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ELLIPTIC BOUNDARY VALUE PROBLEM: ERROR ESTIMATES

MARIAN SLODICKA1

(Received 28 October, 2002; revised 27 May, 2004)

Abstract

We consider a nonlinear second-order elliptic boundary value problem in a bounded domain
Q C K" with mixed boundary conditions. The solution is found via linearisation. We
design a robust and efficient approximation scheme. Error estimates for the linearisation
algorithm are derived in L2(£l), H[(Q) and Loa(Cl) spaces under the minimal regularity
assumptions of the exact solution.

1. Introduction

Linearisation methods have been used in the numerical analysis of nonlinear elliptic
boundary value problems (BVPs) for quite a long time. Frequently, essential proper-
ties such as differentiability of the nonlinear operator, boundedness and invertibility
properties of linearised operators are used. Linearisation methods are powerful tools
when analysing the existence and convergence of approximations and many special
techniques have been developed to solve these problems.

Many algorithms use a Newton-type linearisation. The classical Newton's method

or its simplified version

converge for Lipschitz continuous / . A major drawback of both algorithms is that the
initial guess needs to be near the exact solution, however it is well known that for initial
data close enough to the exact solution, Newton's method converges quadratically.
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Another group of approximations is based on the so-called relaxation schemes, one
of which is the Jager-Kacur scheme (see Jager and Kacur [6, 7] or Kacur [8, 9]). In
general, the proof of the convergence of such an algorithm is not an easy matter. The
main disadvantage of the proposed relaxation scheme is the fact that the nonlinear
function appearing in the equation must be strictly monotonically increasing.

An attractive group of linearisation schemes represents the method of upper and
lower solutions (also known as barriers). Examples of such algorithms can be found,
for example, in Amann [1], Deng etal. [4], Evans [5, page 507] and Pao [13, page 155].
The linearisation of a nonlinear problem relies on the ordering properties of solutions.
One defines recursive sequences starting from a sub- and a super-solution, respec-
tively and there exists a solution lying between them. The rates of such monotone
convergence cannot be determined in general. This technique is often used in exis-
tence proofs, but it has a big disadvantage especially in the computation of evolution
problems. Namely, one has to start far away from the real solution and the information
from the previous time step cannot be used as the starting point for the approximation
scheme. Otherwise it is not possible to prove the monotonicity of iterations. Nev-
ertheless, these schemes create in some sense the basis of our approach. We will of
course prove the convergence of iterations although they do not need to be monotone.

The need of a reliable, efficient and robust iteration scheme for the- solution of
nonlinear elliptic BVPs, which can start from arbitrary initial data, is evident. We
propose such an algorithm in this paper. We consider a nonlinear second-order
elliptic BVP, where the nonlinearity yS(u) (u stands for a solution and ft = g, gR)
can appear as a source term in the equation or at the Robin-type boundary condition
(BC). In both situations we assume that the function /3 is monotonically nondecreasing
QS' > 0) and we distinguish the Lipschitz continuous (0 < yS' < L) and the degenerate
(0 < fi' < oo) case. We follow some ideas from Slodicka [15, 17] and we extend
these results to the case of unbounded yS' taking into account the possible nonlinearity
at the boundary. The Lipschitz continuous case has been considered in [15], where the
function 0 could degenerate only in a single point in which it was /3 regularised by a
suitably chosen (}k (k stands for the iteration parameter). Here we do not need such a
regularisation and, moreover, we allow f) to degenerate in the whole interval. In [17]
this regularisation has been removed, but the problem setting there does not contain
nonlinear BCs and the convection is independent from the solution, which is taken
into account in our paper. The analysis of the mixed finite element discretisation for
a Lipschitz continuous case can be found in Slodicka [16].

In the Lipschitz continuous case, our algorithm is similar to the scheme proposed
by Evans [5, page 507] (where there is a proof of convergence of a monotone approx-
imation for the Dirichlet BVP), but the main difference is that we show the order of
convergence of iterations (not necessarily monotone if we do not start from upper and
lower solutions) for a more general setting (a nonlinear BC) without using the ordering
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property of approximations. Hence we can start from arbitrary data and the iteration
scheme will converge to the exact solution. In the degenerate case, we first apply a
local regularisation to the nonlinear function fi, and then we use a similar linearisation
for the regular instance. The argument for convergence is more delicate since up to
now there has existed no linearisation scheme for degenerate elliptic BVPs, which
converges and which can start from arbitrary data.

