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0. Abstract. This paper obtains a simple formula for the distance from a given
operator to the set of invertible operators without requiring the underlying space to be
separable. That formula is used to compute the distance to the Fredholm operators with a
given index. These results require the further study of the concepts of essential nullity and
essential deficiency, which permitted us to characterize the closure of the invertible
operators. We also introduce a parameter called the modulus of Fredholmness.

1. Introduction. Extensive results related to the Calkin algebra and operator
approximations have been proved for a (bounded linear) operator T on a separable
Hilbert space. That literature is vast and the bibliography of [1] could be used as a
starting point. Papers [2], [3], [4], [6], [8], [13], [14], and [15] are relevant to this work. It
is desirable to have these results on more general spaces, and an important step in that
direction is the discovery of appropriate versions for Hilbert spaces that are not
separable. There has been progress toward this goal, as indicated by [5], [7], [9], and [11].
The purpose of this paper is to generalize and refine results in [1], [2], and [7] using some
ideas introduced in [2], [5], and [7].

Let S8(//) denote the operators on the Hilbert space H, and define nul T(def T) to
be the cardinal number dim ker 7*(dim ker T*). Let U \T\ be the usual polar factorization
of T, and let £(•) be the spectral measure for the non-negative operator |T|. In [5] we
defined ess nul T by the equation

ess nul T = inf {dim £([0, e))H: e > 0},

and by definition ess def T is ess nul T*.
In [5] we showed that the closure of the invertible operators is the set of operators

T such that ess nul T = ess def T. It is important to note that dim E([0, e))H is a
nondecreasing function of e taking values in the cardinal numbers. Consequently, there is
a positive y such that dim £([0, e))H = ess nul T for 0 < e ^ y. (The key observation is
that every cardinal number has a successor whether or not it has a predecessor.) It follows
from Lemma 4 that ess nul T = nul T when T has closed range.

In [7] we defined the modulus of invertibility, denoted p(T), by the equation

p(T) = inf{A: dim £((A - e, A + e))H = dim H for e > 0},

and we showed that the following formula is equivalent to the definition

p(T) = inf{A: dim £([0, A + e))H = dim H for £ > 0}.

For the current work we need to define the modulus of Fredholmness, denoted by r(T).
Let fi(T) = max{ess nul T, ess def T, Ko}; for simplicity we write j8 for /3(T). Define r(T)
by the equation

T(T) = sup{A: dim £([0, k))H < jS},

where the supremum is understood to be 0 if there is no positive A such that
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dim £([0, k))H < /S. If T is Fredholm then p = Ko and T(T) > 0, and if T is not Fredholm
then the preceding definition can be simplified by letting /3 = max{ess nul T, ess def T).
These observations follow from Lemma 4.

Recall that the minimum modulus of the operator T, denoted by m(T), is defined to
be inf{||r/||: | |/ | | = 1}. We have m(T)>0 if and only if nul T = 0 and the range of T,
denoted by TH, is closed. The reduced minimum modulus of T, denoted by mr{T) is
defined to be inf{||7/||: | |/ | | = 1 a n d / l k e r T } . We have mr(T) > 0 if and only if TH is
closed. Let oe(T) denote the set {z:T-zI is not a Fredholm operator}, which is the
essential spectrum of T. Define the essential minimum modulus, denoted by me(T), to be
inf{A:Ae oe((T*T)m)}. We have me(T)>0 if and only if TH is closed and nul T<oo.
See [2] and its sources for more explanation of the assertions in this paragraph.

2. Distance to the invertible operators. In this section we obtain a formula for the
distance from a given operator to the set of invertible operators without any assumption
of separability. The formula obtained is analogous to the one obtained in [5] for the
separable case. On a Hilbert space that is not required to be separable there are five
different quantities that share the properties of the essential minimum modulus in a
separable Hilbert space.

First we prove a lemma, which gives us one of the fundamental tools used in this
research.

