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ABSTRACT 

The numerically generated dynamical evolution of an RR Lyrae 
model from different initial conditions is subjected to a time-
dependent Fourier analysis, which yields the temporal behavior of the 
amplitudes and phases of the few longlived transient modes in 
addition to the ultimate vinner. It is shown that the amplitude 
equation formalism of Buchler and Goupil gives an almost perfect fit 
to the observed transient behavior of the amplitudes and phases of 
the excited modes. Prospects and applications are discussed. 

In the last few years mathematical developments in the study of 
nonlinear dynamics have made possible a novel attack on many 
nonlinear stellar pulsators. In the context of pulsating stars these 
mathematical techniques are concerned with the reduction of the 
partial differential equations of hydrodynamics and heat-flow to a 
small set of differential equations governing the temporal behavior 
of the amplitudes and phases of just a few modes. Buchler and Goupil 
(1984; also Buchler 1985) used an asymptotic perturbation approach, 
specially tailored to the classical radial pulsators, whereas in the 
context of fluid dynamics, Coullet and Spiegel (1984; also Spiegel 
1985) have followed a different approach, which ultimately, however, 
leads to the same equations. One of the advantages of these 
formalisms is that the solution of the partial differential system 
appears ultimately in terms of the same quantities that a Fourier 
analysis of the stellar observations yields. An accurate and direct 
comparison with observation becomes thus feasible (Buchler and Kovâcs 
1986a,b). Not only is the application of this formalism enormously 
faster in terms of computer time (e. g. Klapp, Goupil and Buchler 
1985), but more importantly, it yields fresh physical insight into 
the pulsation mechanism, and this is bound eventually to lead to a 
better understanding of the structure and evolution of of the 
pulsating stars. 

Here we shall demonstrate that the numerically generated 
evolution of a realistic RR Lyrae model from some initial conditions 
to its final steady state can readily be accomodated and described 
within our formalism. The stellar model, which we shall describe has 
a mass of 0.65 and luminosity of 60, both in solar units, an 
effective temperature of 7000 Κ and a composition of 
(X=0.700,Z=0.001). The numerical hydrodynamic integration of the 
model has been performed with Stellingwerf*s (1974) code (with a 
rigid inner boundary) with 60 mass-shells, 20 equal ones up to 20,000 
Κ and the rest reaching up to -2 million degrees. The viscosity 
parameter are Co=4.0 and a=0.01. The 1st run has been initiated with 
a velocity profile corresponding to the linear fundamental 
eigenvector with a 10% admixture of the 1st overtone and the 2nd run 
with a 2% admixture, both with a 10km/s surface velocity. 
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The variation of the outer radius is first subjected to a time-
dependent Fourier analysis (Kovâcs, Buchler and Davis 1986), which 
consists of a Maximum Entropy Method determination of the 8 lowest 
frequencies {f,}, performed over some fraction of the total time-
base. K 

\>0= 1.8488 K Q= 0.0078 

v 1 = 2.4814 K 1 = 0.0547 

v 2= 3.1094 K 2= -0.0134 

v 3= 3.8220 K 3= -0.2884 

£1 = 1.848 σ0 
= 1.8478 

f2= 2.478 σ1 
= 2.4787 

f3= 3.109 2αι-βο = 3.1096 

f4= 3.697 2 σ 0 
= 3.6956 

f5= 4.326 σ 0 + σ 1 = 4.3265 

f6= 0.631 σ1" σ0 
= 0.6309 

f7= 1.254 2νσι 
= 1.2169 

f8= 4.957 2 σ 1 
= 4.9574 

(frequencies in cycles/day, 

growth-rates in day -* ) 

The second column shows the interpretation of these frequencies in 
terms of two basic ones, and σ^, and their combinations. For 
reference are also shown the linear nonadiabatic frequencies {u } 
and growth-rates {κ^}· I* is clear that and correspond to tne 
fundamental and first overtones. The other modes, if present, are so 
short-lived that they do not appreciably show up. 

A large number of fits of the hydro-output is next performed with 
a Fourier sum over successive time-intervals, in each of which the 
amplitudes and phases are held constant ('instantaneous' quantities): 

R(t) = A Q(t) + Σ k = i A k(t) sin {2Tlïk(t-t0) + <>k} 

where the denote the combinations in column 2 above, supplemented 
by additional third order ones. The result is an accurate 
determination of the temporal behavior of the amplitudes and phases. 

