefore, G∗(g) = l(gJ ) + 1 < ∞ for all g > gJ , which implies that H(g) < 0 for
all g sufficiently large. From this, together with the fact that min{H(1)} ≥ 0, it follows that
there exists a g∗∗ ∈ [1, ∞) such that 0 ∈ H(g∗∗).

As remarked earlier, since the number J of vertical jumps is finite, the number of zeros of
H(·) is bounded (for B finite and infinite) and, so, finiteness of the number of SNEPs follows,
establishing part (i).

Now suppose, in contradiction to part (ii), that there are no nonrandomized SNEPs. By
part (i), at least one randomized SNEP exists. Such a point must correspond to a jump point
of H(·). Indeed, an SNEP occurs at g = gm if and only if a zero that is strictly interior to the
vertical part of the graph at gm, i.e. min{H(gm)} < 0 < max{H(gm)}, also occurs. However,
we know that min{H(1)} ≥ 0; thus, by the intermediate value theorem, there exists at least one
point g′ ∈ [1, gm), on a diagonal section of the graph (which is taken to include corners), for
which 0 ∈ H(g′). Any such point must correspond to a nonrandomized threshold, providing
the contradiction required for part (ii).

7. Computation of the SNEPs

The computation of the SNEPs is considered in this section. It will be assumed that the
stability condition (Condition 1) holds throughout. As usual, attention will be restricted to
customer C0, although the argument extends easily to any Ck with only minor changes in the
subscript indexing. The procedures outlined require the calculation of V0(x, [g]∞) for various
values of x and g, the details of which have been deferred to Appendix A.

https://doi.org/10.1239/aap/1118858634 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1118858634


Nash equilibria for the FCFS system 477

7.1. Evaluating the jump points of G∗(·)
The lowest point of the graph of G∗(·) at the origin is given by l(0). The number of jump

points is given by

J = max{j ∈ J : V0(l(0) + j − 1, [0]∞) ≥ θ, V0(l(0) + j − 1, [B]∞) ≤ θ},
with max ∅ := 0, where J := {1, 2, . . . , B − l(0)}. The jump points gj satisfy

V0(l(0) + j − 1, [gj ]∞) = θ

for j = 1, . . . , J .
From the monotonicity and continuity of V0(·, [g]∞), the j th equation will have a solution

if and only if

V0(l(0) + j − 1, [0]∞) ≥ θ and V0(l(0) + j − 1, [B]∞) ≤ θ.

In the case that B = ∞, we might more accurately replace this latter condition by

lim
B→∞ V0(l(0) + j − 1, [B]∞) ≤ θ.

These observations provide the basis for a systematic procedure for evaluating the gj .

7.2. Finding the SNEPs

If an SNEP exists at g∗ ∈ (gj , gj+1) for j = 0, 1, . . . , J , then the line of unit slope
intersects the graph of G∗(·) on the horizontal section interior to gj and gj+1. Indeed, the
height of that section is l(0) + j and, so, we deduce that g∗ is an SNEP in this location if and
only if gj < l(0) + j < gj+1; in fact, g∗ = l(0) + j .

On the other hand, g∗ = gj for some j = 1, 2, . . . , J if and only if the line of unit slope
intersects the vertical section of the graph of G∗(·) at gj , i.e. gj ∈ [l(0) + j − 1, l(0) + j ]. So,
with knowledge of the gj , these observations again provide the basis for a systematic procedure
for finding the SNEPs within the T∞ class.

8. Behaviour of a dynamic learning scheme

Consider a dynamic learning scheme in which each customer bases their joining decision
on data collected by a central entity prior to its arrival at the system. Here it is assumed that
the buffer size, B, is finite, and we consider a service rate function of the form

µ(x) = µ̄

{
1 − a

(x + b)c

}
, x = 1, . . . , B,

where 0 < a ≤ 1, b > 0, and c > 0. We insist upon the presence of uncontrolled arrivals, in
the sense that p is strictly positive.