LEMMA 1. Let T = U \T\ be the usual polar factorization, and let V be the isometry
obtained by restricting U to the closure of the range of T*, denoted by (T*H)~, and
considering (TH)~ to be the range of V. Let E(.) and F(.) denote the spectral measures of
\T\ and \T*\, respectively. If A denotes the restriction of \T\ to (T*H)~, i.e.
A = \T\ | (T*H)~, and B = \T*\ \(TH)~, then B = VA V*. It follows that F(/) = VE(J>)V*
for any interval 3> contained in (0, °°).

Proof Note that TT* = U \T\2 U* = U(T*T)U*. Since the square root of an
operator is the limit of polynomials in the operator, we see that U \T\ U* = \T*\. It
follows that VAV* = B; note that

A=\ tdE(t), B=[ tdF(t).

It is routine to verify that

B =
vJ(o.

tdE(t))v*=l tdVE(t)V*.

Since the last equation characterizes F(-), we get the desired result.
Three of the operator parameters in a general Hilbert space, that share the

properties that the essential minimum modulus me(T) enjoys in a separable Hilbert space,
are related in the next theorem. Each part of this theorem will be used subsequently.

To avoid tedious trivialities we assume henceforth that H is infinite dimensional.

THEOREM 2. (i) p(T)> T(T) >me(T)>0.
(ii) T(T) = inf{A:dim£((A, A + *•))//>0 for e>0} and dimE((T(T),T(T) +e))H>p

for e > 0.
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(iii) T ( 7 ) = 0 if and only if ess nul T s ess def T and ess nul T s Ko.
(iv) // T(T) = 0 = T(T*) , then ess nul T = ess def T, and consequently T belongs to

the closure of the invertible operators, i.e. T e <3~.
(v) If both T(T) and T(T*) are positive, then they are equal.

Proof. The first inequalities follow from the observation that dim H > )3 s Ko.

In order to prove (ii) we let y denote the infimum on the right side and assume that y
is positive. Choose x so that 0<x < y and A e [0,x]; since there exists a positive e such
that dim £((A, A + e))H </3, we can find a finite cover of (0,;c], say {(A;, Ay + ey):; =
1,. . . , n}, consisting of such intervals. The inequalities

dim £((0, x))H < £ dim £((A,, A, + £,))//

and
nul | r | = dim £({0})// < ess nul T

show that dim E([0, x))H < p. On the other hand, if x > y then there exists some A
between y and x such that dim £((A, A + e))H > /3 for every positive e. In particular, we
may assume that (A, A + e) c (y, x) and so dim£([0, x))H^ /3. It now follows that y is
the least upper bound for the set {A:dim £([0, k))H < /3}. Thus, y = r(T). If y = 0, then
/3 = ess nul T and T ( 7 ) = 0.

To prove the final assertion in (ii) we choose a positive 6. There exists some A
between r(7) and T(T) + 6 such that dim £((A, A + e))H > /3 for every positive e. We
may assume that (A, A + e) <= (T(T) , r(T) + 6) and consequently

dim E((T(T), X{T) + 6))H > j3.

This proves (ii).
The quantity x(T) is 0 if and only if there is no positive A such that dim £([0, X))H <

/3. For all positive A sufficiently small we have ess nul T = dim £([0, A))//; so it follows
that ess nul T2j3. This clearly gives the desired conclusion. The converse is
straightforward.

If r(T) = 0= T(T*), then it follows from part (iii) that ess nul T = ess def T. The
main result of [5] implies that T e <S~.

Part (v) follows routinely from Lemma 1 and part (ii) of this theorem.
The next lemma obtains the easier half of the formula that is stated in Theorem 7.

The basic idea of the proof was first introduced in [2].

LEMMA 3. //ess nul T¥=ess def T, then dist(7\ <§) <max{r(r), r(T*)}.

