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Abstract. A Banach space is called (almost) transitive if the isometry group acts
(almost) transitively on the unit sphere. The main problems around transitivity are the
Banach-Mazur conjecture that the only separable and transitive Banach spaces are the
Hilbert ones (1930) and the Wood conjecture that C0ðLÞ cannot be almost transitive in
its natural supremum norm unless L is a singleton (1982). In this note we give necessary
and sufficient conditions on the locally compact space L for the (almost) transitivity of
C0ðLÞ. This will clarify the topological content of Wood’s problem.
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1 Introduction. A Banach space X is said to be transitive if the group GðXÞ of
(linear surjective) isometries of X acts transitively on the unit sphere SðXÞ. The space
X is said to be almost transitive if the orbits of GðXÞ are dense in SðXÞ. This means
that, given f; g 2 SðXÞ and " > 0, there exists T 2 GðXÞ such that kg � Tf k � ".

There are considerable difficulties in deciding whether certain natural classes of
Banach spaces contain an (almost) transitive member or not. For instance, it is not
known if all separable transitive Banach spaces are Hilbert spaces. (This is the
famous Mazur rotations problem which remains unsolved since 1932 [1]; see [14, 3,
2] for information on the topic.)

Another notorious example is a problem of Wood [17] concerning the existence
of an almost transitive C0ðLÞ space, apart from the obvious case in which L is a
singleton. As usual, we denote by C0ðLÞ or C0ðL;KÞ the Banach space of continuous
K-valued functions on the locally compact space L vanishing at infinity, where K is
either R or C. (In this paper, only completely regular Hausdorff spaces are con-
sidered.) Wood conjectured in [17] that all C0ðLÞ spaces lack almost transitive norm.
Greim and Rajalopagan [8] proved the conjecture for K ¼ R. Nevertheless, the
problem is wide open for K ¼ C. (Hence, in the sequel we refer only to complex
spaces.) By the Banach-Stone theorem, every isometry of C0ðLÞ has the form

Tf ¼ �ð f � ’Þ;

where � : L ! C is a continuous unimodular function and ’ is a homeomorphism of
L. In this way, the properties of the isometry group of C0ðLÞ can be translated into
topological properties of L and vice-versa.
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The object of this note is to study necessary and sufficient (topological) condi-
tions on L for the (almost) transitivity of C0ðLÞ. This will clarify the topological
meaning of Wood’s problem.

Definition 1. Let us say that (a locally compact space) L is a Wood space (resp.
an almost Wood space) if C0ðLÞ is a transitive (resp. almost transitive) Banach space
with dimension greater than one.

The main results of [17, 8, 4, 5] can be summarized as follows.
(1) A Wood space exists if and only if an almost Wood space exists [8] if and

only if there exists an almost Wood space L whose one-point compactification �L is
metrizable [4].

(2) The one-point compactification of an almost Wood space is always con-
nected and no almost Wood space is zero-dimensional [17].

(3) Let L be a Wood space. Then (a) L is not first countable; (b) L is countably
compact; (c) countable unions of compact sets are relatively compact; (d) L is an
uncountable union of nowhere dense components or connected; (e) L is not totally
disconnected and non-void open K� sets and their closures are not zero-dimensional;
( f ) every compact subset of L is an F-space; (g) the closure of a relatively compact
open K� set is its Stone-Čech compactification; (h) every open K� set contains an
open subset whose closure does not coincide with its Stone-Čech compactification;
ðiÞ every infinite compact subset of L contains a copy of �N; ( j) every non-empty
compact G� contains an open set; (k) all non-empty open K� subsets are home-
omorphic; (l) all non-empty compact G� subsets are homeomorphic [8].

2. The covering dimension of Wood spaces. Let us start with the following
improvement of ð3f Þ. Throughout the paper, dim L will denote the covering dimen-
sion of the topological space L. We refer the reader to [6] or [7] for definitions and
basic dimension theory.

Theorem 1. Let K be a compact subset of a Wood space. Then K is an F-space of
dimension at most one. Moreover, if K has non-empty interior (for instance, if K is
G�), then dimK ¼ 1.

Lemma 1. Let L be a locally compact space. Then there are unimodular maps
�1; �2 : L ! C such that ð�1 þ �2Þ=2 belongs to C0ðLÞ and kð�1 þ �2Þ=2k ¼ 1.