The proposed algorithms (3.3) and (4.4) are in their spirit nothing more than an
application of the well-known Banach fixed point theorem. We explain the main idea
in the following example.

Given a Lipschitz continuous function g satisfying 0 < y < g' < L, we look for a
solution x of the equation g(x) = 0. Define a function h by h(s) = s — g(s)/L, then

0 < h'(s) = 1 - ^ - < l - - = q < l .
L L

We try to approach the solution using the sequence xk = h(xk_\) of successive
approximations. The Banach fixed point theorem implies the existence and uniqueness
of a solution x to the equation h(x) = x, which immediately yields g(x) = 0.
Moreover, the error bound

qk

I * * * I l * i * o l
\-q

can be established and limt_0O xk = x is valid independently of the choice of the
initial guess x0-

This clever idea must be put into the context of PDEs and generalised to an
appropriate form in order to handle the most interesting situations, namely y = 0 or
L = oo, which cover degenerate nonlinear elliptic problems.

We recall that Pong and Yong [14] also applied the fixed-point argument to a
Lipschitz continuous case for a simpler problem setting, but they were not able to
establish the rate of convergence and also they did not discuss the degenerate case.
Maitre [11] applied an iteration scheme for solving a nonlinear elliptic problem, but
he was notable to handle nonlinearities of the type g(x) = sign (x) \x\r for 0 < r < 1.

The rate of convergence in the spaces L2(Q) and H\Q) is shown in Theorems 3.2
and 4.3 and the main contribution of this paper is Theorem 4.4 (for strictly monoton-
ically increasing nonlinearities), where convergence in Loo(fi) D L00(rAr) is shown.
Here, the weak maximum principle proof-technique has been employed, which al-
lows us to obtain the error estimates in the space Loo(Q) D Loo(rN) for a solution

The proposed technique can be also easily applied to a BVP with a nonlocal BC,
see for example Slodicka [15]. We have omitted this in our paper in order to focus on
a new type of linearisation scheme and on the error estimates.
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Throughout the paper C denotes a generic positive constant independent of the
iteration parameter k.

2. Problem formulation and assumptions

Consider an open bounded set fi c RN, N > 2 with a Lipschitz continuous
boundary F consisting of two complementary parts FD and VN. We assume that

irD| > o. (2.1)

We denote by (w, Z)M the usual L2-inner product of any real or vector-valued functions
w, z on a set M.

We study the following nonlinear stationary BVP:

(2.2)

The nonlinear functions g and gR are supposed to be continuous and monotonically
nondecreasing, that is, 0 < g', g'R, a.e. in R. Later, we will also adopt some new
assumptions on g and gR depending on whether or not they are Lipschitz continuous.

The tensor i4dif describing the diffusive properties of the material obeys the inequal-
ity

Co\u>\la<(A«(Vw,Vw)a<C\w\la, VweH\Q) (2.3)

for given positive constants Co and C. The assumption (2.1) implies the fact that the
seminorm | | , n represents an equivalent norm in // '(fi) to the usual norm II - II i,n-

We consider such a type of convection acon, which has been caused by an indepen-
dent stationary process without spatially distributed sources. This can be mathemati-
cally described as

(2.4)

Further, we adopt standard assumptions on the source term and boundary data/, gN

and gD:

f € L2(Q), gN 6 L2 ( I \ ) and (2.5)

3g e Hl(Q) such that g = gD on TD. (2.6)

lOconl

Ocon • V

V ' ^con

<

>

=
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Let us introduce the standard subspace V of // '(ft),

V= {<pe H\Q.)\ <p = 0 o n r D , } ,

as the space of all admissible test functions in a variational formulation. Define the
bilinear form a : H\Q) x H\Q) -*• K as

a(u, tp) = (AdifVw + acoau,y<p)n, Vu,<p e // '(ft)

and the linear bounded functional F : V -*• K

(F, <P) = if, <p)n ~ (8N, <p)rK, ^<P e V.

