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Abstract

We give a detailed exposition of the theory of decompositions of linearised polynomials, using a well-
known connection with skew-polynomial rings with zero derivative. It is known that there is a one-to-one
correspondence between decompositions of linearised polynomials and sub-linearised polynomials. This
correspondence leads to a formula for the number of indecomposable sub-linearised polynomials of
given degree over a finite field. We also show how to extend existing factorisation algorithms over
skew-polynomial rings to decompose sub-linearised polynomials without asymptotic cost.

2000 Mathematics subject classification: primary 11T55, 16H05.

1. Introduction

Let F be a field with F[X] the ring of polynomials with coefficients from F in the
indeterminate X. Forpolynomials/,/i,/2 6 F[X], let deg(f) be the degree of/ and
fx o / 2 denote the composition/,(/2). Note that deg(/i o/2) = deg(/i)deg(/"2). A
polynomial/ is called indecomposable if for all/] , f2 € F[X] satisfying/ = / 1 o / 2 ,
then either deg(/i) = 1 or deg(/2) = 1. A complete decomposition of / e F[X]
is any decomposition of/ into indecomposable factors. The problem of polynomial
decomposition has been well studied with [20] providing a survey of results. Generally,
decomposition behaviour can be split into two cases: the characteristic of F is zero or
the degree of the polynomial is not divisible by the characteristic of F; or F is a finite
field and the degree of the polynomial is divisible by the characteristic of the field,
tn this article we consider two classes of polynomials over a finite field with degree
divisible by the characteristic. Determining results on decomposition behaviour for
such polynomials is, in general, less tractable.
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Let F, be the finite field of order q = pe for a prime p and F* be the set of non-zero
elements of Fg. Polynomials of F9[X] with degree divisible by the characteristic p
are called wild polynomials and those with degree not divisible by p are called tame
polynomials, see [8, 9]. For a positive integer s, a ps-polynomial L 6 F,[X] with
deg(L) = psl is a polynomial of the shape

(1) £
;=o

where a, 6 F9 and a, e F*. For 5 = 1, these polynomials are known as linearised
polynomials and are precisely the linear transformations of F,, see [14, Chapter 3].
Note that p1-polynomials are, in a sense, the wildest polynomials, as the exponent of
each term is a power of the characteristic. Even more important here, the class of all
ps-polynomials over F, is closed under composition.

Let L e F9[X] be a pJ-polynomial and d be a divisor of ps — 1. Then L(X) =
XM(Xd) for some M e FJX]. The polynomial S(X) = XMd(X) is called a
sub-linearised polynomial, or, more precisely, a {ps, d)-polynomial and is said to
be associated with L (simply, the polynomials L and 5 are associated if and only
if Ld{X) = S(Xd)). Note that ps-polynomials are (ps, 1)-polynomials but the
distinction is important when one considers the additional properties satisfied by
ps-polynomials. However, a result of Henderson and Matthews [11] shows that the
compositional behaviour of (ps, J)-polynomials is in one-to-one correspondence with
the compositional behaviour of ps-polynomials. It follows that any results concern-
ing the theory of decompositions of ps-polynomials as ps-polynomials is relevant to
(ps, d)-polynomials. Given our aim is to determine the number of indecomposable
(ps, d)-polynomials the distinction between p-polynomials and ps-polynomials will
be key in what follows. Results and further references on (ps, d)-polynomials can be
found in [11].

Section 2 gives an in-depth discussion of compositions of p1-polynomials, and
hence (ps, d)-polynomials. Utilising earlier work of Odoni [15], we then determine
a formula for the number of indecomposable ps-polynomials, and hence (ps,d)-
polynomials, of given arbitrary degree. In the final section, we consider Ritt's Theorem
and show how to extend current decomposition algorithms to provide decompositions
of (ps, J)-polynomials for no asymptotic cost.