The next step consists in ascertaining that the behavior of these 
amplitudes and phases can well be described by normal form amplitude 
equations. We shall attempt a description in terms of two 
nonresonant modes, the fundamental and the first overtone. The 
relevant equations for the (real) amplitudes and phases (e. g. 
Buchler 1985) are given by 

^ = K QA + Re Q Q A
3 + Re T Q A B

2 

j | = Κ χΒ + Re Q 1 B
3 + Re T 1 Β A

2 

j | o = ω 0 + Im Q 0 A
2 + Im T Q B 2 

j£l = ω 1 + Im Q x Β
2 + Im Τ χ A 2 

where A and Β denote the amplitudes of the two modes and the the 
corresponding phases. Higher powers in the amplitudes have been 
neglected. 
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The surface radius variation, to lowest order, is 

r 1 A / . . \ i<*>nt+i4u 
= { 2 Α<*) e 0 0 \ B(t) e ^ l ^ V + c.c. } 

The normal form equations for the amplitudes and phases are 
decoupled. The integral curves of the phase equations are linear in 
the coefficients and the fit is trivial. The integral curves for the 
amplitudes are highly nonlinear. The amplitude equations are 
integrated with some initial conditions, Aq and Bq and the expression 

S = Σ i = 1i [Α(ί.;λ)-Α.]2

 + [ B ( t . ; X ) - B . ] 2 } 

is minimized with respect to the 10 variational parameters, λ, namely 
the 2 growth-rates, the 4 cubic coefficients and the 2 sets of 
initial conditions, A(0) and B(0). Here A(t;X) and B(t;X) comprise 
the integral curves for both initial conditions, and A. and B . are 
the amplitudes at points t̂  for both runs, which are to bè fitteà. 

The fits are shown in the figures. 
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The dashed curves represent the Fourier fits to the hydro-runs 
and the solid curves the integral curves of the amplitude equations 
for the 2 different initial conditions, one of which leads to a 
nonlinear pulsation, which in lowest order corresponds to the 
fundamental mode (Fig. 1) and the other to the first overtone (Fig. 
2). The Figures (a) refer to the amplitudes and (b) to the phases. 

In Fig. 3 we exhibit the evolution of the model in an amplitude-
amplitude plot, similar to the ones discussed in Buchler and Kovâcs 
(1986b). 

0.15 

The model parameters, which have been obtained from the fit are 
shown in the following Table. 

Älc 

Re Q( 

Re Q 2 

Im Q r 

integral fit 

= 0.0081 κ 

= -0.0185 

= 0.191 Β 

0" - 0 . 2 2 2 

- 3 . 0 7 6 

- 0 . 1 2 0 8 

Im Q 1 = -0.8429 

ν Λ = 1.84781 

vl 

le 

0.0560 

-0.0076 

0.135 

Re T Q = - 0 . 8 6 4 

Re T 1 = - 2 . 0 4 0 

Im T Q = - 0 . 2 7 9 1 

Im T 1 = - 0 . 8 8 2 5 

\ L = 2 . 4 7 9 2 5 

numerical relaxation method 

= 0.0078 

= -0.0185 

= 0.191 

= 1.8478 

0.0547 

-0.0050 

0.134 

2 . 4 7 9 3 

The fitted values of the κ are in excellent agreement with the 
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linear nonadiabatic growth-rates. The cubic coefficients are all 
negative, as conjectured by Buchler and Kovâcs (1986b). Also shown 
in the table are the nonlinear growth-rates κ and the limiting 
amplitudes (A, and B, ) , derived from the fit, as well as the κ 
(Floquet coefficients)0 and limiting amplitudes computed with the 
numerical hydrodynamic relaxation code of Stellingwerf. It must be 
considered a great success of the amplitude equation formalism that 
the limiting behavior of the model and its stability can be predicted 
from limited and transient numerical hydrodynamic time-integrations. 

The fits to the amplitude equations give a clue as to why only 
the first two modes appear, except for very short-lived transients. 
The fit gives TQ<0 and T^<0 and, reasonably, one also expects T^<0 
for the other modes. On the other hand, the nonlinear stability 
coefficients ("mode ν stable in the fundamental", e.g.) are given by 

so that a linearly stable mode (K<0) becomes even more stable through 
the nonlinear interaction. A linearly unstable mode, on the other 
hand, may temporarily get excited until the amplitude of the dominant 
mode gets sufficiently large and stabilizes it. 

Some small discrepancies remain and we list several possible 
causes: first, the model has some low order resonances, typical of RR 
Lyrae models, namely 2^-^ and 2<a)^-(a)Q~O)2, w n * c n w e n a v e disregarded, 
but which are bound to have some, albeit a small, effect; second, 
the amplitude equations have been truncated at the lowest 
nonlinearities and the next order, quintic ones may not be totally 
negligible; finally, the Fourier fit has been limited to 3rd order 
frequency combinations. 

In conclusion, it is remarkable how well the essence of the 
results of a complicated hydrodynamical integration is captured by 
just two (complex nonresonant) lowest order amplitude equations for 
the two dominant modes. 
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