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Small Mahler measures with bounds
on the house and shortness
Salma El-Serafy and James McKee

Abstract. We show that for any ε > 0, the number of monic, reciprocal, length-5 integer polynomials
that have house at least 1 + ε is finite. The proof is algorithmic, and we are consequently able to
compute a complete list (not imposing any bound on the degree) of small Mahler measures of length-5
polynomials that have house at least 1.01.

For larger lengths, the analogous finiteness statement is false, as we show by examples. For length
6 we show that if one also imposes an upper bound for the Mahler measure that is strictly below the
smallest Pisot number θ = 1.32471⋯, and if the length 6 polynomial is a cyclotomic multiple of an
irreducible polynomial, then the number of polynomials with house at least 1 + ε is finite.

We pursue these ideas to search opportunistically for small Mahler measures represented by longer
polynomials. We find one new small measure.

We give an algorithm that finds all Salem numbers in an interval [a, b] that are the Mahler measure
of an integer polynomial of length at most 6, provided 1 < a ≤ b < θ.

1 Introduction

Since 1933, when Lehmer [10] posed the question as to whether or not there is a gap
in the spectrum of Mahler measures greater than 1 for polynomials that have integer
coefficients, many computations have been done to find small Mahler measures,
providing some evidence that the answer to Lehmer’s question might be ‘yes’, and that
the example 1.17628⋯ found by Lehmer might even be the smallest that is greater than
1. Early searches [2, 3] took 1.3 as a measure of smallness, as this is slightly smaller than
the smallest Pisot number (1.32471⋯), and to some extent this notion of ‘small’ has
stuck. Notably, Mossinghoff [13] found more than 8000 ‘small’ (less than 1.3) Mahler
measures that have degree at most 180. The heuristic technique used was to restrict to
polynomials of height 1 (the height being the largest modulus of any coefficient) and
small length (the sum of the moduli of the coefficients). Since there are limit points
of the set of Mahler measures that lie below 1.3, one has to set a degree bound here if
there is to be a challenge to the task of finding ‘small’ measures, else one could simply
take a sequence of measures approaching a limit point below 1.3 and produce as many
as one pleases. The overwhelming majority of the known small Mahler measures are
members of sequences known to converge to these limit points. The smallest such
limit point known is 1.25543⋯, and this has prompted the suggestion that 1.25 might
be a better measure of smallness. So as not to abandon tradition entirely, we shall use
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‘tiny’ to indicate a Mahler measure in the interval (1, 1.25], and ‘small’ for the interval
(1, 1.3]. There are 236 known tiny Mahler measures; the total number is plausibly
finite, and perhaps the known list of 236 is complete. When searching for tiny Mahler
measures, one does not a priori bound the degree, as there are no known tiny limit
points.

Some measures have been added to Mossinghoff ’s 1998 list: Lisonek, like Moss-
inghoff, searched for sparse polynomials; Rhin and Sac-Épée [15] used a numerical
descent technique; Mossinghoff, Pinner, and Vaaler [12], and also Rhin and Sac-
Épée [15] generated polynomials that were ‘close’ to being cyclotomic (a cyclotomic
polynomial means a monic integer polynomial all of whose zeros are roots of unity);
Boyd and Mossinghoff [4], and also El Otmani, Maul, Rhin and Sac-Épée [8], tested
polynomials associated with limit points, and the latter paper also found 2 examples
by a genetic algorithm. Most recently, in an attempt to ‘explain’ these small Mahler
measures combinatorially [6], a single new example was found.

For degrees up to 44, the lists of known small Mahler measures are provably
complete [14]. In this paper we establish some completeness results relative to different
measures of size: the house and (reciprocal or cyclotomic) shortness of an algebraic
number (definitions to follow in Section 2).

We are able to show that if the house is at least 1.01, and the shortness is 5, then
the list of known small Mahler measures is complete. For shortness 6, we use explicit
Rouché estimates to show that the known list of small Mahler measures is complete
subject to the house being at least 1.17. We push this bound down to 1.01 with the
further restriction that the short polynomial has degree at most 512, and with a bound
of 180 for the degree of the noncyclotomic part. For larger values of the shortness, we
employed a heuristic search; the results are no longer complete, but we did find a new
small Mahler measure.

For cyclotomic shortness at most 6, we give an algorithm to find all Salem numbers
in an interval [a, b], where 1 < a ≤ b < θ, where θ = 1.32⋯ is the real root of z3 − z −
1 = 0.

2 House, length and Mahler measure

We start by recalling and illustrating some definitions, and then we will state the main
results.

For P(z) a nonzero polynomial with complex coefficients, we can write

P(z) = a
d
∏
j=1
(z − α j) ,

where d is the degree of P(z), a ≠ 0, and α1, . . ., αd are the zeros of P(z). Then the
Mahler measure of P(z), which we denote M(P), is defined by

M(P) = ∣a∣
d
∏
j=1

max(1, ∣α j ∣) .(2.1)

Restricting to polynomials P(z) having coefficients in Z, Lehmer’s question asks
about ‘small’ Mahler measures greater than 1. We make this more precise by defining
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Small Mahler measures with bounds on the house and shortness 605

the Mahler measure of P(z) ∈ Z[z] to be small if it is below 1.3. As mentioned in the
introduction, this is consistent with historical searches for ‘small’ Mahler measures. If
the Mahler measure is below 1.25, then we declare it to be tiny.

From (2.1), we see that if the Mahler measure of P(z) ∈ Z[z] is to be small,
let alone tiny, then P(z) must be monic: henceforth we make this restriction on
P. Then M(P) is simply the product of the absolute values of those zeros of P(z)
that lie outside the unit disc. The zeros of such polynomials are algebraic integers.
By a theorem of Smyth [17] (and for a less precise version, see [5]), if the Mahler
measure of P(z) is small, then P(z)must be reciprocal (meaning that zdeg(P)P(1/z) =
±P(z)). We therefore restrict our attention to monic reciprocal polynomials
P(z) ∈ Z[z].