2. The ring As and its properties

The following result connects the compositional behaviour of the two classes of
polynomials considered in this article.
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THEOREM 2.1 ([11, Theorem 4.1]). Let L be a ps-polynomial with associated
(ps, d)-polynomial S. The polynomial L = Li(L2) for p'-polynomials L\, L2 £ F9[X],
where r dividessandddividesp'' —1 ifandonlyifS = Si(S2) for (pr, d)-polynomials
Si, S2 where Ld{X) = Si(Xd), i = 1, 2. Also, Ld(L2(X)) = Si(S2(X

d)).

By appealing to this theorem, our results can be determined by simply considering
/^-polynomials. However, there is one distinction in the decomposition behaviour of
/^-polynomials and (ps, ^-polynomials important to our task: a ps'-polynomial may
be indecomposable as a /?J-polynomial, but still be decomposable as a //-polynomial
for some integer r dividing s. This cannot be true for the associated (ps, d)-polynomial
unless d divides pr — 1. We will return to this point later but for now it is enough
to realise that we need to consider the indecomposable /^-polynomials where the
decomposition factors are restricted to the same set (in other words they are ps-
polynomials themselves).

Let As be the set of all ps-polynomials over fq. It is easily seen that As is closed
under addition and composition of polynomials and that the triple (As, +, o) forms
a non-commutative ring. Throughout we use As to denote the ring (As, +, o). It
is possible to relate decompositions in As to factorisations in a non-commutative
polynomial ring, known as a skew-polynomial ring. This connection has been used
elsewhere (see, for example, [10]). Let a be an automorphism of F9. Then we must
lave a {a) = as(a) = ap' for some integer s. Construct the skew-polynomial ring
Fq[X;os] consisting of polynomials in the indeterminate X where for / , g e ¥q[X;as]
pven by f (X) = Yl'Loai^'^ 8(X) = 12'LoP'X' their addition is performed in the
isual way, and their multiplication is given by

i=0

vhere ht = X^+*=i aj°t (ft)- ^ IS easily seen that the mapping <t>s : As -> F?[X, CT(]
;iven by

i=0 ' 1=0

; a ring isomorphism. In [16, 17] Ore considers more general skew polynomial rings
lan the one described here and notes in [17] that Ai is isomorphic to ¥q[X, cr,].

We give an exposition of the properties of A s in terms of composition, as this enables
irect interpretation of compositional behaviour. We loosely follow the discussion
iven in [15] for A |, as later we shall be interested in generalising a result from there.
should be noted that, ignoring context, the general content of this section is not new
id can be found in a number of texts covering skew-polynomial rings, such as [12,
hapter 1].
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The ring As has no zero divisors; if/ o g = 0 fo r / , g e As, then at least one of/
or g must be identically zero. With respect to composition, the identity element is X
and the units (invertible elements) are aX where a e F*. As A, is a non-commutative
ring we distinguish between right and left ideals (it is easily seen that the right and left
ideals of As are generally distinct). In [17] a version of Euclid's division algorithm is
given that holds for a general skew-polynomial ring, and so for As as well. Precisely,
for Lu L2 e As there exist / , g e As where Li(X) — f (X) o L2(X) + g(X) and
deg(g) < deg(L2). It follows that As is a left Principal Ideal Domain (PID). We will
mainly consider left ideals of As but note that as or, is an automorphism of F9, As is
also a right PID [12, Proposition 1.1.14], and so our statements shall also hold for
right ideals of As. Throughout, an ideal is a left ideal unless otherwise stated.

We represent left ideals in As with angle brackets as follows:

(L)=AsoL = {foL:f eAs}.

The ideal (L) is a maximal left ideal of As if and only if L e As is indecomposable (in
this case there is also a maximal right ideal of As generated by L). Set k = gcd(s, e),
and m = \cm(s, e) = se/k. It is readily seen that the centre, Cs, of the ring As

consists of polynomials of the shape

i=0

where a, e IF,,*. In fact, under the isomorphism <t>5 we see that Cs is indeed isomorphic
to the centre of ¥q[X, as], namely Fp*[Xm/l, CTJ. The ring Fp*[Xm/J, as] is in turn
isomorphic to the ordinary multiplicative polynomial ring FP*[K] (Y = Xm/s). So Cs

is a commutative PID whose maximal ideals coincide with the irreducible polynomials
of Fp* [ Y]. From [ 14, Theorem 3.25], the number of monic irreducibles of degree d in
Fp»[y] is given by

(2) Npt{d) = ^-T
d

where / I : N H N is the Moebius function. Thus Npk(d) is the number of inde-
composables of degree pmd in Cv. This formula will be useful when determining the
number of indecomposables in As of given degree.