The weak formulation of (2.2) has the following form: Find u € H\Q) such that
u — g e V and

a(«, 9) + («(«), *0o + (*«(«). <P)rN = (F, tp), VV € V. (2.7)

The well-posedness of this problem (existence and uniqueness) is guaranteed by the
theory of monotone operators (see for example, Necas [12]).

THEOREM 2.1. Let the assumptions (2.1) and (2.3)-(2.6) be satisfied. Then there
exists a unique weak solution u 6 H\Q) to the BVP (2.7).

The main goal of this paper is to design a simple and efficient linear approximation
scheme. We distinguish between two cases depending on the Lipschitz continuity
of the nonlinear functions g and gR. For simplicity we assume that both functions
have (or have not) bounded derivatives. Of course, the case when one function is
Lipschitz continuous and the other not is possible, and this can be obtained by suitable
combination of the approximation schemes we will describe.

3. Lipschitz continuous functions g and gR

We start with a simple case. Let both functions g and gR be Lipschitz continuous
with the Lipschitz constant L, that is,

\PM - P(y)\ < L[x - y\, Vx,ye$L,

0<P'<L, a.e.inR, P = g,gR.

Here, we follow the ideas from Slodicka [17], where a BVP with Dirichlet BCs has
been considered as a temporal problem by time discretisation. We design a recursive
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sequence of linear elliptic BVPs, solutions of which will approach the weak solution
u of (2.7). We start with any function «0 satisfying

no e L2(Q) n L2 ( r f f ) . (3.2)

Further, uk for k = 1, 2, . . . is a weak solution to the following linear elliptic BVP:
Find uk e H\Sl) such that uk — g e V and

a(uk, cp) + L(uk, <p)n + L(uk, (p)rN = (F, <p) + L(uk_lt<p)n - (g(wt_,), <p)a

(3.3)

holds for any p e V.
First, we show the well-posedness of the BVP (3.3).

LEMMA 3.1. Let the assumptions (2.1), (2.3)-<2.6), (3.1) and (3.2) be satisfied.
Then the sequence {«*}£!, C H\Q) is well defined.

PROOF. Let w be any function from V. Assumption (2.3) implies

C \w\la > a(w, w) > Co \w\2
lQ . (3.4)

The relation (2.4) together with the Friedrichs inequality and Green's theorem give
the estimate

CM?,n ^ (flconW. Vu))n = -(ocon, Vw2)n

= ~ ^ ( V • «con, W2)n + -(flcon • V, W2)r

= -(flcon • v, u;2) r ; v > 0. (3.5)

Hence the left-hand side of (3.3) is a V-elliptic continuous bilinear form.
Take k = 1. The right-hand side of (3.3), according to (2.5), (3.1) and (3.2), is a

bounded linear functional on V. Thus the existence and uniqueness of a weak solution
M, 6 //'(£2) to the BVP (3.3) follows from the Lax-Milgramm lemma.

If M*_I 6 Hl(Q), the right-hand side of (3.3) is a bounded linear functional on V.
Thus there exists a unique weak solution uk e // '(fi) satisfying (3.3).

We now define the following functions:

h(s) = g(s) - Ls, hR(s) = gR(s)-Ls, s € R. (3.6)

Subtracting (2.7) from (3.3), we get the variational formulation for the error uk — u

a(uk — u,<p) + L(uk - u, <p)a + L(uk - u, <p)rN

= (h(u) - /i("*-i), <p)a + (M") - Mm-i) , 0>)r*. (3.7)
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which holds for any <p € V.
Our next goal is to derive the error estimates in the H' (Q) space for the linearisation

scheme (3.3).

THEOREM 3.2. Let the assumptions of Lemma 3.1 be satisfied. Then there exist
positive constants C and 8 such that

+ I I * llo.
8 \k

~ T+sJ- c

holds for all k= 1 , 2 , . . . .

PROOF. Choose cp — uk — u e V in (3.7) and get

a { u k - u , u k - u) + L \\uk - u\\2
on + L \ \ u k - u\\lXfi

= (h(u) - M«*-i), Uk ~ u)n + (hR(u) - M"*-i), «i - ")r«- (3.8)

The crucial point is to estimate the terms in the right-hand side containing the functions
h and hR. To do this, we use (3.1) and deduce

- L < h'(s) = g'(s) - L < 0 a.e. in IR

-L < h'R(s) = g'R(s) - L < 0 a.e. in R.