Proof of Lemma 1. Let �1ðxÞ ¼ 1 for every x 2 L. To construct �2, take a con-
tinuous map 
 : L ! R such that lim 
ðxÞ ¼ �� as x ! 1 and 
ðyÞ ¼ 0 for some
y 2 L. Let �2ðxÞ ¼ expð
ðxÞiÞ. Then ð�1 þ �2Þ=2 ! 0 as x ! 1. Clearly kð�1 þ �2Þ=
2k � 1 and, since ð�1 þ �2ÞðyÞ ¼ 2, one has kð�1 þ �2Þ=2k ¼ 1, as desired. &

Proof of Theorem 1. Let K be a compact subset of a Wood space L. We should
like every f 2 CðKÞ ¼ CðK;CÞ with k f kCðKÞ � 1 to be written as the average of two
extreme points of the unit ball of CðKÞ. By a result of Robertson [13], this implies
that K is an F-space and also that dimK � 1. Let f0 2 C0ðLÞ be an extension of f with
kf0k ¼ 1. Take g ¼ ð�1 þ �2Þ=2, where �1 and �2 are as in the Lemma. By transitivity
of C0ðLÞ one has g ¼ Tf0 for some isometry T of C0ðLÞ. This implies the existence of
a homeomorphism ’ and a unimodular map � for which
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f0 ¼ �ðg � ’Þ=2 ¼ f�ð�1 � ’Þ þ �ð�2 � ’Þg=2:

Obviously �ð�1 � ’Þ and �ð�2 � ’Þ are unimodular and, therefore, f is a midpoint of
two extreme points of the unit ball of CðKÞ. This proves the first statement. The
second one now follows from 3ðeÞ. &

Theorem 1 shows that Wood spaces (if they exist) are locally one-dimensional.
Unfortunately, a locally one-dimensional space need not be itself one-dimensional
without some additional hypothesis such as paracompactness (or weakly para-
compactness; see [6, Theorem 3.1.14, p. 214]. Nevertheless, we shall see later that the
existence of an almost Wood space implies the existence of a one-dimensional Wood
space. This will follow from the following result.

Theorem 2. Let L be an almost Wood space such that �L is metrizable. Then
dimL ¼ dim�L ¼ 1.

Proof. Since the covering dimension is monotone for normal spaces it obviously
suffices to show that dim �L = 1. We first prove that dim K � 1 for every compact
subset of L. By Theorem 18 of [11] (see also [12]), dim K � 1 if and only if the
functions that omit the origin are dense in the unit ball of CðKÞ or, which is the
same, every norm-one f 2 CðKÞ can be approximated by elements of the unit ball
that omit the origin.

Fix f 2 CðKÞ with k f k ¼ 1 and " > 0 and take a norm-one g 2 C0ðLÞ such that
gðxÞ 6¼ 0 for all x 2 L. The existence of such a g is guaranteed by the metrizability of
�L. Let f0 be an extension of f in the unit sphere of C0ðLÞ. By almost transitivity of
C0ðLÞ one can find an isometry T such that k f0 � Tgk � ". Clearly k f � ðTgÞjKkCðKÞ � "
and Tg does not vanish on K. Therefore dim K � 1 for every compact subspace of L.
Again, metrizability of �L yields a sequence Kn of compact subsets of L that cover L.
Since �L ¼ ð[nKnÞ [ f1g and dim f1g = 0, dim Kn � 1 the countable sum theorem for
the covering dimension yields dim�L � 1 ([6, Proposition 3.1.7, p. 211]). Since no
almost Wood space is zero-dimensional one has dim L ¼ dim�L ¼ 1, and the proof is
complete. &

Remark 1. It follows from the equivalence theorems [10] that metrizable one-
point compactifications of almost Wood spaces are also one-dimensional with
respect to the small inductive dimension and the large inductive dimension.

Remark 2. Another interesting consequence of Theorem 3 is that every
metrizable one-point compactification of an almost Wood space is homeomorphic
to a compact subset of the three-dimensional cube [10, Theorem V3, p. 60].