The house of an algebraic integer α is the maximum modulus of its conjugates. We
write α for the house of α. More generally, the house of a polynomial P(z) ∈ Z[z],
P = P(z) is the largest modulus of any of its zeros. There is no requirement here
that P is irreducible. We see that the house of an algebraic integer equals the house
of its minimal polynomial. If an algebraic integer is not a root of unity, then its
house is greater than 1 by Kronecker’s Theorem [11, Theorem 1.3]. We write M(α)
for the Mahler measure of the minimal polynomial of α, and we note that trivially
M(α) ≥ α , with equality if and only α has precisely one conjugate outside the
unit disc.

The length of a polynomial P(z) = ∑d
i=0 a i z i ∈ Z[z] is simply the sum of the

absolute values of the coefficients, ∣a0∣ + ⋯ + ∣ad ∣. It might be that there is some
T(z) ∈ Z[z] for which the length of P(z)T(z) is less than that of P(z). Indeed
for all small Mahler measures known, the minimal polynomial P(z) has some
multiple that has length at most 14 [13, p. 1703], and the majority have a poly-
nomial multiple that has length only 5. If we wish to preserve Mahler measure,
then we should restrict T(z) to being cyclotomic, but methods for seeking short
multiples might be more general. (Recall from the introduction that a cyclotomic
polynomial is a monic integer polynomial all of whose zeros are roots of unity.
There is no requirement that a cyclotomic polynomial be irreducible, or squarefree.)
In [11, Section 1.7], the ‘shortness’ of a polynomial P(z) is defined as the smallest
length of P(z)T(z) where T(z) is cyclotomic. For this paper we shall call this
the cyclotomic shortness of P(z) (or shortness for short, as in [11]). By a result of
Dobrowolski [7, Corollary 2], one can in principle compute the shortness of any
polynomial, but as noted in the concluding sentences of that paper, this approach
is completely impractical. Our attempts to compute the cyclotomic shortness of P(z)
will in practice consider multiplying P(z) by a polynomial T(z) that is not a priori
cyclotomic (and perhaps not even a posteriori!), but where instead T(z) is a monic
reciprocal polynomial. We call the shortest multiple of P(z) by a monic reciprocal
polynomial the reciprocal shortness of P(z), to distinguish this from the (cyclotomic)
shortness.

One readily checks that all really short monic reciprocal polynomials are cyclo-
tomic, and record this as a Remark.

Remark 2.1 If a monic reciprocal polynomial has length at most 4, then it is
cyclotomic.
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We therefore restrict our attention to P(z) ∈ Z[z] satisfying:

P(z) is monic;
P(z) is reciprocal;
P(z) is not cyclotomic;
P(z) has length at least 5 .(2.2)

To find the reciprocal shortness of a polynomial, one could adapt the algorithm
in [9], although as the degree grows this is not especially attractive. (That algorithm
works with the Euclidean norm of a polynomial rather than its length, but the authors
comment that the algorithm could be adapted if length were the preferred measure.
Also it does not restrict to reciprocal multiples, so potentially it could fail to deliver
if a shorter non-reciprocal multiple exists.) If it turns out that the multiplier T(z) is
cyclotomic, than one has also found the cyclotomic shortness. The motivation in [9]
was in finding a compact representation of an algebraic number.

If at least one of the zeros of P(z) has modulus greater than 1 (and this will be the
only case of interest to us), then one can adapt an alternative method in [11, Section
1.7.1], and this was our chosen route.

Clearly reciprocal shortness is bounded above by cyclotomic shortness. There are
examples where this inequality is strict. Consider the two polynomials

P1(z) = z45 − z42 + z36 − z34 − z32 + z31 − z24 + z21 − z14 + z13 + z11 − z9 + z3 − 1 ,
P2(z) = z48 + z46 + z44 − z41 − z32 − z31 + z24 − z17 − z16 − z7 + z4 + z2 + 1 ,

which appear on page 1703 of [13]. These are cyclotomic multiples of irreducible
polynomials Q1(z) and Q2(z) of degrees 40 and 44 respectively: the shortest such
cyclotomic multiples that Mossinghoff found. We adapted the algorithm in [11,
Section 1.7.1] to seek only reciprocal multiples of a polynomial, and were able to
check that in both cases these are indeed the shortest multiples of the noncylotomic
parts by cyclotomic polynomials: the cyclotomic shortness of Q1(z) is 14, and the
cyclotomic shortness of Q2(z) is 13. There are in fact 3 reciprocal multiples of Q2(z)
of length 13, and 21(!) reciprocal multiples of Q1(z) of length 14. The other two
length-13 reciprocal multiples of Q2(x) are not cyclotomic multiples, but Q1(z) has
an additional 5 cyclotomic multiples that have length 14:

z47 + z46 − z42 − z41 + z37 − z33 − z30 + z17 + z14 − z10 + z6 + z5 − z − 1 ,
z58 − z55 − z53 + z49 − z41 + z40 + z31 − z27 − z18 + z17 − z9 + z5 + z3 − 1 ,
z65 + z64 + z63 + z56 + z55 − z52 + z35 + z30 − z13 + z10 + z9 + z2 + z + 1 ,

z67 − z64 + z58 − z54 + z47 − z46 − z34 + z33 + z21 − z20 + z13 − z9 + z3 − 1 ,
z90 + z89 + z88 − z82 − z77 + z74 − z57 + z33 − z16 + z13 + z8 − z2 − z − 1 .

For Q2, Mossinghoff noted a shorter reciprocal multiple that is not a cylotomic
multiple:

P′2(z) = z56 + z51 − z50 + z47 − z39 − z28 − z17 + z9 − z6 + z5 + 1 .
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He noted that one could, in principle, determine whether or not any other sparse
multiples of Q1 and Q2 exist using the algorithm in [9]. Using our algorithm instead,
we checked that P′2 is the unique reciprocal multiple of Q2 that has length below 13.
Thus the cyclotomic shortness of Q2 is 13 and its reciprocal shortness is 11.

We also found a unique shorter reciprocal multiple of Q1, namely

z101 + z97 − z90 − z88 − z74 + z63 + z38 − z27 − z13 − z11 + z4 + 1 .

This is not a cylotomic multiple of Q1, so that Q1 too has cyclotomic shortness that
is strictly larger than its reciprocal shortness (14 > 12). These examples settle Problem
1.40 in [11].

We also verified that the polynomials listed in [11, Table D.1] are the shortest pos-
sible cyclotomic multiples of their non-cyclotomic factor, and we found all possible
cyclotomic multiples of the same length.

Our first main result concerns shortness 5.