Under this scheme, each controlled customer follows the decision rule

join QS at time t with probability Sε(θ − V̂t (X(t))),

where ε is a small positive parameter, Sε is an increasing function with Sε(x) = 0 for x ≤ −ε

and Sε(x) = 1 for x ≥ ε, and V̂t (x) is the empirical average (sample-mean) sojourn time of all
customers who have exited QS by time t , but who entered it when the queue length was x.
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Figure 1: The left-hand diagram shows a plot of the empirical average V̂t (x), against time, for entry
states x = 6 (dash–dot line) and x = 7 (solid line), also showing the bands at θ ± ε (dashed lines).
The right-hand diagram shows a plot of entrance probabilities for controlled customers, against the log of

time, for entry states x = 6 (dash–dot line) and x = 7 (solid line). (See Simulation 1.)

The capacity for this scheme to ‘learn’ the Nash equilibria of the system under the stationary
game is investigated using simulation. The examples are chosen to explore, in relative terms,
three different regimes: (a) a small state space and a slowly varying service rate, (b) a large
state space and a service rate quickly approaching the upper bound, and (c) a large state space
and a slowly varying service rate.

Simulation 1. In this example, the arrivals are simulated to form a Poisson process with rate
λ = 9. The buffer size B is set equal to 10, with the service rate function µ(x), for x =
1, . . . , 10, being specified by the parameter settings µ̄ = 10, a = 0.7, b = 0.05, and c = 1.
The parameter p, controlling the entrance of uncontrolled arrivals into the system, is set equal
to 0.25. Also, the quality-of-service parameter θ is set equal to 0.85 and Sε(·) is chosen to
correspond to the uniform cumulative distribution function on the interval (θ − ε, θ + ε).

Under these parameter settings, it can be deduced that l(0) = 6 and g1 = 1.8799, with
the number J of jumps of the graph of G∗(·) being equal to 1. There is a unique SNEP in
the class T∞, located at g∗ = 7. A simulation of this system is performed over a horizon
length of 5000 time units, with ε equal to 0.03. The left-hand diagram of Figure 1 shows a
plot of V̂t (x) against time for entry states 6 and 7, along with horizontal lines at θ − ε and
θ + ε. From a very early stage in the simulation, V̂t (x) stays well below θ − ε for entry states
x = 0, . . . , 5, and stays well above θ + ε for states x = 8 and x = 9. For comparison, we
remark that V0(6, [7]∞) and V0(7, [7]∞) are found to be 0.7959 and 0.9028, respectively. A
plot of the entrance probabilities against the natural logarithm of time, under the learning rule,
for entry states 6 and 7 is depicted in the right-hand diagram of Figure 1. The results of this
experiment appear to support the hypothesis that the system-wide statistics converge to those
corresponding to the stationary threshold at g∗ = 7.

Simulation 2. For this example, the parameter settings are exactly the same as those in Simu-
lation 1, except that the service rate function is specified by the parameters a = 0.9, b = 0.05,
and c = 3 and the size of the state space is somewhat larger, with B = 25. The graph of G∗(·)
again has one jump, with l(0) = 7 and g1 = 1.0666, and, so, we deduce that a single SNEP
resides within the class T∞, at g∗ = 8.

Again, the simulation is performed over 5000 time units. Empirical averages for x =
0, . . . , 6 stay well below θ − ε and, for x = 9, 10, . . . , 24, well above θ + ε. Figure 2 depicts
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Figure 2: The left-hand diagram shows a plot of the empirical average V̂t (x), against time, for entry
states x = 7 (dash–dot line) and x = 8 (solid line), also showing the bands at θ ± ε (dashed lines).
The right-hand diagram shows a plot of entrance probabilities for controlled customers, against the log of

time, for entry states x = 7 (dash–dot line) and x = 8 (solid line). (See Simulation 2.)
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Figure 3: The left-hand diagram shows a plot of the empirical average V̂t (x), against time, for entry
states x = 11 (dash–dot line) and x = 12 (solid line), also showing the bands at θ ± ε (dashed lines).
The right-hand diagram shows a plot of entrance probabilities for controlled customers, against the log of

time, for entry states x = 11 (dash–dot line) and x = 12 (solid line). (See Simulation 3.)

empirical averages for the states x = 7 and x = 8 in the left-hand diagram, and entrance
probabilities in the right-hand diagram. The values of V0(7, [8]∞) and V0(8, [8]∞) are 0.8049
and 0.9046, respectively.