Remark 3. Let L be a locally compact space. In general the isometries of C0ðLÞ
cannot be extended to (isometries of) Cð�LÞ. This is because unimodular maps on L
do not converge as x ! 1. But if C0ðLÞ is a separable almost transitive space (in
other words, if L is an almost Wood space with �L metrizable) then the group of the
isometries of C0ðLÞ that extend to Cð�LÞ acts transitively on the unit sphere of C0ðLÞ.
Indeed, let f; g 2 C0ðLÞ � Cð�LÞ be such that k f k ¼ kgk ¼ 1 and " > 0. Take norm-
one non-vanishing maps f1; g1 2 Cð�LÞ such that k f � f1kCð�LÞ � "; kg � g1kCð�LÞ � ".
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Put �ðxÞ ¼ f1ðxÞ=j f1ðxÞj and 
ðxÞ ¼ g1ðxÞ=jg1ðxÞj for all x 2 L. One has f1 ¼ �j f1j

and g1 ¼ 
jg1j, which yields

k f � �j f jk � 2" and kg � 
jgjk � 2":

Let T be an isometry of C0ðLÞ such that kjgj � Tj f jk � ". We may assume that
Th ¼ h � ’ for some homeomorphism ’ of L (which obviously extends to �L by
’ð1Þ ¼ 1). The map � : Cð�LÞ ! Cð�LÞ given by

�ðhÞ ¼ 
ð��1hÞ � ’

is an isometry of Cð�LÞ leaving C0ðLÞ invariant and satisfying

kg ��f k � 5":

Corollary 1. If an almost Wood space exists, then there exists a one-dimen-
sional Wood space that is an F-space.

Proof. By the result quoted in (1), the hypothesis implies that an almost Wood
space L with �L metrizable exists and, therefore, one has dim �L ¼ 1. Let U be a
free ultrafilter on N and let C0ðLÞU be the ultrapower of C0ðLÞ with respect to U. It is
well known that C0ðLÞU is isometrically isomorphic to C0ðWÞ, W being a Wood
space [8, 5]. To see that �W is one-dimensional, note that Cð�WÞ ¼ Cð�LÞU and let us
show that every f 2 Cð�WÞ can be approximated by non-vanishing functions. Indeed,
let f 2 Cð�WÞ ¼ Cð�LÞU with k f k ¼ 1 and " > 0. Write f ¼ ½ð fnÞn� for fn in the unit
sphere of Cð�LÞ for all n. Reasoning as in the previous Remark, one obtains that

k fn � �nj fnjk � 1=n

for suitably chosen unimodular �n 2 Cð�LÞ. Hence

f ¼ ½ð fnÞ� ¼ ½ð�nj fnjÞ� ¼ ½ð�nÞ�½ðj fnjÞ� ¼ �j f j;

� 2 Cð�WÞ being unimodular. This clearly implies that �W is an F-space. Finally,
put gðxÞ ¼ maxfj f ðxÞj; "g for every x 2 �W. Obviously, �g omits the origin and
k f � �gkCð�WÞ � ", which shows that dim �W � 1. &

3. A characterization of almost Wood spaces. Recall from [8] that C0ðLÞ is
positive transitive if, for any non-negative norm-one f; g 2 C0ðLÞ, there is an iso-
metry T such that g ¼ Tf. In that case the unimodular function � can be chosen to
be identically 1; that is, g ¼ f � ’ for some homeomorphism ’ of L. Hence positive
transitivity is a property of the real space C0ðLÞ. Also, C0ðLÞ is said to allow polar
decompositions if for every f 2 C0ðSÞ there is an isometry mapping j f j to f. This
means that f ¼ �j f j for some unimodular �. Clearly, C0ðLÞ is transitive if and only if
it is positive transitive and allows polar decompositions.

Let us say that C0ðLÞ is almost positive transitive if, given non-negative norm-
one f; g 2 C0ðLÞ and " > 0, there is an isometry T such that kg � Tf k � ". Also, we
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say that C0ðLÞ allows nearly polar decompositions if for every f and " > 0 one can
find T such that k f � Tj f jk � ", or, in other words, the functions g that admit a
decomposition g ¼ �jgj, with � unimodular, are dense in C0ðLÞ. Again, C0ðLÞ is
almost transitive if and only if it is almost positive transitive and allows nearly polar
decompositions.

It follows from the proof of Theorem 2 that, if the one-point compactification of
L is metrizable, then C0ðLÞ allows nearly polar decompositions if and only if
dim �L � 1.

