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ABSTRACT

The numerically generated dynamical evolution of an RR Lyrae
model from different initial conditions is subjected to a time-
dependent Fourier analysis, which yields the temporal behavior of the
amplitudes and phases of the few longlived transient modes in
addition to the ultimate winner. It is shown that the amplitude
equation formalism of Buchler and Goupil gives an almost perfect fit
to the observed transient behavior of the amplitudes and phases of
the excited modes. Prospects and applications are discussed.

In the last few years mathematical developments in the study of
nonlinear dynamics have made possible a novel attack on many
nonlinear stellar pulsators. 1In the context of pulsating stars these
mathematical techniques are concerned with the reduction of the
partial differential equations of hydrodynamics and heat-flow to a
small set of differential equations governing the temporal behavior
of the amplitudes and phases of just a few modes. Buchler and Goupil
(1984; also Buchler 1985) wused an asymptotic perturbation approach,
specially tailored to the classical radial pulsators, whereas in the
context of fluid dynamics, Coullet and Spiegel (1984; also Spiegel
1985) have followed a different approach, which ultimately, however,
leads to the same equations. One of the advantages of these
formalisms is that the solution of the partial differential system
appears ultimately in terms of the same quantities that a Fourier
analysis of the stellar observations yields. An accurate and direct
comparison with observation becomes thus feasible (Buchler and Kovacs
1986a,b). Not only is the application of this formalism enormously
faster in terms of computer time (e. g. Klapp, Goupil and Buchler
1985), but more importantly, it yields fresh physical insight into
the pulsation mechanism, and this is bound eventually to lead to a
better understanding of the structure and evolution of of the
pulsating stars.

Here we shall demonstrate that the numerically generated
evolution of a realistic RR Lyrae model from some initial conditions
to its final steady state can readily be accomodated and described
within our formalism. The stellar model, which we shall describe has
a mass of 0.65 and 1luminosity of 60, both in solar units, an
effective  temperature of 7000 K and a composition of
(X=0.700,2=0.001). The numerical hydrodynamic integration of the
model has been performed with Stellingwerf's (1974) code (with a
rigid inner boundary) with 60 mass-shells, 20 equal ones up to 20,000
K and the rest reaching up to ~2 million degrees. The viscosity
parameter are C.,=4.0 and a=0.01. The 1st run has been initiated with
a velocity p?ofile corresponding to the linear fundamental
eigenvector with a 10% admixture of the 1lst overtone and the 2nd run
with a 2% admixture, both with a 10km/s surface velocity.
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The variation of the outer radius is first subjected to a time-
dependent Fourier analysis (Kovacs, Buchler and Davis 1986), which
consists of a Maximum Entropy Method determination of the 8 lowest
frequencies {fk}, performed over some fraction of the total time-

base.
f,= 1.848 % = 1.8478 Vo= 1.8488 ko= 0.0078
f,= 2.478 9 = 2.4787 V= 2.4814 Ky= 0.0547
f3= 3.109 2°1'°0 = 3.1096 Vy= 3.1094 Ky= -0.0134
f4= 3.697 200 = 3.6956 Vy= 3.8220 Kq= -0.2884
f5= 4.326 99t9 = 4.3265
f6= 0.631 01-9 = 0.6309
f7= 1.254 200—01 = 1.2169 (frequencies in cycles/day,
fg= 4.957 20, = 4.9574 growth-rates in day ! )

The second column shows the interpretation of these frequencies in
terms of two basic ones, o, and o,, and their combinations. For
reference are also shown theé 1linear™ nonadiabatic frequencies {v, }
and growth-rates {k, }. It is clear that o, and o, correspond to the
fundamental and first overtones. The other modes, if present, are so
short-lived that they do not appreciably show up.

A large number of fits of the hydro-output is next performed with
a Fourier sum over successive time-intervals, in each of which the
amplitudes and phases are held constant (’instantaneous’ quantities):

R(t) = Ay(t) + T . % & (t) sin (20F, (t-tp)+4,)

where the f, denote the combinations in column 2 above, supplemented
by additional third order ones. The result is an accurate
determination of the temporal behavior of the amplitudes and phases.