Hence the derivatives of both functions h and hR are bounded by the constant L, that
is, W(s)\ < L and \h'R(s)\ < L a.e. in K°

Therefore, using the Cauchy and Young inequalities we deduce

\(h(u) — h(uk_\)

Analogously we have

, uk - u)n\ < \\h(u) - h(u,

< L || u — uk_\ ||

< L

- 2 II" "t-i

L

t-i)llo.n ll«t - «•

lo.fi II uk - "llo.fi

2 L

llo.fi + 2 - H " * -

L
\(hR(u) - fcj,(m_,), uk - u)rJ < - ||u - " J t - i w j »

The left-hand side of (3.8), according to the V-ellipticity of the bilinear form a (see
(3.4)), can be estimated from below by

L || U* - wllo.n + L\\uk- u\\lSll + Co \uk - u\\a.
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The generalised Friedrichs inequality (see Kfizek and Neittaanmaki [10, page 26])
and the continuous embedding L2(d£2) *-* #'(£2) imply the existence of a positive
real number S such that

S \\wfon < -j- \w\\u , S \\w\\2
orN < ^ \w\\n , (3.9)

holds for all w e V. Thus the lower bound of the left-hand side of (3.8) is

«t - u\\2
orN + y l«* - < n •

Summarising the foregoing results we arrive at

(L + S) [\\uk - u\\2
0il + \\uk - u\\l r J + Co |Hi - u\lQ

< L [ | | « - M t _ I | | 0
2

n + | | M - « i _ 1 | | ^ r J ,

which after a simple calculation gives

II«* - "lion + II«* - "llor, + 7 T 7 ]u" ~ M|i n
L -f- 0

I " -
We omit the third term on the left for a moment and obtain the recursion formula

II«t - "llo.fi + II«* - "llo.r, < ( l " 2 ^ 7 ) [II" - «*->ll2.0 + II" - «*-il lS.rJ-

This after k iterations implies

lII«* - < n + II«* - "llo.r, < ( l - J^j [H«o - «llo2
n + II«o - "llo.rj •

The rest of the proof comes from the last inequality and (3.10).

4. Non Lipschitz continuous functions g and gR

Throughout this section we assume that the derivatives of both functions g and gR

are unbounded. The most interesting types of nonlinearities are depicted in Figure 1.
To cover all these cases, we introduce the following class £2b of all real-valued
functions £ associated with any point fcei and satisfying the next relations

P e C(R),

0 < P'(s) < 00 a.e. in K,

P\s+) P'(s.) =00 = > s = b,

P" < 0 a.e. in (b, 00),

P" > 0 a.e. in (-00, b).
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FIGURE 1. Examples of nonlinear functions from £2b

FIGURE 2. Local regularisation of p

Functions g and gR can of course belong to different classes, but without loss of
generality we assume that g, gR e £}§.

In light of the fact that the function /3 (stands for g or gR) can degenerate, we
regularise it first. Then we define a linearised approximation scheme, which is in
some sense similar to the Lipschitz continuous case. We suppose that there exists a
sequence of functions {#t}£i and positive real numbers u> and _£? satisfying

0

Ck'
a.e. in R,

Vk>koe (4.1)

Without loss of generality one can assume that ko = 1. Similarly as in (3.6), we define
hk(s) — gk(s) — kJifs and hRk(s) = gR,k(s) — kJifs, for s e OS. In view of (4.1) we
have

< h'k(s) = g'k(s) - k% < 0 a.e. in K,

-k<£ < h'Rk(s) = g'Rk(s) - k% < 0 a.e. in K.

Therefore the relations

\h'k(s)\ <k<£ and \h'Rk(s)\ < (4.2)
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are valid a.e. in K.
We give a simple example of the regularisation to enhance readability.

EXAMPLE 1. Let the function fi be defined as fi(s) = JIJI""1, where the real
parameter a satisfies the condition 0 < a < 1. Clearly fi e J20- We choose S£ = 1.
The regularisation fik of fi can be given as (see for example Figure 2)

Jrnin(^),*,} , > 0 .