Next we consider the division rings constructed from As and Cs. We show that we
have a special case: the division ring constructed from A s is a finite dimensional vector
space over its centre, and this centre is the division ring constructed from Cs. These
constructions are considered elsewhere [12] but are included here for the convenience
of the reader and because we work with the ring As (rather than F^X, CT,]).
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As Cs is an integral domain, the smallest field containing Cs is the field of fractions

(3) F = {g~lof \f,geC,,g*0}.

The addition of two elements of F is calculated in the normal way and as F is an
ordinary (commutative) field of fractions g~l o / = / o g~x (which is determined
using the Euclidean algorithm).

Embeddings of non-commutative rings into division rings do not always exist but
we are fortunate as for As this can be done. For any two non-zero elements f,ge As,
the intersection of the ideals they generate, ( / ) fl (g), is non-empty as the existence of
a left least common composition (analogous to the least common multiple) f o r / and
g is guaranteed by the left Euclidean algorithm for ^4 .̂ Suppose h e As is the unique
monic polynomial of least degree satisfying h = f\ of = gy o g for fx, gx e As. It
follows that g of " ' = gj"1 o / ] (in this case As is said to satisfy the Ore condition).
Thus, as As has no zero divisors, we have satisfied the conditions of [2, Theorem 1.2.2]
and can construct the ring of fractions, D of As, given by

(4) D = {g~'of \f,geAs,g^0).

For g"1 of, gj"1 o/j e D, in the standard way

g~* °f + Si' ° / i = A"1 ° (hi °f + h2 ° / i ) ,

where h = hi o g = h2 o g\ for some hi, h2 e As, and their composition is given by

(5) (g~l of) o (g~l o/,) = (mo g)-] o (mi o/,),

where mof = m\ o g\ for some m,m\ e As. From this point, it is readily shown that
these operations are well defined.

We will need the following properties of D, F, As and Cs in Section 3. As we will
be using results from [18], we follow the definitions given therein.

LEMMA 2.2. Let F be the field of fractions of Cs (given by (3)) and D be the
nng of fractions of As (given by (A)). The following conditions hold for F, D, Cs

ind As:

(i) F is a global field and Cs a Dedekind domain.
(ii) D is a simple central F-algebra of dimension (e/k)2.

(iii) As is a maximal Cs-order in D.

PROOF, (i) As F is isomorphic to Fp^T), from [18, Section 4e] F is a global field,
.̂s Cs is isomorphic to Fptf^] (a commutative PID), from [18, Section 4a] C, is a

)edekind domain.
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(ii) Following [18, Section 7b] we must show that D is a simple finite dimensional
F-algebra where F is the centre of D. We first show that F is the centre of D. Recall
f ' o / = / o g~l for/ , g e Cs. For each h e As, there exists hi e As such that
hohx e Cs. Then for g € Cs, g'1 o(/io hi) = (ho hi) o g'1. Composing on the right
with g and using the fact g e Cs we obtain

h o hi — g~x o (h o hi) o g

= (g"1 oh)o(gohi).

Now composing on the right with (g o hi)'1 we have h o g~l = g~l o h, and its
inverse g o A"1 = h~l o g, for all g € Cs and /i e As. From these identities and the
multiplication rule for D (5) it follows that F is the centre of D.

It is a simple matter to show that D is a left and right F-module. Also, from (5),
a o (b o c) = (a o b) o c = b o (a o c) for all a e F and b, c e D. Therefore D is a
F-algebra. As D is a division ring it only contains trivial ideals and so D is a simple
F-algebra.