Theorem 2.2 Given ε > 0, there are only finitely many monic reciprocal polynomials
P(z) ∈ Z[z] that have (reciprocal or cyclotomic) shortness 5 and house at least 1 + ε.

It will be enough to prove Theorem 2.2 for reciprocal shortness: if P has cyclotomic
shortness 5 then it is not cyclotomic (else it would divide zn − 1 for some n), and the
reciprocal shortness must also be 5, after Remark 2.1 and the trivial inequality on the
two flavours of shortness.

The analogous result for longer lengths is simply false. For even length 2� ≥ 6,
consider the polynomial Pd(z) = (z − (� − 1))zd − (� − 1)z + 1, which is monic and
reciprocal for all d. When d is large enough, (z − (� − 1))zd dominates (� − 1)z − 1
on the circle ∣z − (� − 1)∣ = 0.5. By Rouchés Theorem, Pd(z) has a zero within this
circle for all sufficiently large d, and hence has house at least � − 1.5. For odd length
2� + 1 ≥ 7, one argues similarly with the polynomial Qd(z) = (z − (� − 1))z2d−1 + zd −
(� − 1)z + 1.

Given the focus on small Mahler measures (which is what restricted our attention
to reciprocal polynomials anyway), it is pleasing that we can recover a finiteness result
for length 6 if we impose a suitable upper bound on the Mahler measure, and work
with cyclotomic shortness.

Theorem 2.3 Let θ = 1.32471⋯ be the smallest Pisot number (the real root of the
equation z3 − z − 1 = 0). For any ε > 0 and any M < θ, there are only finitely many
monic reciprocal polynomials P(z) ∈ Z[z] that have cyclotomic shortness 6, house at
least 1 + ε, and Mahler measure at most M.

These finiteness results are effective: there are algorithms to produce all the finitely
many polynomials claimed in Theorems 2.2 and 2.3.

A Salem number is a real algebraic integer τ greater than 1, degree at least 4, such
that 1/τ is a (Galois) conjugate of τ, and all other conjugates lie on the unit circle ∣z∣ = 1.
A Salem number is equal to its house. As an immediate corollary of Theorems 2.2
and 2.3, along with algorithms for finding all the polynomials, we have the following.
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Corollary 2.4 Let θ = 1.32471⋯ be the smallest Pisot number. For any interval [a, b]
with 1 < a ≤ b < θ, there is an algorithm to find all Salem numbers in that interval that
have cyclotomic shortness at most 6.

We apply this to find all Salem numbers of cyclotomic shortness at most 6 that lie
in the interval [1.17, 1.3].

Recall that if we seek monic reciprocal P with Mahler measure in the interval
(1, 1.3), then we may assume that the reciprocal shortness of P(z) is at least 5. With
this in mind, the plan for the rest of the paper is as follows. In the next two sections
we treat shortness 5 and shortness 6, including proofs of the two main theorems. In a
final section we report some further computations, including the discovery of a new
small Mahler measure with degree below 180.

3 Shortness 5, and the proof of Theorem 2.2

Now suppose that P(z) has reciprocal shortness 5. Recall from (2.2) that P(z) is a
monic integer reciprocal polynomial that is not cyclotomic. Since P(z) has reciprocal
shortness 5, it divides a polynomial of the shape

zn + ε1zn−g1 + ε2zn−g1−g2 + ε1zg1 + 1 ,(3.1)

where n = 2(g1 + g2), g1 > 0, g2 ≥ 0, and ε1, ε2 ∈ {1,−1}. If g2 = 0, then we must have
ε2 = ε1, else our multiple of P(z) would have length only 3.

Given P(z), one way to detect all such length-5 multiples is to loop over the
possibilities for ε1 and ε2, and for each choice obtain bounds for g1 and g2 (and hence,
as it turns out, for n), as follows. Here we follow the algorithm in Section 1.7.1 of [11],
noting how much simpler it is in this reciprocal case. We take a zero α of P(z) for
which ∣α∣ is maximal, and certainly we then have ∣α∣ > 1, as P is not cyclotomic. Then
∣α∣ = α = P . We note that if g1 ≥ log 4/ log ∣α∣, then

∣α∣n ≥ 4∣α∣n−g1 > ∣ε1αn−g1 + ε2αn−g1−g2 + ε1α g1 + 1∣ ,

contradicting P(α) = 0 (as then (3.1) would also vanish). Thus

0 < g1 ≤ ⌊log 4/ log ∣α∣⌋ .(3.2)

Then we have

∣ε2αn−g1−g2 + ε1α g1 + 1∣ < 3∣α∣n−g1−g2

and

∣α∣n−g1 ∣∣α∣g1 − 1∣ ≤ ∣αn + ε1αn−g1 ∣ ,

so if g2 ≥ (log 3 − log(∣α∣g1 − 1))/ log ∣α∣, then (3.1) cannot vanish. We conclude that

0 ≤ g2 ≤ ⌊(log 3 − log(∣α∣g1 − 1))/ log ∣α∣⌋ .(3.3)

In fact, given specific ε1 and α, one should use the more precise upper bound

g2 ≤ ⌊(log 3 − log ∣α g1 + ε1∣))/ log ∣α∣⌋ ,

https://doi.org/10.4153/S0008439524000900 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000900


Small Mahler measures with bounds on the house and shortness 609

but for the proof of Theorem 2.2 we use that the bound in (3.3) depends only on
∣α∣ = P . We see from (3.2) and (3.3) that g1 and g2 are bounded once P(z) is given,
but moreover we can bound g1 and g2 merely given a lower bound for the house of α.
Just to stress this point: we started with a particular P(z) in mind, but then noticed
that the finite list of possible multiples can be generated knowing only a lower bound
for the house.

This establishes Theorem 2.2, and indeed we have an algorithm to find all the monic
reciprocal polynomials that have length 5 and house above a given bound.

For example, let us find all monic reciprocal length-5 polynomials that have house
at least Lehmer’s number. The bounds (3.2) and (3.3) give 0 < g1 ≤ 8, and 0 ≤ g2 ≤ 17
(in the worst case: it is better to use (3.3) with the current value of g1). A quick search,
checking which of these polynomials actually have house at least Lehmer’s number
yields Table 1. We only include one of the polynomials P(z), P(−z), as these trivially
have the same house and Mahler measure, and noting that P(zd) also has the same
Mahler measure as P(z), we restrict to ‘primitive’ polynomials in the output (those
that cannot be written as P(zd) for any d > 1). The house of P(zd) is the dth root of
the house of P(z), so only finitely many imprimitive polynomials would appear if we
included them. Where more than one cyclotomic multiple of the minimal polynomial
has length 5, the different multiples are grouped together without repeating the house
and measure.