Clearly 0 < fi'k < k and one can easily check that

\P(s) ~

Now, we introduce a linearised scheme, the solution of which should approach
the weak solution of (2.7). First, we replace the nonlinearity fi = g, gR by its
regularisation fit, and then we apply a similar scheme to the Lipschitz case (3.3). The
approximation scheme reads as: Find uk e //'(J2) such that uk — g e V and

a(uk, <p) + kSf(uk, <p)a

- (F, <p) + k5?(uk-u <P)n ~ (gduk-\), <P)n

- (gR,k(uk-i), (p)rN (4.4)

holds for any <p e V.
The existence and uniqueness of a weak solution to the linear elliptic BVP (4.4) is

guaranteed by the next lemma. The proof proceeds in the same way as in Lemma 3.1,
therefore we omit it.

LEMMA 4.1. Let g, gR e £>0. Assume (2.1), (2.3)-{2.6) and (3.2). Then the
sequence {w*}^ C // '(fi) is well defined.

We subtract (2.7) from (4.4) and get the variational formulation for the error of the
linearisation scheme

a(uk - u,<p)+ k3?(uk - u, <p)n + k3?(uk - u, <p)rN

- gk(u), <p)n + (hk(u) - M"*- i ) - <P)n

k~\), <p)rN, (4.5)

which holds for any <p e V.
The following lemma plays an important role in the derivation of the error estimates

for the approximations uk.
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LEMMA 4.2. Let a, b and a> be positive real numbers satisfying b ^ a>. Assume that
{ykYkLo is a sequence of nonnegative real numbers obeying the following recursion

formula:

Then there exists a positive constant C = C(y0, co, a, b) such that yk < Ck~mia{bM,

* = 1 , 2 , . . . .

PROOF. Suppose we have a recursion formula of the type yk < ak + bkyk_\,
k = 1 ,2 , . . . . One can prove by induction that

k-l k k

yt<ak + J2 aJ FI bi + y° I I b i (4-6)

7=1 i=j + \ i=\

holds for all k e N. The details are left to the reader.
In our case we have ak = ak~l~w and bk = 1 — b/(k + b). Now, we estimate all

terms on the right-hand side of (4.6). We start with an obvious inequality for real
numbers 1 + x < e*, for all j g l , which immediately gives J~[^,(1 + xt) < e^1*',
for all Xj e R,Xj > —1. Therefore

0 ) {'tj
< yoexp(b[\n(l + b) - \n(k + b)])

= >>o(l + b)\k + 1 + b)~b < Ck'b. (4.7)

Similarly we estimate also the next term

i=\ J
exp (-b[ln(k + 1 + b)-ln(j + 1 + b)])

< C(k + 1 + byb / (x + 1 + fe)6-1"" dx < Ck-mn[wM. (4.8)
Jo

Summarising the relations (4.6)-(4-8) we conclude the proof.
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Now, let us turn our attention to the convergence proof of the approximations uk.

THEOREM 4.3. Let g, gR e «£?0- Moreover, we assume (2.1), (2.3)-(2.6), (3.2) and
(4.1). Then there exist positive constants C and S such that

H«* - "H I«* "

is valid for all k e N.

PROOF. Setting <p = uk — u € V in (4.5) we have

a(uk - u, uk - u) + kS£(uk -u,uk- u)n +

= (g(u) - gk(u), uk - u)n + (hk(u) -

uk - u)r,

. , ) , uk - u)rN.

- u,uk-

-i), uk - u)n

(4.9)

The term on the right-hand side containing the function g can be estimated using the
Cauchy inequality, (4.1), Young's inequality, Sobolev's embedding theorem and at
last the Friedrichs inequality. Successively we get for any i ) e K +

\(g(u) ~ gk(u), uk - u)a\ < \\g(u) - g*(K)||0,n \\uk - « | | o n

< Ck-» \\uk - «||0-n

Analogously we deduce

\(8R(U) - gK,k(u), uk - u)a\ < \uk - u
orfi

Applying the Cauchy inequality, (4.2) and Young's inequality we obtain

k-i),uk-u)n\ < \\hk(u)-

\\uk -

and in the same way we get

k±£ kl£
— II" - «*-illo.rw + ~^~
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According to the ellipticity of the bilinear form a, the left-hand side of (4.9) can
be estimated from below by /LS? ||H* — u\\\ n + kS£ ||K* — M||Q rtl + Co \uk — "|fn.
Collecting the foregoing results together with (3.9), we arrive at