We now characterize almost positive transitivity by a similarity property of
‘‘chains’’ in �L.

Definition 2. Let us say that ðKiÞ
n
i¼0 is a chain of length n in �L if

(1) each Ki is a non-empty compact subset of �L,
(2) fKig

n
i¼0 cover �L,

(3) K0 contains the infinity point of �L,
(4) Ki \ Kj is empty for ji � jj > 1.

Theorem 3. The space C0ðLÞ is almost positive transitive if and only if �L is
connected and, given two chains ðKiÞ

n
i¼0 and ðFiÞ

n
i¼0 of the same length, there is an

homeomorphism ’ of �L which
(a) leaves fixed the infinity point, and
(b) is such that ’ðFiÞ � Ki�1 [ Ki [ Kiþ1 for 0 � i � n, where K�1 and Knþ1 are

assumed to be empty.

Proof. Sufficiency. Let f; g 2 C0ðLÞ � Cð�LÞ be non-negative with k f k
¼ kgk ¼ 1. Clearly, fð�LÞ ¼ gð�LÞ ¼ ½0; 1�. Fix n 2 N and let Ii ¼ ½ i

n ;
iþ1

n � for
0 � i � n � 1. Let Ki ¼ f�1ðIiÞ and Fi ¼ g�1ðIiÞ for 0 � i � n � 1. Clearly, ðKiÞ

n�1
i¼0 and

ðFiÞ
n�1
i¼0 are chains of the same length.
Take a homeomorphism ’ : �L ! �L satisfying (a) and (b). Let us estimate the

distance between g and f � ’. Since fFig
n�1
i¼0 cover �L one has

kg � f � ’kCð�LÞ � max
0�i�n�1

kg � f � ’kCðFiÞ
:

Let x 2 Fi, then ’ðxÞ 2 Ki�1 [ Ki [ Kiþ1. Thus,

i=n � gðxÞ � ði þ 1Þ=n and ði � 1Þ=n � fð’ðxÞÞ � ði þ 2Þ=n;

and, therefore, jgðxÞ � fð’ðxÞÞj � 2=n. Hence taking n � 1=ð2"Þ, one obtains that
kg � f � ’k � ", as desired.

Necessity. Let C0ðLÞ be almost positive transitive. Clearly �L must be con-
nected. For if not, there is a zero-one valued map in C0ðLÞ and, therefore, every non-
negative norm-one function in C0ðLÞ is zero-one valued, which is clearly impossible.

We now prove the statement about chains. Let ðKiÞ
nþ1
i¼0 and ðFiÞ

nþ1
i¼0 be chains of

the same length. Connectedness of �L together with (4) implies that, in fact,

Ki \ Kj 6¼ ; () ji � jj � 1:

Let B0 ¼ K0; Bi ¼ Ki \ Kiþ1 for 1 � i � n � 1, and Bn ¼ Knþ1. Define a map f :
�L ! ½0; 1� putting
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fðBiÞ ¼ i=n

for 0 � i � n. By normality, for 1 � i � n, one can extend f to the whole of Ki is such
a way that i�1

n � fðxÞ � i
n for all x 2 Ki. Clearly, f 2 C0ðLÞ and

f �1ð½ði � 1Þ=n � "; i=n þ "�Þ � Ki�1 [ Ki [ Kiþ1

for 0 � i � n þ 1 and " small enough.
Let ðFiÞ

nþ1
i¼0 be another chain in �L. Proceeding as before one obtains a non-

negative norm-one g 2 C0ðLÞ such that i�1
n � gðxÞ � i

n for x 2 Fi. Let ’ be a home-
omorphism of �L such that kg � f � ’k � ". Then, for every x 2 Fi, one has

ði � 1Þ=n � " � fð’ðxÞÞ � i=n þ ";

from which it follows that ’ðxÞ � Ki�1 [ Ki [ Kiþ1. This completes the proof. &

Remark 4. Theorem 3 is false if one omits the connectedness of �L and the
condition (4) in the definition of ‘‘chain’’ is replaced (directly) by Ki \ Kj 6¼

; () ji � jj � 1. In that case, L ¼ N� (the growth of N in its Stone-Čech compac-
tification) is easily seen to be a counterexample. See [16, 3.31, pp. 80–83].
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