Proof. In view of part (iv) of Theorem 2, at least one of the quantities r(T) and
t(T*) is positive. Interchange T and T*, if necessary, so that r(T)>0. Let fx denote
r(T), let a positive s be given, and let UR be the polar factorization of T such that
ker U = ker R. It follows from part (ii) of Theorem 2 that

dim UE((0, n + e))H = dim £((0, p + e))H > )3.

Define R(e) to be R on E([fi + e, <*>))H and to be /// on £([0, fx + E))H. Define U(e)
to be U on E([[i + e, °°))// and on £([0, n + e))H let it be eV, where V is an isometry of
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E([0,n + e))H onto span{£/£((0, n + e))H, (77/)x}. Since UE((0, «>))// = U(RH)~ =
(TH)~, it is clear that f/(e) is one-to-one and onto; thus, U(e) is invertible. Clearly 7?(e)
is invertible and

\\UR - U(e)R(e)\\

= \\(UR-U{e)R(e)\E([0,n + e))H\\

< \\(UR - U(e)R) | £([0, ^ + e))// || + || (/(<•)/? - f/(e)/?(e)||

< ||U - U(e)\\ \\R | £([0, (i + e))H \\ + \\U(e) | £([0, ju + e))// || ||/? - R(e)\\

This proves that dist(7\ <S) < T(T) , and T(T) = max{ir(r), T(T*)} according to part (v) of
Theorem 2.

The next lemma collects some elementary observations about operators with closed
ranges. These facts will be used repeatedly in subsequent proofs.

LEMMA 4. Either the ranges of all of the operators T, \T\, T*, \T*\ are closed or none
of the ranges is closed. The range of \T\ is closed if and only if 0 is not an accumulation
point of its spectrum o(\T\). If TH is closed, then ess nul T = nul T.

Proof. It follows from the equations

\\Tf\\2=(Tf, Tf) = (T*Tf,f) = ||m/||2

that ker T = ker \T\ and the partial isometry U in the polar factorization T = U \T\ maps
\T\H isometrically onto TH. In particular, if TH is closed, then so is \T\H. It then
follows that there is a positive d such that

<52 II/IN lim/||2= (T*Tf,f) < | |rTF||, (*)
for every unit vector fe (ker \T\)X. Since \T\2 = T*T, we see that (ker ITI)-1- contains
(ker T*T)L; so (*) implies that 7*77/ is closed. Since T*TH=T*H, we know that T*
and |7*| have closed range. The inequality analogous to (*) that we get when we replace
\T\ with \T*\ shows that TH is closed. This proves that if the range of one of the
operators T, \T\, T* or |T*| is closed then so is each of the others.

Let £(•) be the spectral measure for \T\ and assume that 0 is not an accumulation
point of o(\T\). Thus, there is some interval (0, E) that is disjoint from CT(|JT|). It follows
that

| | m / | | > £ | | / | | , for feE((0,co))H,

and, since £((0, °°))// = (ker IT])-1, we may conclude that \T\H is closed. If 0 is an
accumulation point of CT(|T|), then dim£((0, £))//> K0, for every positive e. Clearly we
have

inf{||m/||:/±ker(m)}=0
and \T\ H is not closed.

The final conclusion follows from the preceding paragraph.
We shall prove that an inequality between ess nul T and ess def T leads to an

inequality between r(T) and t(T*).

LEMMA 5. / / ess nul T < ess def T, then r(T) >T(T*).
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Proof. We deal with the case that TH is closed first. By Lemma 4 we know that T*H
is closed. It follows that ess nul T = nul T and ess def T = def T. If defT = /3, then
T(T*) = 0 and the desired inequality is clear. If /? > def T, then

Xo = p > ess def T > ess nul T

and it follows from (iii) of Theorem 2 that both T ( 7 ) and T(T*) are positive. According
to (v) of Theorem 2, r(T) = x(T*) and we are done.