All but one of the examples in Table 1 is actually a Salem number: the house equals
the Mahler measure. In each case the reciprocal multiple turned out to be a cyclotomic
multiple. Note that up to changing the sign of z, the table shows all length-5 primitive
polynomials that have that house. For example, the only primitive length-5 monic
reciprocal polynomials that have Mahler measure equal to Lehmer’s number are the
two shown in this table along with the two obtained by changing the sign of z. (If
one does not require reciprocal multiples, there are four other length-5 multiples
of Lehmer’s polynomial: z19 − z18 − z6 − z3 + 1, z15 − z13 − z5 − z4 + 1, z19 − z16 − z13 −
z + 1, and z15 − z11 − z10 − z2 + 1. These were found using the algorithm in Section 1.7.1
of [11].)

One byproduct of the above short computation is that the largest house for any
length-5 monic reciprocal polynomial is for the polynomial z2 ± 3z + 1, with house
2.618⋯.

There are many thousands of small Mahler measures that are represented by length
5 polynomials, although not many tiny ones are known. To find all of these, one needs
to push the house bound closer to 1.

We tried reducing the house bound, and counting the numbers of small and tiny
measures found. For the small measures, we restricted the output to the cases where
the minimal polynomial had degree at most 180, for comparison with Mossinghoff ’s
data, but with no restriction on the degree of the short multiple. For the tiny
measures, no upper bound on the degree was imposed, but in fact the degrees were
all relatively small: the largest was 32, for the polynomial z32 + z31 + z16 + z + 1. We
found that there are 4994 length-5 polynomials that have Mahler measure in the
interval (1, 1.3), degree at most 180, and house at least 1.01. These cover more than
half of the known small Mahler measures that have degree below 180. The smallest
house found in this search was 1.010397⋯, for the polynomial z186 + z94 + z93 + z92 + 1
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Table 1: All primitive monic reciprocal polynomials in
Z[z] that have length 5 and house at least Lehmer’s num-
ber, along with their Mahler measures. Only one of P(z)
and P(−z) is shown.

Polynomial House Mahler measure
z12 + z7 − z6 + z5 + 1 1.17628082 1.17628082
z14 + z11 + z7 + z3 + 1
z20 + z19 − z10 + z + 1 1.20002652 1.20002652
z14 − z12 + z7 − z2 + 1 1.20261674 1.20261674
z10 − z6 + z5 − z4 + 1 1.21639166 1.21639166
z18 + z17 + z9 + z + 1
z10 + z7 + z5 + z3 + 1 1.23039143 1.23039143
z16 + z15 − z8 + z + 1 1.23631793 1.23631793
z10 − z8 + z5 − z2 + 1 1.26123096 1.26123096
z14 + z13 + z7 + z + 1
z8 + z5 − z4 + z3 + 1 1.28063816 1.28063816
z22 + z21 + z11 + z + 1 1.18630410 1.28673548
z12 + z11 − z6 + z + 1 1.29348595 1.29348595
z10 + z9 + z5 + z + 1 1.33731321 1.33731321
z6 − z4 + z3 − z2 + 1 1.40126837 1.40126837
z8 + z7 − z4 + z + 1
z6 + z5 + z3 + z + 1 1.50613568 1.50613568
z4 + z3 − z2 + z + 1 1.72208381 1.72208381

z2 + 3z + 1 2.61803399 2.61803399

(a cyclotomic multiple of a degree-180 non-cyclotomic polynomial that has Mahler
measure 1.2837785⋯). All 15 of the known tiny Mahler measures that have shortness
5 were found, and this list is now known to be complete for house at least 1.01. The
smallest house amongst these is 1.08376⋯ (rather larger than the bound of 1.01 for
which the list is now known to be complete), for the polynomial z24 + z13 − z12 + z11 +
1. All computations were performed using the PARI-gp package [1], running on a
3GHz processor. The data for Table 1 was computed in a fraction of a second. Pushing
the lower bound on the house down to 1.01 took 13 hours.

4 Shortness 6, and the proof of Theorem 2.3

Now suppose that P(z) (monic, reciprocal, not cyclotomic, as in (2.2)) has cyclotomic
shortness 6. Then P(z) divides a polynomial of the shape

Q(z)zk + ηQ∗(z) ,

where Q∗(z) = zdeg(Q)Q(1/z), η ∈ {−1, 1}, and

Q(z) = zg1+g2 + ε1zg2 + ε2
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for some ε1, ε2 ∈ {−1, 1}, g1 > 0, g2 ≥ 0, with ε1 = ε2 if g2 = 0. We have k ≥ deg(Q), and
if k = deg(Q) then η = 1. We note also that Q(z) is not reciprocal, else (Remark 2.1)
it would be cyclotomic, and then P(z) = Q(z)(zk ± 1) would also be cyclotomic.

We impose an upper bound M on the Mahler measure of P(z) that is lower than
θ = 1.32⋯, so is lower than the Mahler measure of Q(z), as Q is not reciprocal (using
Smyth’s theorem [17]):

M(P) ≤ M < θ ≤ M(Q) .(4.1)

If P ≥ 1 + ε > 1, then arguing as in the previous section one computes

0 < g1 ≤ ⌊log 5/ log(1 + ε)⌋(4.2)

and

0 ≤ g2 ≤ ⌊(log 4 − log((1 + ε)g1 − 1))/ log(1 + ε)⌋ .(4.3)

There is, however, no upper bound on the next gap in the degree sequence of P (so no
upper bound on k) that depends only on a lower bound for the house, as our examples
between the statements of Theorems 2.2 and 2.3 show.

On the other hand, as k →∞, a Rouché argument (adapting Salem’s argument,
as simplified by Hirschman, [16, p. 30]) shows that the Mahler measure of Q(z)zk +
ηQ∗(z) tends to the Mahler measure of Q(z). We give the full detail, in preparation
for making it algorithmically effective. For any real γ > 0, and any positive integer k,
define

Rγ ,k(z) = (1 + γ)Q(z)zk + ηQ∗(z) .