We now proceed to show that D is a F-vector space of dimension (e/k)2. As we
have noted above, for every h e As there exists hi € As such that h o h* e Cs. So the
elements of D may be written as g~l of where g e Cs. It follows that the number
of elements in a basis for D over F is equal to the number of elements in a basis
for As over Cs. Set 8 = e/k. Take the normal basis for IF, over Fp* generated by
the element a e F,, namely (a, apk,... , a''' " ). Then every element yS 6 F, has a
unique representation

0 = boa + • • • + bs-ia
pii-"k

with bo,... , bs_i € Fp*. Let 5 be the set

Each element/ e As can be uniquely written as

f(X) = go(X)oaoX + ••• + gs

where g0,... ,gj_i e Q. Thus Â  is a free C,-module with basis S containing
S2 = (e/k)2 elements.

(iii) Following the definition given in [18, Section 8] As is a C,-order in the F-
algebra D as As is a finitely generated C,-module such that D = F • As. Note that
every element in D can be written as (#,"' o / , ) o / where/ e As and/i, #i 6 C,. It
is now not difficult to see that A v is the integral closure of C, in D and so is the unique
maximal Q-order in D (see [18, page 110]). •

Note that in the above proof our methods have differed somewhat from those used
in [15].
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3. Counting indecomposable sub-linearised polynomials

In [15] a formula is given for the number of indecomposable p -polynomials of
given degree over F9. By extending these results to cover ps-polynomials we can
apply Theorem 2.1 to give a formula for the number of indecomposable (ps, d)-
polynomials of given degree over F, where s is the least positive integer such that
d divides ps — \ (we can say this without loss of generality as in the cases where
d does divide pr — 1 for a proper divisor r of s we can instead consider 5 to be a
ipr, rf)-polynomial). We remind the reader that we are concerned with the ring As

and when we say L e As is indecomposable we mean L is indecomposable over As.

THEOREM 3.1. Let ¥q be a finite field of order q = pe, k = (e, s), and

jVt = #{L € As : deg(L) = p" and L is indecomposable in A,}.

Then J/\ = q(q — 1) and for t > 2,

^ ' Hi

Further, if s is the least positive integer such that d divides ps — 1, then the number
of indecomposable (ps, d)-polynomials of degree psl is given by jV,.

PROOF. If t = 1, then for all OQ e fq and for all a, € F*, L(X) = a^X'' + OQX is
obviously indecomposable (as p5-polynomials) so ̂ V\ = q{q — \). For the remainder
of the proof we assume t > 2. Let L e As be indecomposable with degree p". Let
/ 6 As be the unique monic polynomial of least degree such that h = / o L e Cs. Then
h is indecomposable over Cs (as otherwise we would contradict our assumption that L
is indecomposable and/ has least degree). So to count the number of indecomposables
L e As of degree ps',we can count the number of indecomposables h e Cs generated
in this way (which in turn shall mean determining their degrees) and the number of
distinct L e As that generate the same polynomial h. To do this we use properties of
certain ideals of As and Cs generated from an indecomposable L e As.

As L € As is indecomposable, (L) is a maximal left ideal of As. The elements of
the quotient ring AJ{L) are

r - l

1=0

where bt e F, and the degree of/ is less than the degree of L. Therefore, AJ(L) is
a F^-vector space of dimension t with q' elements.
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Put p = (L) D Q . Then p is a maximal ideal of Cs containing polynomials/ o L
fo r / e As such t ha t / o L e Cs. Let h e As be the unique monic polynomial of least
degree such that hep. Then Asp = pAs = (h). The elements of the annihilator,

), of the A^-module AS/(L), are given by

%$ = {f og:f e As,g e Cs, w h e r e g = g , o L fo r gx e A5}.

It follows that ^3 is a two-sided maximal ideal of As contained in (L). Note also
p = <P n Q and <# = pAs = (h). By [18, Theorem 22.15] and Lemma 2.2 above,
each maximal left ideal of As determines a unique (two-sided) prime ideal ty and vice
versa (as As is a PID, its prime ideals and maximal ideals coincide).

