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1. Introduction

We consider infinite sequences {f,};° of positive integers having ex-
ponential growth: f,.,/f.—~a > 1, and becoming ultimately periodic
modulo each member of a rather sparse infinite set of integers. If sufficient,
natural conditions are placed on the growth and periodicities of {f,}7°, we
find that a is an algebraic integer having all its algebraic conjugates within
or on the unit circle, and f, has a special representation involving a*. The
resultisa kind of dual to the theorem of Pisot (cf. Salem [2], p. 4, Theorem A}.

2. Main result

THEOREM. Let {f,}° be a sequence of positive integers, and let a > 1
be a real number. Suppose that |f,.,—af,| < Qa®'%®" = Qn®'8°%, where
Q, d >0, and suppose also that f, > QB, where B > 0 is a number, depending
only on a and d, to be given explicitly in the proof.

Assume given an integer q > 0, and a set M of p pair-wise relatively
prime positive integers. Suppose that the sequence {f,}7° is ultimately periodic
of period h(m*) modulo m*, for each m e M and each positive integer k,
periodicity modulo m* beginning at n = r(m*).

Assume that p, and the h(m*) and r(m*) sabisfy

() ¢(p — 3 mo(meM)) > }(2dlog a+1),

(ii) r(m*) < bme*, and

(iii) ~(m*) < cm* for some fixed positive integers b and c.

Then a is an algebraic integer all of whose algebraic conjugates lie within
or on the unit circle (i.e., a is a Pisot-Vijayaraghavan or a Salem number
(cf. Salem [2])), and f, is expressible in the form a™-+terms consisting of n'®
powers of certain algebraic numbers (all having absolute value = 1) with
polynomials in n over the rational integers for coefficients.

Before presenting a proof of the theorem, we state three lemmas.

LemMma 1 (Hadamard). Let the nxn determinant D = |a,| have real
or complex entries. Then |DI? < TT7, S7h, eyl
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For a proof see Cassels [1, p. 140].

LemMA 2 (Kronecker). The series f(2) = Doy @,2" represents a rational
function if and only if the determinants

ao al e s . a”

are zero for all sufficiently large n.
The D, are called the Kronecker determinants of f(z).

LemMa 3 (Fatou). If in the series f(z) = Doog @,2" the a, are rational
integers, and if {(z) is a rational function, then f(z) has the form P(z2)[Q(z),
where P(z) and Q(2) are polynomials with rational integer coefficients, relatively
prime, and Q(0) =

For proofs of Lemmas 2 and 3 see Salem [2, pp. 4—7].

PRrROOF OF THEOREM. Let w = d log 4. Then by the hypotheses of the
theorem,
n—1
farr Z f,—Qn* = a(af, ,—Q(n—1)*)—Qn* = -+ - 2 anfl_ka a*(n—k)®.
=0
On the interval 0 < x < n define the function T ,(x) = a*(n—=x)*. For
n > d, consideration of the derivative T, (z) shows that T, (z) increases from
n¥ at x = 0 to a maximum at z = n—d, and decreases from there to 0
at x = n. For # > d, the integral test shows that the series Y1* 411 g*(n —k)»
is bounded from above by a"I'(w+1)(log a)~'. Simple estimates show
that a"~1(d+-1)¥+1 is an upper bound for D32}, ,; a*(n—k)». If we set

B = I'(w+1)(log )™ *+a1(d+ 1)+

then we conclude that 773 a*(n—Fk)® < Ba™ for n > d. Consequently
fre1 = (fi—QB)a™ for » > d. By assumption f,—QB > 0, and therefore
{f.}3° diverges and also

< — —=0.
In

It is also easily shown that f,,; < a"f,+Q Xiaa*(n—k)¥, which
by the estimates made above is less than or equal to 2f,a".

If D, is the #*® Kronecker determinant of >%, f,z" (where we set
fo = 0), and if ¢; = f,—af,_;, then

fn+1 __a{ n?

b h 92 4y
D =1|: . . : .

n

fn fn+1 qn+2 **t qan
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Lemma 1 applied to this determinant yields
n n+l n n
= (30)(E8) I (2«)-
i=0 i=1 "/ k=g \i=k
We found above that f, < 2f,a" Thus

(éﬁ) (z ﬁ) =4f (Zam) ifi (%1 ) = 16f{(a2—1)"2atn+s,

i=0 J=1

By assumption |g;| = Q(j—1)* < Q4% for § = 2. Hence for j = 2,

% g =0 ,2 % < QX(n+1)(n-+R)™ < Q3(n-+1)(20)

Thus
n /nik
12 2) = o(twDenpe)r
< Q%" exp (n(log n+log 2+w log 242w log n)).
Therefore

D3 < H2a*"Q? exp (((w+1) log 2)n) exp ((2w+1)n log n),

where H > 0 is a certain constant. On taking square roots, we make this
inequality become

(1) ID,| =< Ha**Q" exp ((3(w-+1) log 2)n) exp (}(2w+1)n log n).