If TH is not closed, then it follows from the fact that 0 is an accumulation point of
a(|T|), as proved in Lemma 4, that ess nul T is infinite; so ess nul T>K0. Since T*H is
not closed, we also have ess def T > No and fi(T) = max{ess nul T, ess def T}. Similarly
/3(7*) = maxjess nul T*, ess def T*} and so fi(T*) = /3(T). It now follows from Lemma 1
and (ii) of Theorem 2 that r(T*) = T(T).

The next lemma proves the most difficult part of the formula given in Theorem 7. In
the case of a separable Hilbert space this difficult argument was obviated by the following
folklore theorem. If \\A — B\\ <me(A), then ind A = ind B, where ind Tdenotes the index
of T; i.e. ind T = nul T — def T. There is no result on a general Hilbert space that is very
similar to the folklore theorem. Because the range of a compact operator cannot contain
a nonseparable subspace, the theory of compact perturbations is intrinsically inadequate.

LEMMA 6. Suppose that ess nul T =£ ess def T and let /j. denote max{r(7), r(T*)}. If
\\T - B\\ < n, then B is not invertible.

Proof. Let B be an operator such that | | r — B||<ju. Interchange T and T*, if
necessary, so that ess nul T < ess def T. It follows from Lemma 5 that n = T(T) and this
quantity must be positive in order to avoid contradicting ess nul T^ess def T, according
to part (iv) of Theorem 2.

Choose A between \\T — B\\ and fi, and let H{) represent £([A,°°))W; let Q denote
£([A, °°)), which is the orthogonal projection onto //„. Let U \T\ be the polar
factorization of T such that ker U = ker |7*| = ker T.

Denote the restriction of T to Ho by T \ //„. We have

and

Since

we can find an inverse for \T\ \ HQ, that we denote by C, such that ||C|| = l/m(|T| | Hn) ^
I/A. Thus, we have

and we conclude that CQU*B | Ho is invertible. Since C is an invertible map on //(), it
must be that QU*B \ Ho is invertible. It follows that UQU*B \ Ho is an invertible map of
Ho onto UH0.

By Lemma 1 we know that UE($) = F($)U for any interval 3> c (0, °°), where F(-)
and £(•) are the spectral measures of \T*\ and \T\, respectively. Recall that UH =

= ( |7-| H)~ = F((0,«))//. Thus,

UH0 = F([A,«)){/// = F([k, co))//,
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and we denote this last space by //,.
Because of Lemma 1, we know that

dim £((0, e))H = dim F((0, e))H

for positive e. We choose a positive number y such that

dim £([0, e))H = ess nul T, and dim F([0, e))H = ess def T

provided 0 < e < y. We consider the case that TH is not closed. It was shown in Lemma 4
that \T\H (or \T*\H) is closed if and only if 0 is not an accumulation point of the
spectrum of \T\ (or |T*|). The Banach closed range theorem implies that the range of T*
(and \T\) is closed if and only if the range of T (and \T*\) is. Thus, if TH is not closed,
then 0 is an accumulation point of the spectra of \T\ and |r*|. It follows that ess nul T and
ess def T are both infinite. We note that

def T + dim F((0, y))H = dim F([0, y))H = ess def T

> ess nul T = dim £([0, y))H = nul T + dim £((0, y))H.

Since the sum of any set of cardinal numbers that includes an infinite cardinal is simply
the maximum of the cardinals, we deduce that ess def T = def T and

nul T < ess nul T < ess def T = def T.

On the other hand, if TH is closed then 0 is not an accumulation point of the spectra
of \T\ and \T*\. It follows that ess nul T = nul T and ess def T = def T. Thus, we again
obtain the formula

nul T < ess nul T < ess def T = def T.

Since UU* is the orthogonal projection onto (TH)~ = {\T*\ H)~, we deduce that
UU* = F((0, oo)). Also, we see that

UQU*B | Ho = F([A, ™))UU*B \ Ho

= F([A,oo))F((0,oo))fl|//0

= F([A,oo))B|//o.