If ∣α∣ = 1 and Q(α) = 0, then also 0 = Q(α) = Q(1/α), whence Q∗(α) = 0. Putting
T(z) = ∏∣α∣=1,Q(α)=0(z − α) (counting with multiplicity, but see Lemma 4.1), we have
that Rγ ,k(z)/T(z) is a polynomial (with real coefficients). Moreover, on ∣z∣ = 1 we
have ∣Q(z)∣ = ∣Q∗(z)∣, and hence ∣(1 + γ)Q(z)zk/T(z)∣ > ∣ηQ∗(z)/T(z)∣. Suppose
that Q(z) has degree m and has t zeros outside the unit disc, and u = deg(T) zeros
on the unit circle. Applying Rouché’s Theorem with the contour ∣z∣ = 1, we conclude
that Rγ ,k/T(z) has exactly m − t − u + k zeros in the open unit disc, and hence that
Rγ ,k has exactly m − t + k zeros in the closed unit disc. Letting γ → 0 these zeros vary
continuously in the complex plane, and hence, for any positive integer k, Q(z)zk +
ηQ∗(z) has at least m − t + k zeros in the closed unit disc.

Now take δ > 0 small enough that circles of radius δ centered on the t zeros of
Q outside the unit disc do not overlap, and do not touch the unit circle. On each
such circle, when k is large enough, ∣Q(z)zk ∣ > ∣ηQ∗(z)∣, and hence by Rouché’s
Theorem there is a single zero of Q(z)zk + ηQ∗(z) inside the circle. Hence, for k large
enough, the Mahler measure of Q(z)zk + ηQ∗(z) lies between∏∣α∣>1,Q(α)=0(∣α∣ − δ)
and∏∣α∣>1,Q(α)=0(∣α∣ + δ). Letting δ → 0, we see that as k →∞ the Mahler measure
of Q(z)zk + ηQ∗(z) tends to the Mahler measure of Q(z).

Given (4.1), we see that for all k ≥ k0 (where k0 depends on Q) no cyclotomic
multiple of P can equal Q(z)zk + ηQ∗(z). We have established Theorem 2.3: given
ε > 0 we get finitely many possibilities for Q as above such that Q(z)zk + ηQ∗(z)
can possibly have house ≥ 1 + ε; for each such Q we get finitely many k for which
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Q(z)zk + ηQ∗(z) can possibly be a multiple of P(z) by a cyclotomic polynomial
(given our upper bound on the Mahler measure of P; here restricting to cyclotomic
multiples so as to preserve the Mahler measure).

To make this finiteness result algorithmically effective, we need to perform explicit
Rouché estimates. Although one can cope with the zeros of Q(z) not all being simple,
we make the remark that for our special Q(z) there can be no multiple zeros.

Lemma 4.1 Let Q(z) = za + ε1zb + ε2, where a > b ≥ 0, and ε1, ε2 ∈ {−1, 1}, with ε1 =
ε2 if b = 0. Then Q(z) has no multiple zeros.

Proof Since za ± 2 has only simple zeros, we can immediately move to the case
a > b > 0. Any zero of Q(z) that is not simple would also be a zero of Q′(z) =
aza−1 + bε1zb−1. This gives ∣z∣a−b = b/a. On the other hand, eliminating the leading
terms of Q(z) and Q′(z) gives (a − b)ε1zb + aε2 = 0, so that ∣z∣b = a/(a − b). Hence
∣z∣(a−b)b = bb/ab = aa−b/(a − b)a−b , which gives bb(a − b)a−b = ab aa−b , contradict-
ing 0 < b < a. ∎

Now we suppose that P(z) has Mahler measure at most M, with M less than the
Mahler measure of Q. Label the zeros of Q as α1, . . ., αp , where ∣α1∣ ≥ ⋯ ≥ ∣αq ∣ > 1 ≥
∣αq+1∣ ≥ ⋯ ≥ ∣αp ∣ (so that the Mahler measure of Q is ∣α1⋯αq ∣). For a radius δ > 0, we
shall call the circle ∣z − α i ∣ = δ good if it does not meet the unit circle ∣z∣ = 1.

We choose δ small enough and k0 large enough so that
(i) the circles ∣z − α i ∣ = δ, for 1 ≤ i ≤ q do not intersect;
(ii) the product of the ∣α i ∣ − δ over good circles (still with 1 ≤ i ≤ q) is at least M;
(iii) ∣zk Q(z)∣ dominates ∣Q∗(z)∣ on each of these good circles, for all k > k0.
We shall turn in a moment to how we deal with (iii). Taking δ small enough one could
make all the circles ∣z − α i ∣ = δ good, for 1 ≤ i ≤ q. In practice, however, one or more
of the α i outside the unit circle might have modulus very close to 1, and one may get a
better value of k0 by working only with zeros of larger modulus, allowing δ to be a little
larger. Once we have our δ and k0, Rouché’s Theorem tells us that Q(z)zk + ηQ∗(z)
has a (single, simple) zero inside each good circle for all k > k0, and hence (using (ii))
that the Mahler measure of Q(z)zk + ηQ∗(z) is larger than M for all k ≥ k0. This tells
us that for this Q(z) we can bound k above by k0.

In order to apply this approach, we need to obtain a lower bound for ∣Q(z)∣ on
each good circle, and an upper bound for ∣Q∗(z)∣. Here our tactics diverge, according
to whether we want to have a provable bound, where we are sure that our bound on k
is large enough, or whether we would rather use a stronger bound that is highly likely
to be correct, but that relies on numerical estimates that come with no guarantee of
sufficient accuracy. The latter, rough, approach is simplest: we take a large sample
of points on each circle to estimate the minimum of ∣Q(z)/Q∗(z)∣ on the circle
(assuming δ small enough that Q∗ has no zeros in or on the circle), and hence obtain
an unproven bound for k that will likely be large enough. To obtain provable bounds
for k, on the other hand, we expand Q(z) about each α i , obtaining the coefficients to
high accuracy, and then take δ small enough that the multiple of ∣z − α i ∣ dominates
all the other terms when z is on the circle; and for the same δ we then obtain an
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upper bound for ∣Q∗(z)∣ on the same circle, simply using the triangle inequality. This
approach gives weaker but provable bounds for k, for each Q(z).

