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Abstract A key step in establishing the validity of the linear sampling method of determining an
unknown scattering obstacle D from a knowledge of its far-field pattern is to prove that solutions of the
Helmholtz equation in D can be approximated in H1(D) by Herglotz wave functions.

To this end we establish the important property that the set of Herglotz wave functions is dense in
the space of solutions of the Helmholtz equation with respect to the Sobolev space H1(D) norm.
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1. Introduction

This paper is devoted to the problem of deriving an approximation theorem for the
Helmholtz equation which is of central importance in the linear sampling method for
solving the inverse scattering problem for time-harmonic acoustic waves [5]. In the expla-
nation and solution of the problem in question we will, for the sake of simplicity, restrict
ourselves to two-dimensional problems. However, a major point of our analysis is that it
remains valid for the three-dimensional case.

The scattering of a time-harmonic acoustic plane wave by a bounded obstacle D leads
to the problem of determining a scattered field us which satisfies the Helmholtz equation
and Sommerfield radiation condition in the exterior of D subject to certain boundary
conditions for us on the boundary ∂D of D [2]. In particular, if D is sound hard, us

satisfies a Neumann boundary condition on ∂D and if D is penetrable (and possibly
inhomogeneous), then us satisfies a transmission boundary condition. In either case it
can be shown [2] that, for x ∈ R2, us(x) has the asymptotic behaviour

us(x) =
eikr
√
r
u∞(x̂, d) +O(r−3/2), (1.1)

where r = |x|, x̂ = x/|x|, k > 0 is the wavenumber and d is a unit vector in the direction
of propagation of the incident plane wave. The inverse scattering problem of interest to
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us is the problem of determining D from a knowledge of the far-field pattern u∞(x̂, d) for
x̂ and d on the unit circle Ω, where it is not known a priori whether or not D is sound
hard or penetrable.

A recently developed method for solving this inverse scattering problem is the linear
sampling method [1, 3–5]. In this method, a parameter y ∈ R2 is introduced and, for
each fixed y, a solution g = g(·, y) ∈ L2(Ω) is sought to the far-field equation∫

Ω

u∞(x̂, d)g(d, y) ds(d) = e−ikx̂·y. (1.2)

It is then shown in the above-referenced papers that ∂D is determined as the locus of
points where ‖g(·, y)‖L2(Ω) tends to infinity as a function of the parameter point y. A key
step in establishing the validity of the linear sampling method is to show that solutions of
the Helmholtz equation in D can be approximated in C1(D̄) by Herglotz wave functions,
i.e. solutions of the Helmholtz equation of the form

vg(x) :=
∫
Ω

eikx·dg(d) ds(d), (1.3)

where g ∈ L2(Ω).
To be more specific, define the fundamental solution to the Helmholtz equation by

Φ(x, y) := 1
4 iH(1)

0 (k|x− y|), (1.4)

where H(1)
0 denotes a Hankel function of the first kind of order zero. Then, in the case

of a sound-hard scatterer and assuming k2 is not a Neuman eigenvalue, it is desired to
approximate the solution u of

∆2u+ k2u = 0, in D,

∂u

∂ν
=
∂Φ

∂ν
(·, y), on ∂D,

 (1.5)

in C1(D̄) by a Herglotz wave function vg, where, in (1.5), ν denotes the unit outward
normal to ∂D. As y tends to ∂D it is seen [1,4] that vg becomes unbounded and hence
so does the kernel g = g(·, y). It is then shown that (up to a constant factor) g can
be determined as the (approximate) solution of the far-field equation (1.2). Similar con-
siderations apply to the case of a penetrable scatterer [3]. A short examination of the
above-referenced papers shows that since the fundamental solution Φ = Φ(·, y) is not in
the Sobolev space H1(D) for y ∈ ∂D, it suffices to show that the solution u of (1.5) can
be approximated by a Herglotz wave function in H1(D).

In [1], [3] and [4], the above approximation property was obtained by referring to the
results of Vekua [9]. However, these results are only valid in R2 and the techniques used
cannot be extended to the three-dimensional case. The only corresponding approximation
result in R3 is due to Ochs [8], who needed to assume that D is star-like with respect to
the origin. Since this last assumption is clearly not satisfactory from the point of view of
inverse scattering, it is important to establish the denseness of Herglotz wave functions in
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H1(D) in a manner that is valid in both two and three dimensions, thus guaranteeing the
validity of the linear sampling method in both of these cases. The purpose of this paper is
to do this. As already mentioned, for the sake of simplicity we will carry out our analysis
in R2, noting that our analysis has an immediate and straightforward generalization
to the three-dimensional case. We will base our analysis on potential theory and the
method of integral equations, although it is clear that at certain points we could also
have appealed to the general theory of elliptic partial differential equations.

2. An approximation theorem

Let D be a bounded domain in the plane containing the origin such that R2\D̄ is con-
nected. We assume that D has a C2 boundary ∂D and let ν denote the unit outward
normal to ∂D. For n = 0,±1,±2, . . . , we define un by

un(x) := Jn(kr)einθ, (2.1)

where Jn is a Bessel function of order n and (r, θ) are the polar coordinates of x ∈ R2.
It follows from (1.3) and the Jacobi–Anger expansion [2, p. 67] that if {an} ∈ `2, then

v(x) :=
∞∑
−∞

anun(x) (2.2)

is a Herglotz wave function that satisfies the Helmholtz equation

∆2v + k2v = 0 (2.3)

in all of R2.

Theorem 2.1. The set {
∂un
∂ν

+ iun

}
is complete in H−1/2(∂D).