Thus, F([A,°o))# | Ho is an invertible map of Ho onto //,, and F([A,oo)) is an invertible
map of BH0 onto //!.

In order to obtain a contradiction, we assume that B is invertible. Clearly
BH0 + B(HO)X 3 B(HQ + (Hoy) = BH = H, and BH0 n B(//o)•"• * {0} would contradict the
fact that B is one-to-one. Thus, H = B//o © BiHg)1. Clearly the quotient space H/BH0 is
isomorphic to both B(//0)x and (B//0)x; thus, dim(#//0)x = dim B(HO)X. Since fl is
one-to-one,

dim B(tfo)x = dim(//0)x = dim £([0, k))H

= nul 7 + dim £((0, A))//.

Before we can conclude the proof of this lemma, we need to verify one more
observation. Since F([A, <»)) maps BH0 onto Ht = F([A, °°))H, for any vector/there exists
geBH0 such that F([A, <*>))g = F([A,»))/ or (/ - g) e ker F([A,»)). It follows that
/ / c B//o + ker F([A, «>)). Since F([A, <»)) | BHQ is one-to-one, the preceding sum must be

https://doi.org/10.1017/S0017089500009721 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500009721


APPROXIMATING FREDHOLM OPERATORS 173

a direct sum. The decompositions

BH0 © ker F([k, 00)) = / / = BHa © (BHO)X

imply that dim(B//0)x = nul F([A, »)).
Now we can conclude the proof by noting that

= nul F{[X, 00))

= dim F([0, A))//

= def r + dim F((0, k))H

= def T + dim £((0, X))H.

Since A < fi = T(T) we know that dim £([0, k))H < /?, and we have already shown that

nul T < ess nul T < ess def T = def T.

If ft = N(), then nul T and dim £((0, A))H are finite, and it follows that

def T + dim £((0, k))H > nul T + dim £((0, A))//,

which is a contradiction. If /3 > Xo then /3 = ess def T = def T, and it follows that

def T + dim £((0, k))H = jS > nul T + dim £((0, A))//,

which is a contradiction. It follows that B is not invertible.

We are now able to establish a formula for the distance from a fixed operator to the
set of invertible operators. This formula should be contrasted to Theorem 3 of [2] and
Theorem 2.9 of [9].

THEOREM 7. / /ess nul T = ess def T, then dist(7\ <g) = 0. / /ess nul T*ess def T,
then

dist(7\ <§) = max{T(T), r(T*)}.

If both T(T) and r(T*) are positive, then they are equal.

Proof. The first assertion follows from the main theorem of [5], as reviewed in the
introduction. The second statement follows from Lemma 3 and Lemma 6. The final
sentence is part (v) of Theorem 2.

The formula in Theorem 7 is simpler than it may appear. By considering the case that
T is Fredholm separately we get the following simple formula.

COROLLARY 8. If T e S8(//), then

unless T is a Fredholm operator with ind T = 0 in which case the distance is zero.

Proof. Given Theorem 7 we need only consider the case that ess nul T = ess def T,
which we assume henceforth. If ess nul T is infinite, then ess nul T = /3 = ess def T, and
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r( r ) = 0=T(T*). Thus,

max{r(T),r(T*)} = 0

and Theorem 7 implies that dist(7\ <S) = 0.
The remaining case requires that ess nul T = ess def T and this number is finite. It

follows from Lemma 4 that either all of the operators T, T*, \T\, \T*\ have closed range
or none does. We know that \T\H (or \T*\H) is closed if and only if 0 is not an
accumulation point of the spectrum of |T| (or \T*\). It now follows that if ess nul T is
finite then TH is closed. In the circumstances that TH and T*H are closed, it follows that
ess nul T = nul T and ess def T = def T. Thus, in this remaining case T is Fredholm with
index equal to 0. It follows from Theorem 7 that dist(7\ <S) = 0.