The next step consists in ascertaining that the behavior of these
amplitudes and phases can well be described by normal form amplitude
equations. Ve shall attempt a description in terms of two
nonresonant modes, the fundamental and the first overtone. The
relevant equations for the (real) amplitudes and phases (e. g.
Buchler 1985) are given by

g% = koA + Re Q A> + Re T, A B
g% - kB + Re Q) B> + Re T, B A
g%o = w, +InQ, A2 4 In T, BZ
g%l =0 o+ Im 01 82 + Im T1 A2

where A and B denote the amplitudes of the two modes and the ¢ the
corresponding phases. Higher powers in the amplitudes have been
neglected.
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The surface radius variation, to lowest order, is

- (7 At %% 2By MM IHt ey,
The normal form equations for the amplitudes and phases are
decoupled. The integral curves of the phase equations are linear in
the coefficients and the fit is trivial. The integral curves for the
amplitudes are highly nonlinear. The amplitude equations are

integrated with some initial conditions, AO and BO and the expression
2 2
= TV 0 1ace;n-a0% + 1B(e 0807 )

is minimized with respect to the 10 variational parameters, )\, namely
the 2 growth-rates, the 4 cubic coefficients and the 2 sets of
initial conditions, A(O) and B(O). Here A(t;\) and B(t;)\) comprise
the integral curves for both initial conditions, and A, and B, are
the amplitudes at points t, for both runs, which are to bé flttea

The fits are shown in the figures.
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The dashed curves represent the Fourier fits to the hydro-runs
and the solid curves the integral curves of the amplitude equations
for the 2 different initial conditions, one of which leads to a
nonlinear pulsation, which in 1lowest order corresponds to the
fundamental mode (Fig. 1) and the other to the first overtone (Fig.
2). The Figures (a) refer to the amplitudes and (b) to the phases.

In Fig. 3 we exhibit the evolution of the model in an amplitude-
amplitude plot, similar to the ones discussed in Buchler and Kovacs

(1986b) .
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The model parameters, which have been obtained from the fit are
shown in the following Table.

integral fit numerical relaxation method
Ko = 0.0081 k; = 0.0560 Ko = 0.0078 k; = 0.0547
RO = -0.0185 El = -0.0076 RO = -0.0185 kl = -0.0050
Ao = 0.191 Bio = 0.135 Ale = 0.191 Bi. = 0.134

Re QO= -0.222 Re T,= -0.864
Re 01= -3.076 Re T,= -2.040

1
Im QO= -0.1208 Im T0= -0.2791
Im Ql= -0.8429 Im T1= -0.8825
Vo = 1.84781 v, = 2.47925 Vo = 1.8478 v, = 2.4793

The fitted values of the Kk are in excellent agreement with the
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linear nonadiabatic growth-rates. The cubic coefficients are all
negative, as conjectured by Buchler and Kovacs (1986b). Also shown
in the table are the nonlinear growth-rates K and the limiting
amplitudes (A, and B ) , derived from the fit, as well as the k
(Floquet coef}§c1ents and limiting amplitudes computed with the
numerical hydrodynamic relaxation code of Stellingwerf. It must be
considered a great success of the amplitude equation formalism that
the limiting behavior of the model and its stability can be predicted
from limited and transient numerical hydrodynamic time-integrations.

The fits to the amplitude equations give a clue as to why only
the first two modes appear, except for very short-lived transients.
The fit gives TO<0 and T1<0 and, reasonably, one also expects T_<0

for the other modes. ofi the other hand, the nonlinear stability
coefficients ("mode v stable in the fundamental", e.g.) are given by
- 2
K\’ = K\) + T\() A )

so that a linearly stable mode (k<0) becomes even more stable through
the nonlinear interaction. A 1linearly unstable mode, on the other
hand, may temporarily get excited until the amplitude of the dominant
mode gets sufficiently large and stabilizes it.

Some small discrepancies remain and we 1list several possible
causes: first, the model has some low order resonances, typical of RR
Lyrae models, namely 2w and 2w1 ~Wy s wvhich we have disregarded,
but which are bound to haée some, glbelt a small, effect; second,
the amplitude equations have been truncated at the lowest
nonlinearities and the next order, quintic ones may not be totally
negligible; finally, the Fourier fit has been limited to 3rd order
frequency combinations.

In conclusion, it 1is remarkable how well the essence of the
results of a complicated hydrodynamical integration is captured by
just two (complex nonresonant) lowest order amplitude equations for
the two dominant modes.

This work has been supported by NSF (AST84-10631).
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