Proof. It suffices to show that if g ∈ H1/2(∂D) and∫
∂D

g(y)
(
∂

∂ν
+ i
)
un(y) ds(y) = 0 (2.4)

for n = 0,±1,±2, . . . , then g = 0. Hence, suppose that (2.4) is valid for some g ∈
H1/2(∂D) and let B be a disc centred at the origin and containing D in its interior.
Then, from the addition formula for Bessel functions and (2.4), we can conclude that if
Φ is the fundamental solution defined by (1.4), then

u(x) :=
∫
∂D

g(y)
(

∂

∂νy
+ i
)
Φ(x, y) ds(y) (2.5)

is identically zero for x ∈ R2\B̄. By the analyticity of solutions to the Helmholtz equation,
we can conclude that u(x) = 0 for x ∈ R2\D̄.
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If g ∈ C(∂D), we could now conclude from (2.5) that

2u(x) = g(x) + 2
∫
∂D

g(y)
(

∂

∂νy
+ i
)
Φ(x, y) ds(y) (2.6)

for x ∈ ∂D. Using Theorems 8.20 and 8.24 of [6] and the trace theorem, we see that
(2.6) is valid for g ∈ H1/2(∂D), where u(x), x ∈ ∂D, is interpreted in terms of the trace
theorem. In particular,

0 = g(x) + 2
∫
∂D

g(y)
(

∂

∂νy
+ i
)
Φ(x, y) ds(y) (2.7)

for x ∈ ∂D. Hence g = Kg, where K is an integral operator with weakly singular kernel,
and we can conclude that for m sufficiently large, g = Kmg is continuous.

Letting the subscripts ± denote the limits as x tends to ∂D from outside and inside
D, respectively, we can conclude from (2.5) and the continuity properties of double and
single layer potentials [6] that

u+ − u− = g,(
∂u

∂ν

)
+
−
(
∂u

∂ν

)
−

= −ig on ∂D,

 (2.8)

and, since

u+ =
(
∂u

∂ν

)
+

= 0,

we have (
∂u

∂ν

)
−

+ iu− = 0 on ∂D. (2.9)

Hence u, as defined by (2.5), is a solution of the Helmholtz equation in D and contin-
uously assumes the boundary data (2.9) on ∂D. An elementary application of Green’s
theorem now implies that u(x) = 0 for x ∈ D. Since we already know that u(x) = 0 for
x ∈ R2\D̄, the first relation in (2.8) now implies that g = 0, and the proof is finished. �

Now consider the problem of finding a weak solution of the boundary-value problem

∆2u+ k2u = 0, in D,

∂u

∂ν
+ iu = f, on ∂D,

 (2.10)

where f ∈ H−1/2(∂D) (cf. § 8.3 of [6]). The uniqueness of a weak solution to (2.10)
follows in a straightforward manner (cf. Theorem 8.19 of [6]). We want to show that a
solution exists and can be represented in the form of a single-layer potential with density
φ ∈ H−1/2(∂D). To this end we look for a solution of (2.10) in the form

u(x) =
∫
∂D

φ(y)Φ(x, y) ds(y), (2.11)
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where φ ∈ H−1/2(∂D). Then, proceeding as in Theorem 8.26 of [6], we see that (2.11)
will be a solution of (2.10) provided that

2f = φ+Kφ, (2.12)

where

Kφ(x) := 2
∫
∂D

φ(y)
(

∂

∂νx
+ i
)
Φ(x, y) ds(y) (2.13)

for x ∈ ∂D.
To show the existence of a solution φ ∈ H−1/2(∂D) to (2.12), by the Riesz theory

and Theorem 8.20 of [6], we need to show that if φ ∈ H−1/2(∂D) is a solution of the
homogeneous equation φ + Kφ = 0, then φ = 0. To this end, if φ + Kφ = 0, then, as
in Theorem 2.1, we can conclude that φ ∈ C(∂D), and hence u, as defined by (2.11), is
a classical solution of (2.10) for f = 0, and hence u(x) = 0 for x ∈ D. For x ∈ R2\D̄
we now see that u is a radiating solution of the Helmholtz equation vanishing on ∂D,
and hence u(x) = 0 for x ∈ R2\D̄ (Theorem 3.7 of [2]). By the continuity properties of
single-layer potentials [6] we can now conclude that u+ − u− = φ = 0 and we are done.

Theorem 2.2. There exists a positive constant C such that if u is the unique weak
solution of (2.10), then

‖u‖H1(D) 6 C‖f‖H−1/2(∂D).

Proof. This follows from the fact that u can be represented as a single-layer potential
and Theorem 8.24 of [6], noting that the singular part of Φ is the fundamental solution
for Laplace’s equation.

Theorem 2.2 could also be obtained by using variational methods for elliptic boundary-
value problems. However, as mentioned in § 1, we prefer to base all of our analysis on
potential theory, rather than appealing to more general results.

Theorems 2.1 and 2.2 now yield our desired approximation result, where in the the-
orem the normal derivative of u is in H−1/2(∂D), since u ∈ H1(D) is a solution of the
Helmholtz equation [7]. �

Theorem 2.3. With respect to the H1(D) norm, the set of Herglotz wave functions
is dense in the space of solutions to the Helmholtz equation.

Proof. Let u ∈ H1(D) be a solution of the Helmholtz equation in D. Then by the
trace theorem and the above comment,

f =
∂u

∂ν
+ iu ∈ H−1/2(∂D),

and, by Theorem 2.1, f can be approximated in H−1/2(∂D) by (∂v/∂ν) + iv, where v is
a Herglotz wave function. The theorem now follows from Theorem 2.2. �
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