3. Distance to the Fredholm operators. After the appearance of [2] there were a
number of results, such as [1], [4], [6], [14] and [15], that suggested that the distance to
the invertible operators was the key to computing many distances. In particular, we refine
some devices used in [4] and [14] in order to compute the distance from a fixed operator
to the Fredholm operators on a general Hilbert space. We begin with an essential lemma.

LEMMA 2. / / nul T = def T, then ess nul T = ess def T.

Proof. Choose a positive 6 sufficiently small that dim £([0, A))// = ess nul T, and
dim F([0, X))H = ess def T provided 0 < A < 5. It follows from Lemma 1 that

dim £((0, A))// = dim F((0, X))H.

We note that

ess nul T = dim E([0, X))H

= nul T + dim £((0, X))H

= def T + dim F((0, A))//

= ess def T.

The converse to the preceding lemma is false. Let M, be multiplication on the space
of square integrable functions with domain [0,1], and let 5 be a unilateral shift with finite
.multiplicity. If T = S © M, then both ess nul T and ess def T equal Ko, but nul T = 0 and
def T equals the multiplicity of S.

Let J~o denote the set of operators T such that nul T = def T. For any integer n let 3>n

consist of the operators T such that ind T = nul T - def T = n. (Thus, T e 3n requires that
nul Tand def Tbe finite.) Let 5Fn denote the Fredholm operators Twith index n—i.e. ind
T = n.

The next theorem establishes some important relations among the preceding sets.

THEOREM 10. (Poy = W = {%)' = («)".

Proof. The containments ^ D i o D f p S a r e clear. According to Lemma 9, ess nul
T — ess def T whenever T belongs to 9~0. It follows from Theorem 7 that

The desired formula now follows routinely.
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We shall use notation like P<S to mean {PT:T eG}.
Before we can obtain the desired formulas in Theorem 14, we must collect some

elementary facts in the next three lemmas. These facts will help us to understand the
effects of composing a given operator A with an isometry with finite deficiency.

LEMMA 11. Let S be an isometry on H with deficiency n (an integer) and let P denote
the orthogonal projection 55*. If PB = B, then

(i) dist(fi,9) = dist(£,P9),
(ii) dist(B, %) = dist(B, % n P%),

(iii) dist(B, J>0) = dist(B, ^,, D P^()).

Proof. Choose C e'S and let Q denote (/ - P). In order to prove (i) we choose a
vector/ e H, and note that

Thus, \\B - C\\ > \\B - PC\\ and it follows that

dist(B,<S)>dist(B,P<§).

For C e <S define CA to be PC + XQC for A e (0,1]. For any vector / e H we have

||(B - CA)/||2 = ||(B - PC)/||2 + A2 | |eC/| |2.

It follows that

(||B - PC||2 + A2 HQCH2)"2 > \\B - Cx\\ > \\B - PC\\.

Thus,

inf{ | | f i -CA| | :0<A<l} = | |B -PC | | .

It is routine to see that CA is one-to-one and onto; so CA e <$. This argument shows that
dist(B, <g) < dist(B, P ^ ) , which proves (i).

Now we prove part (ii). It is readily verified that P'ScS^o and the containment
P<g<z P% is obvious. Thus, we have P'Sc % n P% and

dist(B, P«) > dist(B, &Q n P&0) > dist(B, %).

Since 3>0 and ^ have the same closure, according to Theorem 10, we know that
dist(B, ^) = dist(B, %). Now it follows that dist(B, % n P%) = dist(B, &0).

The proof of part (iii) is analogous to the proof of part (ii).

LEMMA 12. Let S be an isometry on H with deficiency n (an integer) and let P denote
the orthogonal projection 55*. Then

(i) 5^ = i 0 nw 0 ,
(ii) S&n = %r\P%.
Proof. Because S maps H isometrically onto PH the deficiency of SA, for A e 3n, is

(n + def.4) while nul SA = nul A. Thus, SA belongs to % and since P5-4 = SA we see
that SA belongs to P$o. Thus, S$n a3>0C\ PS0. If the range of A is closed, then the range
of SA is closed and S&n c f o n P%.

