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A group G is said to be a minimal non-FC group, if G contains an in®nite con-
jugacy class, while every proper subgroup of G merely has ®nite conjugacy classes.
The structure of imperfect minimal non-FC groups is quite well-understood [3] (see
also [14], Section 8). These groups are in particular locally ®nite. At the other end of
the spectrum, a perfect locally ®nite minimal non-FC group must be a p-group [2],
[9]. And it has been an open question for quite a while now, whether such groups
exist or not. In [10], Theorem 2.4, it was shown that such p-groups have a non-trivial
representation as subgroups of the McLain group M(Q,Fp), that is, as groups of
in®nite upper unitriangular matrices of order type Q over the ®eld Fp with p ele-
ments, in which all but ®nitely many non-diagonal entries are zero. The purpose of
this note is to obtain the following considerable improvement, which should provide
a major step in the discussion of existence of perfect minimal non-FC p-groups.

Theorem. Every perfect locally ®nite minimal non-FC group has a quotient, which
acts as a barely transitive p-group of ®nitary permutations on some in®nite set.

Recall, that ®nitary permutations of the set 
 ®x all but ®nitely many elements in

. The structure of groups of ®nitary permutations has been studied intensely in the
seventies and again during the last ten years (see [13] for references). A subgroup of
the symmetric group Sym(
) on an in®nite set 
 is said to be barely transitive, if it
acts transitively on 
, while each of its proper subgroups has ®nite orbits. Barely
transitive groups were brought up by B. Hartley [4], [5] in connection with groups of
Heineken-Mohamed type, and have been investigated during the last years mainly
by M. KuzucuogÆ lu [7], [8]. Obviously every barely transitive group without proper
®nite quotients is a minimal non-FC group. In particular, the question about exis-
tence of perfect locally ®nite minimal non-FC p-groups turns out now to be equiva-
lent to the question about existence of perfect barely transitive p-groups, which in
addition act ®nitarily on the underlying set.

Proof of the Theorem. Let G be a perfect locally ®nite minimal non-FC group.
Recall that G is a p-group. Since G is perfect, the centre �1(G) is the highest term of
the upper central series in G. From passing to G/�1(G) we may assume that G has
trivial centre. Consider a non-trivial normal subgroup N of G. The socle S of the
FC- and p-group N is an elementary-abelian normal subgroup in G ( [14], p. 10).
Consider a ®xed non-trivial element x2S, and let 
={xgjg2G} and V=h
i�N.
Since G has no proper ®nite image and trivial centre, the set 
 must be in®nite. Since
G is a minimal non-FC group without maximal subgroups, it acts barely transitively
on 
 via conjugation. Moreover, G acts ®nitary linearly on the Fp-vector space V:
For every g2G, the proper subgroup Vhgi of G is an FC-group, whence

Glasgow Math. J. 41 (1999) 81±83. # Glasgow Mathematical Journal Trust 1999. Printed in the United Kingdom

https://doi.org/10.1017/S001708959997043X Published online by Cambridge University Press

https://doi.org/10.1017/S001708959997043X


jV : CV�g�j � jVhgi : CVhgi�g�j <1. It remains to show, that G acts as a ®nitary
permutation group on 
.

To this end, we assume that some g2G has in®nite support on 
. Let M=hgGi.
Since G is a locally ®nite p-group, g 62M0, and so M/M0 6�1. Since G is perfect, M is a
proper normal subgroup of G. Since G acts barely transitively on 
, the M-orbits 
i

(i2!) are ®nite and form a system of imprimitivity. Let Vi=h
ii�N. Since g has
in®nite support on 
, we have [Vi, g]6�1 for in®nitely many i2!. However, [V, g] is a
®nite-dimensional Fp-vector space, hence ®nite. Thus there is a one-dimensional
subspace U in [V,g] such that U�[Vi,g] for in®nitely many i2!. Let I be the set of all
such i2!. Fix i02I, and choose gi2G (i2I) satisfying 
i

gi=
i0
. Since Vi0 is ®nite, there

is an in®nite set I0�I such that Ugi=Ugj for all i, j2I0. Consider the normalizer
H=NG(U). Fix !02
i0

. Since gigj
ÿ12H for all i, j2I0, the elements !0g

ÿ1
i �i 2 I0� are

contained in an in®nite H-orbit on 
. Hence H=G, and U is a normal subgroup of
order p in G. But then 1 6�U��1(G), a contradiction. The proof of the Theorem is
complete.

A group G is said to be a minimal non-CC group, if U/CU(x
U) is a CÏ ernikov

group for all x2U<G, while this property fails for G in place of U. Obviously, every
perfect locally ®nite minimal non-FC group is a minimal non-CC group. Many
results about minimal non-FC groups have been transferred to minimal non-CC
groups [12], [6]. The following is an immediate consequence of [6], [1], and of our
Theorem above.

Corollary 1. Every locally graded minimal non-CC group has a quotient, which
acts as a barely transitive p-group of ®nitary permutations on some in®nite set.

We also obtain a generalization of [12].

Corollary 2. No non-trivial quotient of a locally graded minimal non-CC group
lies in a proper variety.

Proof. Let G be a locally graded minimal non-CC group. Every quotient of G is
also such a group [12]. Consider N/G and assume, that G/N lies in a proper variety.
From Corollary 1 we may assume that G/N is a transitive group of ®nitary permu-
tations of an in®nite set 
. But this contradicts [11, Theorem 1].
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