^[ilK*-<Q + ll«*-<r,] + (^r-

< c,k + [||« iit_,||JiQ + ||if «t-ill2,rj •

Now, we choose rj = Co/4 and after a simple calculation we get

II"* - "UoU + II"* - < r > + 2(kJ? + 8) Wk ' "''•"

( ^ § ^ ) ll« " «t-.llS.o + ll« - «*-.Uo.rJ • (4-10)

Omit the third term on the left for a moment and get the following recursion formula:

II"* - «ll2.o + II"* " "Ho.r*

( ^ § J ^ ) [II« - «*-iUoU + II" - «*-• Ho.rJ •

Lemma 4.2 yields

II «* " < o + II «* - "Ho.r. < tt

and the rest of the proof follows from the last estimate and (4.10).

Theorem 4.3 proves the convergence of uk to the exact solution u in the space
L2{Q.) fl L2 ( r \ ) . If min{2&), S/SC} > 1, then also the convergence in the norm of
the Sobolev space H\Q,) is shown. This, of course, depends on the nonlinearity of
g, gR and also on the relation (3.9). The crucial point in the proof was the fact that
the diffusion term has added a bit to the source term—see the relation (3.9). Let us
note that if g', g'R > y > 0, then the proof of Theorem 4.3 can be modified so that the
relation (4.2) is replaced by

\h'k(s)\ < kSf - y and \h'R k{s)\ < JUS? - y, (4.11)

which is valid a.e. in OS. Analogously one can prove

II"* - "IliU + II"* - < r > < a -™- ' 2 - - ^ ' - * 1
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EXAMPLE 2. Consider a real parameter a satisfying 0 < a < 1. Define the
following function

= ( ' I ' ! - ^ r , e [-1, 1],
[a for se R \ [ - l , 1].

Clearly £' > a, that is, we can put y = a. Choose _Sf = (1 — a)/2 and define

s<0.

Thus 0 < B'k < k5£ and a simple calculation gives for k > l/Jf

\6(s) - jik(s)\ < C(a) k-"ni-a) = Ck~w.

Therefore

. L Y +s] • U H . f 2a 2a 1 2a
m i n { 2.CO, > > nun \ 2,co, — } = nun { , ? = > 1

I se j " I JjfI l l - a 1 - a j 1 - a
for a > 1/3. According to the relation (4.12), we obtain

lim \uk — «|, n = 0 for 1 > a > 1/3.
IC-KX>

The condition that /S' > y > 0, where /J stands for g or gR, is natural in some
applications, see, for example, Barrett and Knabner [3]. Here, an equation of the type
d,(u + [M]+) — Au = f with 0 < p < 1 is considered. This, after time discretisation,
leads to an elliptic equation of the form v + [v]p

+ — Av = F.
Our next step is to prove convergence in the space Loo(fi).

THEOREM 4.4. Let the assumptions of Theorem 4.3 be satisfied. In addition we
suppose u e Loo(Q) l~l Loo(rN) and 0 < y < 0' < oo for fi = g, gR. Then there
exists a positive constant C such that

max {|| uk — u|| i(jo(n), || « i - M || £„,((-„)} 5 C k ma W'Y

holds for all k e N.

PROOF. Fix the iteration parameter k and define the real constants A, B and MAB

in the following way:

A = (k&y1 \\g(u) - gk(u) + hk(u) - **(«*_,)IItoo(n),

B = (kSfy1 \\gniu) ~ 8KA") + V*(") - *K.*(«*-i)|L(rw)
 a n d

MAB =max{A, B).
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Denote by £2~ and rj, the sets

£T = {x € Q.; uk(x) - u{x) + MAB < 0} and

r ; = (x£ rN; uk(x) - u(x) + MAB < 0}.

Let us suppose that at least one of these sets has a positive measure (the N- and
(N — l)-dimensional measures are denoted by the same symbol), that is,

We start again with the relation (3.7) and set <p = (uk — u + MAB)~ e V, where/ "
stands for the usual cut-off function defined by f~(s) = min{/ (s), 0). We can write

a(uk -u,(uk-u + MAB)~) + k£e(uk -u,(uk-u + MAB)~)a

+ kSf(uk -u,(uk-u + MAB)~)TH

= (h(u) - h(uk-i), (uk-u + MAB)-)Q

- hR(uk-i), (uk-u + MAB)-)TN.