Take Be$0C\ P$o and let A = S*B. Since PB = B, def B and nul B are not less than
n. Because 5* maps PH isometrically onto H, it follows that
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Since 5 is an isometry, we get

nul A = nul(SA) = nul(55*fl) = nul B

and so ind A = n or A e $„. Clearly SA = B and we have proved that S$n = &0 D P^o-
The preceding argument shows that if B e ^ o n PS'Q then / l e f n and consequently

S9n = %n p%.

LEMMA 13. Let S be an isometry with deficiency n {an integer) on H. Then

(i) T(SA)=T(A),

(ii) T(A*S*) = T(A*).

Proof. Since

\SA\ = (A*S*SAyn = (A*A)112 = \A\,
we see that \SA\ and \A\ have the same spectral measure, which we denote £(•)•
follows that ess nul SA = ess nul A.

Note that

*)l/2= \A*S*\ = (SAA*S*)

Since 5 is an isometry of H onto PH, where P is the orthogonal projection 55*, and 5* is
the inverse map of PH onto H, we see that AA* and (SAA*S) | PH have the same
spectral measure, say G,(-). If G2(-) is the spectral measure for (SAA*S*) and e is a
positive number then

G2([0, e))H = G,([0, e))H 0 (/ - P)H.

It follows that

ess def A = ess nul |>1*| = ess nul |.4*5*| — n.

If ess def A is infinite then

ess def A = ess def A + n = ess dei(SA).

If ess def A is finite then it is irrelevant in the computation of the /3 that appears in the
definition of T(A). Thus,

max{ess nul A, ess def A, Ko} = max{ess nul SA, ess def SA, Ko};

P is the same whether it is computed for A or SA. This fact combined with the first
paragraph shows that r(SA) = T(A).

In order to prove (ii) we use several of the preceding observations. First, /3 is not
altered by passing from A to SA or A*S*. Since /3 is infinite, it does not matter whether
G,(-) or G2() is used to locate r(A*S*). It follows that T(A*S*) = r(A*).

Our final theorem shows that the distance from a fixed operator to the operators with
a given finite index (or the Fredholm operators with a given index) is computed the same
way as the distance to the invertible operators.

THEOREM 14. Let A belong to 58(H), and let n represent an integer. If A$$n, then
(i) dist(i4, A) = max{T(i4), T(A*)},

(ii) dist(i4, 9n) = max{T(i4), x{A*)}.
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Proof. Let n be a nonnegative integer and let S be an isometry on H with deficiency
n. (If n = 0 we understand S to be /.) In order to prove (i) we define B by B = SA. For
C e i n we have

| | f l - SC|| =

It now follows from Lemma 12 that

dist(B, 3>Q n

With this and Lemma 11, we conclude that dist(/l, $„) = dist(B, $0). From Theorem 10
we get dist(/l, $n) = dist(B, (§). Using Corollary 8 and Lemma 13 we find that

distO4, fn) - max{r(B), r(B*)}

= max{(r(SA),r(A*S*)}
= max{r(A),T(A*)}

unless B is a Fredholm operator with index equal to 0. Using arguments from the proof of
Lemma 12 it is routine to show that B is Fredholm with index 0 if and only if A is
Fredholm with index n, and that is contrary to the hypothesis.

For negative n we apply the preceding result to A* and i * = {C*:Cei n } = ^_n.
The proof of (ii) is analogous step for step to the proof of (i) just presented.
The preceding methods seem to be seriously inadequate for computing the distance

from a given operator to the set of semi-Fredholm operators with a given index. The
complexities of arithmetic with infinite cardinal numbers prevent any simple conclusions
about composite operators in terms of their factors.
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