It is established in the proof of [18, Theorem 22.15] that AJty is a simple artinian
ring. In our case it is also finite. From [18, Theorem 7.4, 7.24] it follows that Aj/^3
is isomorphic to an algebra of/c x/c matrices over the finite field F e of Q elements,
MK (Fe) (here K is the capacity of <J3 as defined in [18, page 213]). On the other hand,
A,/<P is isomorphic to (AS/(L))K (see the proof of [18, Corollary 24.8]). As AS/(L)
has q' elements, we have {A, : <P) = (As : (L))K = {q')K = Q"\ where (G : H)
denotes the index of a subgroup H of an additive abelian group G where G/H is
finite. From [18, pages 212-213] the inertial degree of ty is the integer f satisfying

(As : qj) = (Q : p)f.

From [18, page 215] f = ice/k and it now follows (Cs : p) = p'k. Put S = e/k.
From the proof of part (ii) of Lemma 2.2, As is a free Q-module of rank <52 so that
(As : pAs) = (Cs : p)*\ Since pAs = % we have (A, : <£) = (Cs : pf~. Therefore
f = <52, K = 8 and Q = p'k- Now everything is in place to complete the proof.

By inspection of the above arguments we see that

(C,:p)=p*'

where ^xp) is m e number of indecomposables L e As such that deg(L) = p"
(r > 1) and C, D (L) = p. Recall p generates the unique maximal two-sided ideal
of As, namely ^3 = pA^. Since maximal two-sided ideals ^3 in A, correspond to
maximal left ideals in Av/*p and units are not counted in As/^3, we obtain

oV(,,k,p) = (<? — l)#{maximal left ideals in MK{§pki)}.

Since <sY(,xp) does not depend on the choice of p, we can consider instead ^Y, =
(q — l)G,M, where

G, = #{maximal ideals p c Cs where (Cs : p) = pk'}
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and

M, = #{maximal left ideals in MK(¥pk,)}.

Since G, is the number of indecomposables g e Cs of degree pml it can be determined
using (2) (it is easily seen that if g e Cs with deg(g) = pmt, then there are (pk)'
elements in the factor ring Cs/{g)). Put A = MK(Jpk,). Then A is a simple central Fpn-
algebra. The maximal ideals of A are generated by M e A with rank(Af) = {K — 1)
or, equivalently, the (K — l)-dimensional subspaces of the vector space (F^n)*. It
follows that M, = (pthc - l)/(p'k - 1). The value of i/ff is now determined. That the
number of indecomposable (p\ J)-polynomials of degree p" is given by ^¥t follows
from Theorem 2.1. •

It is easily checked that for p -polynomials this result coincides with [15, Theo-
rem 1]. We have confirmed the result for small values of p, e, s and t through direct
computation using the algebra package MAGMA [1].

4. Tame behaviour of two wild classes

For the field of complex numbers, Ritt [19] has shown that the complete decom-
position of a polynomial is unique in the following sense: if we have two complete
decompositions of a polynomial /

/ = / i o - - - o / m = g, o---ogn,

then m = n and deg(/,) = deg(^ ( l ) ) for some permutation n of { 1 , . . . , m). En-
gstrom [6] and Levi [13] extended this to any field of characteristic zero. The behaviour
for polynomials over a finite field is less simple and has generally been split into two
cases. Fried and MacRae [7] established that Ritt's Theorem holds for tame polyno-
mials over a finite field F9. By giving an example, Dorey and Whaples [5] established
that Ritt's Theorem does not hold for wild polynomials (the example used a class of
wild polynomials not considered here).

While it is true that Ritt's Theorem does not hold for wild polynomials in general,
the two classes considered in this article, ps-polynomials and (ps, rf)-polynomials, do
satisfy Ritt's Theorem. It is implicit in the work of Ore [16, 17] that As satisfies Ritt's
Theorem (as Ore shows that As is a PID). Now Theorem 2.1 tells us that (ps, d)-
polynomials must also satisfy Ritt's Theorem. It is conceivable that no other classes
3f wild polynomials not contained in these classes satisfy Ritt's Theorem.