A partial example will help to clarify this computation of provable bounds, and will
indicate some other features of the way that the provable computation was organised.
Suppose we are seeking house at least 1.1, which is comfortably greater than 1, and tiny
Mahler measure (at most 1.25, which is comfortably below θ). Write Q(z) = zg1+g2 +
ε1zg2 + ε2, so that g1 and g2 are our first two gaps in the degree sequence of Q (or P).
Then (4.2) and (4.3) give

1 ≤ g1 ≤ ⌊log 5/ log 1.1⌋ = 16 ,

and

0 ≤ g2 ≤ ⌊(log 4 − log(1.14 − 1))/ log 1.1⌋ = 22 .

We loop over these. Let us focus on what happens when g1 = 4 and g2 = 2. We now
loop over the possible signs ε1 and ε2: let us consider when they both equal −1. So we
are looking at Q(z) = z6 − z2 − 1, with Q∗(z) = −z6 − z4 + 1.

Our aimed-for polynomial P(z) has the shape P(z) = Q(z)zk ± Q∗(z), but we
make here two observations that we used in practice to cut down the number of
polynomials considered. First, if k were even then P(z) would not be primitive:
it would have the same Mahler measure as (z3 − z − 1)zk/2 ± (−z3 − z2 + 1), which
would have been considered already with smaller values for the gaps. In general, we
restrict to gcd(g1 , g2 , k) = 1. Next, since k is odd in this case, we need only consider
P(z) = Q(z)zk + z6 + z4 − 1, as changing the sign of z gives a polynomial with the
same Mahler measure. In general, we halve the number of polyomials to be considered
by insisting that after the first odd gap in the list of 6 exponents for the powers of z
appearing in P(z), the coefficient should be positive (and we cannot have all gaps
even, or the polynomial would not be primitive).

We know that as k →∞, the Mahler measure of (z6 − z2 − 1)zk + z6 + z4 − 1
approaches the Mahler measure of z6 − z2 − 1, which is 1.3247⋯, so for large enough
k the Mahler measure will not be tiny. We use an explicit Rouché estimate to
bound k.

The zeros of Q(z) outside the unit circle are ±α, where α = 1.15096⋯. If we take
δ = 0.03, then if k is large enough that P(z) has a zero inside both of the circles
∣z − (±α)∣ = δ, then the Mahler measure of P will be at least (∣α∣ − δ)2 = 1.2565⋯, and
so the measure will not be tiny. See Figure 1.

We want k large enough that (z6 − z2 − 1)zk dominates z6 + z4 − 1 on both circles.
We could get an upper bound for ∣z6 + z4 − 1∣ simply by using the triangle inequality,
but we get a slightly better bound if we expand z6 + z4 − 1 about each of the centres
of the circles, and then use the triangle inequality: we find ∣z6 + z4 − 1∣ ≤ 3.66 on both
circles.

Expanding Q(z) about z = α, we get Q(z) = (9.817⋯)(z − α) + (25.32⋯)
(z − α)2 +⋯+ (z − α)6. Our chosen radius δ is such that (9.817⋯)δ dominates
(25.32⋯)δ2 +⋯+ δ6, and so we can use the triangle inequality to get a lower bound
of (9.817⋯)δ − (25.32⋯)δ2 −⋯− δ6 for ∣Q(z)∣ on this circle. This gives a lower
bound of 0.27. Note that if our lower bound here were negative, we would simply
decrease δ appropriately.

https://doi.org/10.4153/S0008439524000900 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000900


614 S. El-Serafy and J. McKee

Figure 1: A diagram showing the six zeros of Q(z) (marked as ⋅), and circles of radius δ around
the two zeros outside the unit circle; there is room to draw larger circles around these zeros and
still miss the unit circle, but we must take them small enough that if Q(z)zk + ηQ∗(z) has a
zero in each of these small circles then its Mahler measure is greater than 1.25.

Table 2: A part of the output of compu-
tations to find all length-6 polynomials
that have house at least 1.1 and Mahler
measure below 1.25.

k M((z6 − z2 − 1)zk + z6 + z4 − 1)
1 1.635573
3 1.360000
5 1.280638
7 1.240726
9 1.216392
11 1.200027
13 1.188368
15 1.253636
17 1.289290
19 1.304945
21 1.313207

Now for k ≥ 23, we have 0.27(α − 0.03)k > 3.66. We conclude that if k ≥ 23 then
zk Q(z) dominates Q∗(z) on each of our good circles, and the Mahler measure of P
will not then be tiny. Thus we loop over k = 1, 3, 5, . . ., 21 to complete this choice of
Q(z). The results of this computation are shown in Table 2.

We see from Table 2 that there are four tiny Mahler measures coming from this
choice of Q(z), corresponding to k = 7, 9, 11, 13, ignoring any that would have been
picked up with Q(z) = z3 − z − 1.
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Table 3: All primitive monic polynomials in Z[z] that have length 6, house at least
Lehmer’s number, and Mahler measure at most 1.25. Only one of P(z) and ±P(−z)
is shown. All are Salem numbers.

Mahler measure Polynomial(s)
1.17628082 z11 − z9 + z8 + z3 − z2 + 1, z13 + z12 + z8 + z5 + z + 1,

z17 − z11 + z10 − z7 + z6 − 1, z17 − z15 + z12 + z5 − z2 + 1,
z18 + z13 + z11 + z7 + z5 + 1, z18 + z15 − z14 + z4 − z3 − 1,
z19 + z14 − z13 + z6 − z5 − 1, z20 − z16 + z13 + z7 − z4 + 1,
z21 + z18 − z11 + z10 − z3 − 1, z24 + z21 + z19 − z5 − z3 − 1,
z25 + z22 + z18 − z7 − z3 − 1, z25 − z23 + z14 − z11 + z2 − 1,
z27 − z25 + z20 + z7 − z2 + 1, z35 + z34 + z22 − z13 − z − 1,
z36 + z35 + z25 − z11 − z − 1

1.18836815 z19 − z15 − z13 + z6 + z4 − 1, z23 − z21 − z13 + z10 + z2 − 1,
z32 + z31 − z20 − z12 + z + 1, z33 + z32 − z23 − z10 + z + 1