Simulation 3. In this example, λ = 9 and the service rate is specified by the parameters
µ̄ = 10, a = 1, b = 1, and c = 0.8, with B = 25. The parameters θ and ε are equal to 1.5 and
0.015, respectively. The graph of G∗(·) displays one jump, with l(0) = 12 and g1 = 13.1683,

and, so, we deduce that a single SNEP resides within the class T∞, at g∗ = 12.
Again, the simulation is performed over 5000 time units. We observe that the empirical

averages for x = 0, . . . , 10 stay well below θ − ε and, for x = 13, . . . , 24, well above
θ + ε. Figure 3 depicts empirical averages for the states x = 11 and x = 12 in the left-hand
diagram, and entrance probabilities in the right-hand diagram. The values of V0(11, [12]∞)

and V0(12, [12]∞) are 1.3998 and 1.5116, respectively.
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9. Conclusions

In this paper, we have established the existence of a certain symmetric Nash equilibrium
policy for customers joining a queue with load-increasing service rate, based on the observed
queue size on arrival at the system. We proved that at least one of the Nash equilibria is
nonrandomized; this is a somewhat different phenomenon to that exhibited in [2], [4], and [5].
Constancy in g of the expected sojourn time in the region [0, 1], and strict monotonicity in [1, B],
was established as an essential stepping stone for the game-theoretic results. (The constancy
in [0, 1] appears to have been overlooked in the author’s related previous papers. However,
conditions analogous to µ(1)−1 < θ , which imply that it is worth entering the system when it
is completely empty, suggest that the consequences of any such oversight are only very slight.)

Simulation experiments suggest that, when a unique (nonrandomized) SNEP of the stationary
game exists in the class T∞, quantities such as the empirical averages and simulated entrance
probabilities, under the learning rule, show a close correspondence to expected sojourn times
and entrance probabilities under the SNEP in the associated stationary game. Convergence
and stability properties in the case of multiple Nash equilibria are not well understood at this
stage; however, simulation experiments appear to suggest that the SNEPs are viable poles of
attraction and provide a rough guide to the operating points of the system.
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Appendix A. Evaluating V0(·, [g]∞)

Via a set of linear equations, we here present a procedure for calculating the expected sojourn
time of a customer entering QS under the symmetric equilibrium policy [g]∞, with g = L+q,
and with buffer size B. We assume that the arrival process consists of the superposition of
two independent Poisson processes: (a) the controlled arrival process, with rate λc, in which
customers are governed by the decision rule [g], and (b) the uncontrolled arrival process, with
rate λu, in which customers always join the system, provided that the buffer size is not exceeded.

Let R(x, y), with R(x, 0) := 0, be the expected remaining sojourn time of a customer
who has precisely y − 1 customers ahead of it in the queue, when the queue length is x (and
0 < y ≤ x). R(x, y) satisfies the following set of linear equations, where α := λ + µ̄:

R(x, y) = 1

α
[1 + µ(x)R(x − 1, y − 1) + (µ̄ − µ(x))R(x, y) + λR(x + 1, y)],

0 < y ≤ x < L ≤ B;
R(L, y) = 1

α
[1 + µ(L)R(L − 1, y − 1) + {(µ̄ − µ(L)) + λc(1 − q)}R(L, y)

+ (λcq + λu)R(L + 1, y)], 0 < y ≤ L < B;
R(x, y) = 1

α
[1 + µ(x)R(x − 1, y − 1) + {µ̄ − µ(x) + λc}R(x, y) + λuR(x + 1, y)],

0 < y ≤ x, L + 1 ≤ x < B;
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and

R(B, y) = 1

α
[1 + µ(B)R(B − 1, y − 1) + λR(B, y)], 0 < y ≤ B.

It is easily seen that V0(x, [g]∞) = R(x + 1, x + 1).
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