The polynomial decomposition problem introduced by Ritt now receives attention
nainly through the development of efficient decomposition algorithms. Algorithms
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for decomposing /^-polynomials and (p\ ^-polynomials can be developed by ex-
tending existing algorithms. We end the article by outlining how this may be achieved
without asymptotic cost. We consider the following two decomposition problems
from [3].

THE COMPLETE DECOMPOSITION PROBLEM. Given a / e F9[X], find indecompos-
a b l e / , , . . . , / m € F,[X] such tha t / = / i o - - o / m .

THE BI-DECOMPOSITION PROBLEM. Given a / e FJX] and n e N where n <
deg(O, determine if there e x i s t / ! , / 2

 e F9[X] such tha t / = / i o / 2 and deg(/2) = n,
and if so, find/!,/2.

An algorithm for the complete factorisation of / e F9[X,as] is given in [10,
Section 3] and an algorithm for the bi-factorisation of / 6 F?[X, as] is given in
[10, Section 4]. In [3] it is shown how these results can be extended to (p,d)-
polynomials using Theorem 2.1. Given the isomorphism between As and F,[X, as],
it is clear that the scope of Giesbrecht's algorithms can be extended to decompose
ps-polynomials and (ps, ^-polynomials. We give simple descriptions of algorithms
for our decomposition problems in the case of (ps, ^-polynomials.

ALGORITHM 1 (Complete decomposition).
Input: A (p\ J)-polynomial 5 e F JX] and the integers s and d.
Output: Indecomposable (pr, <i)-polynomials Si, . . . , Sk e F,[X] where r divides s
and S = S, o • • • o Sk.

(1) Determine the least positive integer r such that r divides s and d divides p' — 1.
(2) Convert S to a p>'-polynomial L.
(3) Convert L to a polynomial / 6 F9[X, ar] using the isomorphism <$>r.
(4) Find irreducibles fu---,fk 6 F,[v, crr] satisfying / = / , • • • / * using the

algorithm from [10, Section 3].
(5) Convert each / , e F9[y, crr] into a pr-polynomial using <&"'.
(6) Convert each pr-polynomial into a (pr, J)-polynomial.

ALGORITHM 2 (Bi-decomposition).

Input: A (pJ , ^-polynomial S e F,[X], say S(X) = X(£7 = o a 1 X ( / " 1 -") ' ' , t h e

integers s and d, and an integer n = p'.
Output: A pair of (pk, d)-polynomials Si, S2 6 Fg[X] where k divides s, d divides
pk — 1 and S = Si o S2, or a message that no such bi-decomposition exists.

(1) Determine the integer k = gcd(sm, t). If d does not divide pk — 1, then return
'S has no such bi-decomposition'.
(2) Convert S to a p*-polynomial L.
(3) Convert L to a polynomial / € ¥q[y, ak\ using the isomorphism <t>t.
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(4) Use the bi-factorisation algorithm from [10, Section 4] to determine if there exist
fufi 6 \F9[X, ak] satisfying/ = f\f2 and deg(/2) = t. If no suitable polynomials
exist, then return '5 has no such bi-decomposition'.
(5) Convert/1,/2 e F9[X, ak] to /^-polynomials Lu L2 using <t>̂ ~'.
(6) Convert L,, L2 to (pk, ^-polynomials Si, S2. Return Si, S2.

The conversion algorithms from a (ps, tO-polynomials to a ps-polynomial and the
reverse are found in [3]. The conversion algorithm from a p''-polynomial L to a
polynomial/ e $q[X,as] is O(m) where deg(L) = pms (that is, L has m terms).
The reverse conversion has the same cost. We note that step 1 in the first algorithm
and steps 1 and 2 in the second algorithm are the only additional steps required which
affect the complexity analysis from [3]. Step 1 (Algorithm 1) has cost O(s log s) while
step 1 (Algorithm 2) has cost bounded by 0(Cost forgcd(.sm, t)). Combining our
arguments with those of [3] shows that the extension of the deterministic algorithms
for factorisation in skew polynomial rings F,[X, as] from [10] to (ps, d)-polynomials
is asymptotically free. As reported in [4], these algorithms have been successfully
implemented.
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