This can be rewritten as

0 = (AdifVfo - M), V(wt - u + MABy)a

- U + MAB)~)a

,(uk-
n

,(uk- Iu

= Mi + M2 + Mi + M4. (4.13)

The V-ellipticity of the matrix Adif (see (2.3)) implies the non-negativity of the term
Mi, that is,

0 < (AdifV(aA -u + MAB)~, V(II4 - u + MAB)~)a

= (AdifV(Kt -u + MAB), V(nt - i i + MAB)-)Q

= (AdifV(wA - II), V(M4 -U + MABy)Q

The convection term M2 is also nonnegative. To show this, we apply Green's theorem,
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(2.4) and (3.5). We successively obtain

M2 = (acoa(uk - «), V(u* - u + MAB)~)n

= (aCOn(uk - u + MAB), V(M* - u + MAB)~)a

- MAB {amat V(uk - ii + MABy)a (±MAB)

= (acoa(uk - u + MAB)~, V(uk - u + MAB)~)n

>o

+ MAB I V • acon, (uk-u + MAB)'

- MAB (acon • v, (uk - u + MABy)r (Green's thm.)

> -MAB (ccon • v, (uk - u + MABy)r ((3.5), (2.4))

= ~MAB I acon • v, (uk-u + MABy I ((2.4))

>0.

Using the obvious inequality

h(u) - *(«*_,)
Uk ~ u —

which is valid a.e. in £2~, we have

<uk-u + A<uk-u + MAB < 0,

Analogously, applying the inequality (valid a.e. in T^)

fin(u) hR(uk.})
uk-u —— <uk-u + B<uk-u + MAB < 0,

we get for M4

hR(u)~ \(uk-u + MAB) ) >o.

Collecting all the estimates for M\,..., A/4 we arrive at

Mx + M2 + A/3 + M4 > 0.
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This contradicts the relation (4.13) and the assumption \Q~\ + |F^| > 0 fails to hold.
In other words, we have just proved

uk — u > —MAB a.e. in Q,
(4.14)

uk — u > —MAB a.e. in VN.

The next step is to prove

uk — u < MAB a.e. in Q,

uk — u < MAB a.e. in TN.

Therefore, we introduce the sets J2+ and F^ as

Q+ = {x € Q; uk(x) - u(x) - max{A, B] > 0} and

r+ = [x € VN; uk(x) - u(x) - MAB > 0}.

We now put <p = (uk — u — MAB)+ = ma\[uk — u — MAB, 0} e V into (3.7) and
follow the same argument as before. So, we obtain (4.15).

In light of (4.14) and (4.15) we have

ma\{\\uk-u\\La>ia),\\uk-u\\LxirN)} <MAB. (4.16)

The assumption 0 < y < ft' for fi = g, gR implies the relation (4.11), which is valid
a.e. in R. Thus we successively get

A = (kSfy1 \\g(u) - gk(u) + hk(u) - hk(uk.x)\\Lcoia)
1 (\\g(u) - ^(11)11^(0, + \\hk(u) - /**(«*-

( klf/sf) "lax
and

B = (kSfy] \\gR(u) - gR,k(u) + hR,k(u) -
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The last two estimates and (4.16) imply the following recursion formula for it =
1 , 2 , . . . :

max {||Mt - uII/.„(£},, ||uk - u\\Loo(rfl)]

||M,_, - u\\L^ , n,,*., - u\\Lco(rJ .

The rest of the proof can be obtained by a simple application of Lemma 4.2.

5. Numerical experiments

In this section we present two numerical examples to demonstrate the efficiency and
robustness of the proposed linearisation schemes (3.3) and (4.4). For the numerical
solution of a linear elliptic equation we have used the mixed non-conforming finite
element formulation. This is equivalent to the mixed-hybrid method (see Arnold and
Brezzi [2]). We explain very briefly the main idea of this approximation.

