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1. Introduction

We consider infinite sequences {/n}J° of positive integers having ex-
ponential growth: fn+1/fn -> a > 1, and becoming ultimately periodic
modulo each member of a rather sparse infinite set of integers. If sufficient,
natural conditions are placed on the growth and periodicities of {/„}£", we
find that a is an algebraic integer having all its algebraic conjugates within
or on the unit circle, and /„ has a special representation involving a". The
result is a kind of dual to the theorem of Pisot (cf. Salem [2], p. 4, Theorem A).

2. Main result

THEOREM. Let {/n}£° be a sequence of positive integers, and let a > 1
be a real number. Suppose that \fn+1—afn\ ^ Qadiogn = Qndloga, where
Q, d> 0, and suppose also that f1 > QB, where B > 0 is a number, depending
only on a and d, to be given explicitly in the proof.

Assume given an integer q > 0, and a set M of p pair-wise relatively
prime positive integers. Suppose that the sequence {/B}J° is ultimately periodic
of period h(mk) modulo mk, for each meM and each positive integer k,
periodicity modulo mk beginning at n — r(mk).

Assume that p, and the h(mk) and r(mk) satisfy

(i) <rl{p -^m-*{meM)) > ${2dloga+l),
(ii) r(mk) ^ bmqk, and
(iii) h(mk) ^ cmQk for some fixed positive integers b and c.

Then a is an algebraic integer all of whose algebraic conjugates lie within
or on the unit circle (i.e., a is a Pisot-Vijayaraghavan or a Salem number
(cf. Salem [2])), and fn is expressible in the form an-\-terms consisting of nth

powers of certain algebraic numbers (all having absolute value ^ 1) with
polynomials in n over the rational integers for coefficients.

Before presenting a proof of the theorem, we state three lemmas.

LEMMA 1 (Hadamard). Let the nxn determinant D — \au\ have real
or complex entries. Then |D|2 ̂  TJ"=i 2z"=i \au?-
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For a proof see Cassels [1, p. 140].

LEMMA 2 (Kronecker). The series f(z) = 2£L0
 anz" represents a rational

function if and only if the determinants

D =

n+l *2n

are zero for all sufficiently large n.
The Dn are called the Kronecker determinants of f(z).

LEMMA 3 (Fatou). If in the series f(z) = 2<2=o anz" Me an are rational
integers, and if f(z) is a rational function, then f(z) has the form P(z)/Q(z),
where P{z) and Q(z) are polynomials with rational integer coefficients, relatively
prime, and Q(0) = 1.

For proofs of Lemmas 2 and 3 see Salem [2, pp. 4—7].

PROOF OF THEOREM. Let w — d log a. Then by the hypotheses of the
theorem,

fn+1 ^ afn-Qn" ^ a(afn^-Q(n-ir)-Qn- ^ • • • ̂  a^-Q^a^n-k)-.

On the interval 0 ̂  x rgj n define the function Tn(x) = ax(n—x)w. For
n > d, consideration of the derivative T'n(x) shows that Tn(x) increases from
ri* at x = 0 to a maximum at x = n—d, and decreases from there to 0
a±x = n. For n> d, the integral test shows that the series 2*^od ] 1 ak(n—k)w

is bounded from above by anF(w-\-1) (log a)""""1. Simple estimates show
that an'1(d+l)w+1 is an upper bound for 2fc=[n-d] a

k(n—k)w. If we set

B = r{w+l)(log a^

then we conclude that 2*Io «*(»—£)" ^ Ban for n > d. Consequently
fn+i 2? (fi—QB)an for n > d. By assumption fx—QB > 0, and therefore
{/B}J° diverges and also

17 —a

/„It is also easily shown that fn+1 ^ «n/i+(? '2&Zlak{n—k)w, which
by the estimates made above is less than or equal to Zfxa

n.
If Dn is the nth Kronecker determinant of 22Lo /«z" (where we set

/0 = 0), and if qj = fj—af^, then

D =
h fx

/n /n+1
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Lemma 1 applied to this determinant yields

( " \ / n + 1 \ " /"+* \

3=0 / \3=1 / *=2 \i-=k I

We found above that /„ ^ 2/ja". Thus

( n \ /n+l \ / n \ /n+l \

3=0 / \3=1 / \3=0 / \3=1 /

By assumption |^ | ^ Q(j—l)w ^ C?"1 for / ^ 2. Hence for / ^ 2,
n+k n+k

5 ?? =
3 = *

Thus

k=2 \j=k

^ ^2" exp (»(log w+log 2-\-w log 2+2w log «)).

Therefore
Z)2, ^ H2ainQ2n exp (((w+1) log 2)w) exp ((2w+l)« log n),

where H > 0 is a certain constant. On taking square roots, we make this
inequality become

(1) \Dn\ < Ha*nQn exp ((f (w+1) log 2)») exp (4(2w+l)n log n).