1.20002652 z17 − z13 − z11 + z6 + z4 − 1, z18 + z15 − z10 − z8 + z3 + 1,
z21 + z18 − z17 − z4 + z3 + 1, z21 − z19 − z11 + z10 + z2 − 1,
z28 + z25 + z23 + z5 + z3 + 1, z29 + z28 + z20 + z9 + z + 1,
z30 + z29 + z19 + z11 + z + 1, z39 + z38 − z29 + z10 − z − 1

1.20261674 z16 − z12 + z9 + z7 − z4 + 1, z19 − z17 + z14 + z5 − z2 + 1,
z21 − z19 + z12 − z9 + z2 − 1, z26 − z24 + z19 + z7 − z2 + 1,
z29 + z28 + z18 − z11 − z − 1, z30 + z29 + z21 − z9 − z − 1

1.21639166 z11 + z10 − z7 − z4 + z + 1, z14 + z9 − z8 − z6 + z5 + 1,
z15 − z11 − z9 + z6 + z4 − 1, z16 − z12 + z11 + z5 − z4 + 1,
z19 − z17 + z10 − z9 + z2 − 1, z20 + z17 + z15 + z5 + z3 + 1,
z21 − z19 + z16 + z5 − z2 + 1, z26 + z25 − z18 + z8 − z − 1,
z27 + z26 − z17 + z10 − z − 1, z28 + z25 − z24 + z4 − z3 − 1,
z35 + z34 + z26 − z9 − z − 1

1.21972086 z19 − z17 − z11 + z8 + z2 − 1, z26 + z25 − z16 − z10 + z + 1,
z27 + z26 − z19 − z8 + z + 1, z35 + z32 − z31 − z4 + z3 + 1

1.23039143 z12 − z10 + z9 − z3 + z2 − 1, z13 + z8 − z7 + z6 − z5 − 1,
z14 + z13 + z9 − z5 − z − 1, z15 + z12 + z8 − z7 − z3 − 1,

z17 + z14 + z12 − z5 − z3 − 1, z22 + z21 + z15 − z7 − z − 1,
z23 + z20 − z19 + z4 − z3 − 1, z26 − z24 + z21 − z5 + z2 − 1,
z36 + z35 − z28 + z8 − z − 1

1.23261355 z25 + z24 + z16 − z9 − z − 1, z28 − z26 + z23 − z5 + z2 − 1,
z41 + z40 − z33 + z8 − z − 1

1.23566458 z35 − z33 + z30 + z5 − z2 + 1
1.23631793 z17 − z15 − z9 + z8 + z2 − 1, z23 + z22 + z16 + z7 + z + 1,

z24 + z23 + z15 + z9 + z + 1, z31 + z30 − z23 + z8 − z − 1,
z42 − z40 + z37 − z5 + z2 − 1

1.23750482 z34 − z32 + z29 + z5 − z2 + 1
1.24072642 z13 − z9 − z7 + z6 + z4 − 1, z17 − z15 + z10 − z7 + z2 − 1,

z18 + z17 − z12 + z6 − z − 1, z19 + z16 − z15 + z4 − z3 − 1,
z23 + z22 + z14 − z9 − z − 1, z24 + z23 + z17 − z7 − z − 1,
z27 − z25 + z22 − z5 + z2 − 1
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Table 4: All Mahler measures in the interval (1.17, 1.3) that have house at
least Lehmer’s number and shortness at most 6 (as it happens, all are covered
by length-6 polynomials), along with a minimal-degree length 6 polynomial
for each measure. Measures that are not Salem numbers are shown in bold.

Mahler measure Degree Polynomial House
1.176280818 10 z11 − z9 + z8 + z3 − z2 + 1 1.176280818
1.188368148 18 z19 − z15 − z13 − z6 − z4 + 1 1.188368148
1.200026524 14 z17 − z13 − z11 − z6 − z4 + 1 1.200026524
1.202616744 14 z16 − z12 + z9 + z7 − z4 + 1 1.202616744
1.216391661 10 z11 + z10 − z7 − z4 + z + 1 1.216391661
1.219720859 18 z19 − z17 − z11 − z8 − z2 + 1 1.219720859
1.230391434 10 z12 − z10 + z9 − z3 + z2 − 1 1.230391434
1.232613549 20 z25 + z24 + z16 − z9 − z − 1 1.232613549
1.235664580 22 z35 − z33 + z30 + z5 − z2 + 1 1.23566458
1.236317932 16 z17 − z15 − z9 − z8 − z2 + 1 1.236317932
1.237504821 26 z34 − z32 + z29 + z5 − z2 + 1 1.237504821
1.240726424 12 z13 − z9 − z7 + z6 + z4 − 1 1.240726424
1.252775937 18 z19 + z18 − z13 − z6 + z + 1 1.252775937
1.253330650 20 z20 − z18 + z15 + z5 − z2 + 1 1.25333065
1.253635566 20 z21 − z17 − z15 + z6 + z4 − 1 1.179756442
1.255093517 14 z16 + z13 − z12 − z4 + z3 + 1 1.255093517
1.256221154 18 z22 + z21 − z14 − z8 + z + 1 1.256221154

1.258041637 28 z34 + z33 + z21 + z13 + z + 1 1.178196558
1.260103540 24 z28 + z27 + z21 + z7 + z + 1 1.26010354
1.261230961 10 z12 − z8 + z7 + z5 − z4 + 1 1.261230961
1.267296443 14 z15 − z13 − z9 + z6 + z2 − 1 1.267296443
1.280638156 8 z9 + z8 + z6 + z3 + z + 1 1.280638156
1.281691372 26 z27 + z26 − z21 − z6 + z + 1 1.281691372
1.282495561 20 z28 + z27 − z22 + z6 − z − 1 1.282495561
1.284616551 18 z34 + z33 − z28 + z6 − z − 1 1.284616551
1.284746822 26 z35 + z34 − z29 − z6 + z + 1 1.284746822
1.285099364 30 z41 + z40 − z35 − z6 + z + 1 1.285099364
1.285121520 30 z42 + z41 − z36 + z6 − z − 1 1.28512152
1.285185671 30 z49 + z48 − z43 − z6 + z + 1 1.285185671
1.285196727 26 z56 + z55 − z50 + z6 − z − 1 1.285196727
1.285199179 44 z67 + z66 − z61 + z6 − z − 1 1.285199179
1.285235436 30 z45 + z44 − z39 + z6 − z − 1 1.285235436
1.285409065 34 z38 + z37 − z32 − z6 + z + 1 1.285409065
1.286395967 18 z19 + z18 + z12 − z7 − z − 1 1.286395967
1.286730182 26 z30 + z29 − z24 − z6 + z + 1 1.286730182