Let us consider a regular triangulation f7h (h denotes the mesh diameter) of the
domain Q. On each element & e !7h we define three linear basis functions associated
with edges of S?', that is, a basis function has the value 1 at the midpoint of one
edge and 0 at the midpoints of the different edges of one triangle. Further we define
a bubble function on &, which is a polynomial function of third order vanishing
on the boundary d& and its integral average value on S is 1. In this way we have
enriched the standard linear non-conforming space by bubbles, and we solve the linear
elliptic problem in this space replacing the velocity field q by its projection on the
Raviart-Thomas space RT0. For more details see Arnold and Brezzi [2].

For the analysis of the mixed finite element discretisation for the Lipschitz contin-
uous case (Dirichlet problem) we refer the reader to Slodicka [16].

5.1. Lipschitz continuous case Let £2 be the unit square in K2, the boundary of
which is split into two parts FD and VN, see Figure 3.

We consider the same nonlinear function in the domain and on FN, that is, g = gR,
which is defined as

Jarctan s for s < 1,

[ 7r/4 elsewhere.

This is clearly continuous. For the derivative we have

f 52) f o r 5 < l ,
8 (*) = \

0 elsewhere,
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"con

FIGURE 3. Domain ft with convection <!„„

thus 0 < g' < 1 a.e. in K.
The convection term a^a = (0, —1) clearly fulfills the assumption (2.4). We

consider the following nonlinear elliptic BVP: Find u e Hl(Q) such that

u = gD

(-Vu - amou) • v - g(u) = gN

in Q,

on rD >

on

where the data functions / , gD and gN are defined in such a way that the exact solution
of this BVP is

"(*. y) = *3 — y2 + x + sin(7rx) sin(7rv).

We have used the linearisation scheme (3.3) with L = 1 for computations.
Let us introduce a random function ran whose range is uniformly distributed over

(—1,1). We present two computations. In the first case, we choose u0 relatively close
(up to 50% error) to the exact solution, that is,

uo(x) = U(JC)(1 +0.5ran(x)).

In the second event we begin with u0, which is far away from the solution u, that is,

uo(x) = 100ran(x).

Let us note that the random function ran has been evaluated once per a given triangle
or an edge.

We have used a fixed uniform mesh consisting of 5 000 triangles, which corresponds
to Ax = Ay = 0.02, and we have computed 25 iterations. Then we have evaluated
various errors of uk and plotted them versus iterations k = 1 , . . . , 25. In order to
get a better feeling for the rate of convergence, we have depicted logarithms of errors
instead of errors on the y-axes—see Figure 4. Here, the left column represents the
case for a good starting point UQ, while the right column corresponds to a very badly
chosen u0.
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5.2. Non Lipschitz continuous case Take Q = [0, I]2. Consider the nonlinear
function g given by

I ^/s for s > 0,

0 elsewhere,

which is clearly non Lipschitz continuous. We want to find a solution to the following
nonlinear Dirichlet problem:

V • (—VM) + g(u) = / in n

u = gD on T.

The data functions / and go are defined in such a way that the exact solution of this
BVPis

u(x, y) = *3 — y2 +x + sin(7r;c) sin(n-y).

We have used the linearisation scheme (4.4) with S£ = 1 for computations, where
the approximation gk is given by (4.3). We start from u0, which is far away from the
solution u, that is,

= 100ran(x).

We have again used the same uniform mesh consisting of 5 000 triangles corresponding
to Ax = Av = 0.02, and we have computed 25 iterations. The results are depicted in
Figure 5.

5.3. Conclusion Figures 4 and 5 show the behaviour of the L2(fi)-error of the
iteration process. One can also compute the H\S2)- and Loo(ft)-errors. The graphs
will have the same character. The rapidly decreasing part at the beginning is followed
by a more or less constant section. The reason for this is that the initiate dominant
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linearisation error becomes subjacent to the discretisation error as the number of
iterations increases.

We can really observe that the linearisation schemes (3.3) and (4.4) are robust and
that the approximations converge towards the exact solutions independently of where
the iteration process has started. The robustness of the scheme allows the use of large
time steps in the computation of evolution problems. The convergence at each time
point of a suitable time partitioning is independent of the time step size. This is a big
difference from other frequently used algorithms.

Moreover, both numerical schemes are efficient. In particular, we needed 7-8
iterations to get the best possible error for the given discretisation, although u0 was
really badly chosen. In the instance of a good starting point M0, it is enough to do 3-4
iterations to achieve the discretisation error.
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