We now determine a lower bound for the largest integer dividing Dn.
Let meM, M the set introduced in the statement of the theorem.

Let s = sm be the positive integer for which

(&+c)w9< ^ n < (&+c)w8('+1>

(for the present discussion n is fixed and taken sufficiently large for sm

to exist, s = sm depends of course on n). Then

qs log m ^ log I T — < q(s+l) log
\b+c/

If (b+cjm^-u ^j ^n, then

m.

so that the column

(2)
f(j+n)-f(j+n- h (
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is divisible by m'-1 (here f(i) = ft). Therefore if in the determinant Dn

we replace each column

f!

fi+n'

where (b-\-c)m{'~1)<l flLj<Ln, by the column (2), we see that Dn is divisible by

exp ((s—l)(w— (b+c)m<'-1)a) log m)
= exp ((sw— (b-\-c)(s—\)m~qm"1—n) log m)
2; exp ((sn— (s— l)m~qn—n) log m)
= exp ((«s(l— wi"4) — n+m~Qn) log w)
= exp ((«s(l—*»-«)) logw) e^B

^ exp (»(1—w-«) log (rr^A — 1) log ml e^n

LI \6+c/ ? log w J J
= exp ( ^ ( l — m-")n log n) eAn,

where A in each expression is a constant, which may however have different
values in different occurrences.

Considering all the m e M, which are all pair-wise relatively prime,
we see that Dn is divisible by the integer

(3) n e x p ((sm_i)(»_(6+c)»«(--i))(logm)
M

(sm being the s corresponding to m). Our calculations show that this quantity
is bounded from below by

J J exp (jrx(\—m~q) n log ») eAn

= exp {q^ip— ^Im-<l(m eM)) n log n) eAn.

Comparing this result with the upper bound result for \Dn\ given in
(1), recalling the hypothesis q~~^{p— 2«.€Mw~a) > i ( 2 w + 1 ) . a n ( i observing
that exp (Bn log n) has a higher order of infinity than exp (An), we see
that there is an N ^ 0 such that for n72:N, the lower bound (4) for the
divisor (3) of Dn is larger than the upper bound given in (1) for \Dn\. This
implies that Dn = 0 for n S: N.

This result combined with Lemma 2 shows that 2*£=o /n2" represents
a rational function R{z), and by Lemma 3, R(z) may be written in the
form R(z) = P(z)\Q(z), where P/Q is irreducible, P and Q polynomials
over the rational integers and @(0) = 1.

Now
oo oo oo

(l-az)R(z) = 2/„«"-« 5 / ^ n + 1 = /o+ 2 (/„-«/n-i)zn-
n=0 n=0 n=l
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Recalling that |/B—afn_x\ ^ Qnw for n S> 2, we see that the function
.F(z) = (l-az)R(z) has no poles in the open unit disc. Moreover,
P(z)IQ(z) = (1 —az)-1F{z), so that a~x is a root of Q(z), and is the only
root of Q(z) lying in the open unit disc.

Therefore a is an algebraic number, and even an algebraic integer
since Q(0) = 1. All of the algebraic conjugates of a, being roots of the
polynomial zdeeQQ(z-1) reciprocal to Q{z), lie within or on the unit circle.
This means in standard parlance that a is either a Pisot-Vijayaraghavan
or a Salem number (cf. Salem [2]).

In addition, it follows from the representation 2£Lo /n2" = 0- —az^Ffe)
(F(z) a rational function) that /„ is expressible in the form an+terms
consisting of the nth powers of the poles of F(z), with polynomials in n
(with rational integer coefficients) for coefficients. Q.E.D.

3. An example

To show that there are sequences {/„}£" and a number a satisfying
the hypotheses of the theorem, let a be a Pisot-Vijayaraghavan number
(i.e., a real algebraic integer greater than 1 all of whose algebraic conjugates
lie in the open unit disc). If a0, • • •, ak are the algebraic conjugates of
a = a0, then for all n sufficiently large, vn = 2*=ofl" *s the rational integer
nearest a". If we take /„ = vn+N, where N is fixed and sufficiently large,
then the inequalities for |/n+1—afn\ and /x in the hypotheses of the theorem
will be satisfied for some Q, d > 0.

Moreover, modulo all sufficiently large tnk, relatively prime to the
a{, the /„ will be ultimately periodic (being a sum of nth powers) of period
^ 0(L) ^ norm L ^ mqk, where L is the ideal generated by mk in the
splitting field G of a, 0 is Euler's function for G, and q is a positive integer
depending only on G. In addition, all the a? begin being periodic modulo L
in time 0(L) ^ mQk.

Hence by assigning q the above value, b and c can be found satisfying
(ii) and (iii), and by including enough pair-wise relatively prime m, relatively
prime to the ait in M, (i) can be fulfilled as well.
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