We now determine a lower bound for the largest integer dividing D,,.
Let m e M, M the set introduced in the statement of the theorem.
Let s = s, be the positive integer for which

(o+ec)m® < n < (b+4c)ymats+D)

(for the present discussion # is fixed and taken sufficiently large for s,
to exist. s = s,, depends of course on #). Then

qslogm<log( ) < q(s+1) log m.

b+
If (b-+c)m?s-D < § < m, then

J—h(m*t) = j—emt*—De = bm-D,
so that the column

16)—H(i—hm)

(2) :
fG+n)—{(j+n—hm))
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is divisible by m*1 (here f(2) = f,). Therefore if in the determinant D,
we replace each column

f

f!+n ’
where (b4c)mt*—1e < 4 < %, by the column (2), we see that D, is divisible by

exp ((s—1)(n— (b-+c)mt*12) log m)
= exp ((sn— (b+c)(s—1)m=9m*—n) log m)
= exp ((sn—(s—1)m~n—n) log m)
= exp ((ns(1—m~%) —n-+mn) log m)
= exp ((ns(1—m~9)) log m) eA"

n

z o {n0 - s ()
= exp (¢ (1—m~%)n log n) e4",

1} log m:] edn

where 4 in each expression is a constant, which may however have different
values in different occurrences.

Considering all the m e M, which are all pair-wise relatively prime,
we see that D, is divisible by the integer

(3) HMeXP ((sm—1) (n— (b-+c)metn=1) (log m)

(s, being the s corresponding to m). Our calculations show that this quantity
is bounded from below by

IT exp (g7*(1—m~%) n log n) 4™
meM

4
“ = exp (7Y p— X m~Um e M)) nlog n) e4™.

Comparing this result with the upper bound result for |D,| given in
(1), recalling the hypothesis g7 (p— >, e sy~ > 3(2w-+1), and observing
that exp (Bnlog #) has a higher order of infinity than exp (4#n), we see
that there is an N = 0 such that for » = N, the lower bound (4) for the
divisor (3) of D, is larger than the upper bound given in (1) for |D,|. This
implies that D, = 0 for » = N.

This result combined with Lemma 2 shows that >, f,2" represents
a rational function R(z), and by Lemma 3, R(z) may be written in the
form R(z) = P(z)/Q(z), where P/Q is irreducible, P and Q polynomials
over the rational integers and Q(0) = 1.

Now

(1—az)R(z) = 2!‘ Z”-“Zf 2 = fo+ 2 —af, )"

n=0 n=0
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Recalling that |f,—af,_y| < @n* for n = 2, we see that the function
F(z) = (1—az)R(z) has no poles in the open unit disc. Moreover,
P(2)/Q(z) = (1—az)2F(z), so that a~! is a root of Q(z), and is the only
root of Q(z) lying in the open unit disc.

Therefore a is an algebraic number, and even an algebraic integer
since Q(0) = 1. All of the algebraic conjugates of a, being roots of the
polynomial 2% €Q(z-1) reciprocal to Q(z), lie within or on the unit circle.
This means in standard parlance that a is either a Pisot-Vijayaraghavan
or a Salem number (cf. Salem [2]).

In addition, it follows from the representation Y3, /, 2" = (1—az)~1F (z)
(F(2) a rational function) that f, is expressible in the form @™4terms
consisting of the n't powers of the poles of F(z), with polynomials in #
(with rational integer coefficients) for coefficients. Q.E.D.

3. An example

To show that there are sequences {f,};> and a number a satisfying
the hypotheses of the theorem, let a be a Pisot-Vijayaraghavan number
(i.e., a real algebraic integer greater than 1 all of whose algebraic conjugates
lie in the open unit disc). If a,---, 4, are the algebraic conjugates of
a = a,, then for all # sufficiently large, v, = 3% ;a7 is the rational integer
nearest a". If we take f, = v, 5, where N is fixed and sufficiently large,
then the inequalities for |f,,,—af,| and f, in the hypotheses of the theorem
will be satisfied for some @, 4 > 0.

Moreover, modulo all sufficiently large mF*, relatively prime to the
a;, the f, will be ultimately periodic (being a sum of #'® powers) of period
< @(L) = norm L < m%, where L is the ideal generated by m* in the
splitting field G of a, @ is Euler’s function for G, and g is a positive integer
depending only on G. In addition, all the a4} begin being periodic modulo L
in time @(L) =< me*.

Hence by assigning g the above value,  and ¢ can be found satisfying
(i1) and (iii), and by including enough pair-wise relatively prime , relatively
prime to the a;, in M, (i) can be fulfilled as well.
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