1.286735478 22 z23 − z21 + z12 − z11 + z2 − 1 1.186304101
1.289289737 20 z23 − z19 − z17 + z6 + z4 − 1 1.173244966
1.291741426 24 z24 + z23 − z18 − z6 + z + 1 1.291741426
1.293485953 10 z12 + z9 − z8 − z4 + z3 + 1 1.293485953
1.295675372 18 z22 + z21 − z16 − z6 + z + 1 1.295675372
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Table 5: Small Salem numbers that have cyclotomic shortness s greater than 6; the degree
d of the Salem number is also shown.

Number d s Sample short polynomial
1.26028 22 7 z28 − z27 − z20 − z14 − z8 − z + 1
1.26303 26 7 z26 − z25 − z20 + z13 − z6 − z + 1
1.27677 22 8 z28 − z27 − z20 − z15 − z13 − z8 − z + 1
1.29204 20 7 z24 − z23 − z17 − z12 − z7 − z + 1
1.29242 40 10 z42 − z40 + z39 − z29 + z28 − z14 + z13 − z3 + z2 − 1
1.29290 46 10 z47 + z46 − z43 + z39 − z26 − z21 + z8 − z4 + z + 1
1.29621 34 12 z38 − z36 − z34 + z29 + z28 − z24 − z14 + z10 + z9 − z4 − z2 + 1
1.29642 22 7 z22 − z21 − z17 + z11 − z5 − z + 1
1.29682 28 8 z37 − z36 − z33 + z29 − z8 + z4 + z − 1
1.29842 36 10 z39 − z38 − z35 + z31 − z20 + z19 − z8 + z4 + z − 1
1.29974 26 10 z34 − z33 − z27 − z22 − z18 − z16 − z12 − z7 − z + 1

We used the algorithm described above to find all primitive monic integer poly-
nomials that have length 6, house at least Lehmer’s number (1.17⋯), and measure at
most 1.3. As the number of polynomials is rather large, we limit the presentation of
our output to: (i) (Table 3) a list of all such polynomials (up to change of sign of the
variable) that have tiny measure (below 1.25) — these were all Salem numbers (so
their house equals their Mahler measure); and (ii) (Table 4) a list of all small measures
found, indicating which are Salem numbers, without listing all the polynomials.

Of the measures in Table 4, all but 4 are Salem numbers. There are a further 11
Salem numbers known in the interval (1.17, 1.3), and for completeness we list them
here, along with their cyclotomic shortness.

The polynomials in Table 5 are the minimal-degree examples for that minimal
length. The complete list of polynomials is finite, and includes some remarkable exam-
ples, such as z144 + z143 − z140 + z136 − z113 − z108 − z36 − z31 + z8 − z4 + z + 1, which
has a degree-110 cyclotomic factor. The cyclotomic shortnesses were computed using
the algorithm in Section 1.7.1 of [11], adapted to finding reciprocal multiples; in all cases
here the reciprocal multiplier turned out to be cyclotomic, so that the (cyclotomic)
shortness had indeed been determined.

To catch more measures, we pushed the house bound lower, to 1.01, but to make
the computations manageable we also imposed a limit of 512 on the degree of the
short polynomial (rather larger than in previous searches), and with a bound of
180 on the degree of the noncyclotomic part (for comparison with existing tables).
With these parameters, the largest degree seen for a primitive polynomial was 370
(polynomial x370 + x368 + x277 − x93 − x2 − 1, house 1.03023⋯, measure 1.28697⋯,
cyclotomic factor of degree 190) so that it is plausible that this search too has found
all examples regardless of the degree, for the given house and measure parameters,
and with a bound on the degree of the noncyclotomic part. We found 8002 small
length-6 measures, including all the shortness-5 measures as a subset, and including
all the known tiny length-6 examples. The smallest house found was the same as in
the length-5 search (1.010397), but now we found a length-6 multiple of the minimal
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polynomial: x 187 + x 186 + x95 + x92 + x + 1. The computations for Tables 3 and 4 took
less than a minute. Pushing the lower bound on the house down to 1.01, with the
restrictions mentioned above, took 62 hours.

5 Opportunistic searches and a new small measure

For length-7 reciprocal polynomials, the general shape is P(z) = Q(z)zk ± z� +
Q∗(z), where Q(z) has length 3. Unlike the length-6 case, we can have Q reciprocal
(and hence cyclotomic). But just as for lengths 5 and 6, if we have a lower bound
greater than 1 for the house, then the first two gaps in the degree sequence of our
polynomial are bounded, and we get finitely many possibilities for Q(z). As the
third gap k − �→∞, the Mahler measure of P approaches at least that of Q (another
Rouché argument; unless Q is cyclotomic, when this estimate is trivial). This suggests
a way of cutting down on the possibilities for length 7 (and similar ideas permeate
to longer polynomials): we only push our search hard if the Mahler measure of Q is
small.

For example, with length 7 we tried a house bound of 1.02, and a bound of 1.4
for the Mahler measure of Q. With these parameters, our search found many known
small Mahler measures, and one new one:

z186 − z157 − z154 + z93 − z32 − z29 + 1

is a cyclotomic multiple of the irreducible polynomial

z178 + z177 + z176 − z173 − z172 − z171 + z163 + z162 + z161 − z158 − z157 − z156 − z149 − z145

+ z140 + z139 − z134 − z130 + z125 + z124 − z119 − z115 + z110 + z109 − z104 − z100 + z95

+ z94 − z89 + z84 + z83 − z78 − z74 + z69 + z68 − z63 − z59 + z54 + z53 − z48 − z44

+ z39 + z38 − z33 − z29 − z22 − z21 − z20 + z17 + z16 + z15 − z7 − z6 − z5 + z2 + z + 1,

which has degree 178, house 1.02007, and Mahler measure 1.2948243⋯. This does not
appear on any of the existing lists. It was the only new example that we found.
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