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Abstract

The (2,3, v) bipacking number is determined for all integers v, and the number of non-isomorphic
bipackings is found for small values of v. The general solution for lambda packings of pairs into
triples is deduced from the results for X = 1 and X = 2.
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Introduction

The packing number D(t, k, v) is defined as the maximal cardinality of a family
of k-sets, selected from a t>set, such that no t-set is repeated in the family. To
avoid trivial cases, we normally require t < k < v.

The packing number D(t, k, v) can be generalized by allowing the family of
k-sets to have any t-set repeated up to a maximum of A times. We then write
Dx(t, k, v) for the cardinality of the family; thus £>,(?, k, v) = D(t, k, v). If
A = 2, we denote the packing by the special name of bipacking. As in the case of
packings, we define a bipacking to be perfect if every t-set occurs exactly twice.

The first results on packings were for / = 2, k — 3; an account can be found in
[8]. We intend to describe the analogous situation for t — 2, k = 3, A = 2, that is,
for bipackings of pairs into triples. First, we require

LEMMA 1. D2(\,2, v) — v.
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PROOF. If v = 2a, then one can take a pairs which exactly cover the 2a
elements once each. A second selection of a pairs, which may be identical with the
first, can then be adjoined to give a total of 2a pairs. Since every element occurs
twice, the bipacking is perfect and can not be extended.

If v = 2a + 1, select a pairs containing all elements except x. Then take
another selection of a pairs containing all elements except y, where y ¥= x. These
2a pairs, together with xy, give a bipacking with 2a + 1 pairs.

We can now give the lower bound for D2(2,3, v); the method is well-known
(see [8], for example). If we assume a general bipacking with D2(t, k, v) blocks,
then the bipacking array contains k D2(t, k, v) elements. However, the frequency
of a specific element x can never exceed D2(t — 1, k — 1, v — 1), and there are v
such elements. So the array contains a maximum of vD2(t — 1, k — 1, v — 1)
elements. Thus, we have

LEMMA 2. D2(t, k, v) <; [ltD2(t - 1, k - 1, v - 1)J.

In our particular case, we may set t = 2, k — 3, and use the results of the
preceding lemma to give

LEMMA 3. £2(2,3, v) < [v(v - l ) / 3 j .

Now, if v = 0 or 1 (modulo 3), it is well known that there exists a Balanced
Incomplete Block Design with parameters (v, v(v — l ) / 3 , v — 1, 3,2). (For some
particularly nice constructions of these designs, see [9].) So we may state

THEOREM 1. / / v = 0 or 1 (modulo 3), then there exists a perfect bipacking of
pairs into triples, and the number of such bipackings is the number of non-isomorphic
BIBDs with parameters (v, v(v ~ l ) / 3 , v - 1, 3,2).

2. The bipackings for v = 6a + 2

If v = 6a + 2, then the bound is [{6a + 2){6a + l ) / 3 j - 12a2 + 6a. The
total number of triples would contain 36a2 4- 18a elements and the same number
of pairs. But the total number of pairs from 6a + 2 elements is (6a + 2)(6a + 1),
since each pair must occur twice, and this is 36a2 + 18a + 2. Now the maximum
frequency of any element is 6a + 1 and, if the frequency drops to 6a, then two
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pairs are missing. Hence, we have

THEOREM 2. If v — 6a + 2, then a bipacking with 12a2 + 6a blocks can exist
only if all elements occur with frequency 6a + 1, with the exception of two specific
singular elements A and B; these two elements have frequencies 6a, and all pairs
occur twice except for the pair AB, which does not occur at all.

We note that, if x, denote the intersection numbers of a base block Bx with
other blocks, where 5 , contains neither ,4 nor B, then

x0 + x, + x2 + x3 — 12a2 + 6a — 1,

x, + 2x2 + 3x3 = 3(6a),

3x3 = 3.

Hence we obtain

THEOREM 3. If5, contains only elements of frequencies 6a + 1, then its intersec-
tion numbers are either x0 — 12a2 — 12a + 1, x, — 18a — 3, x2 = 0, x3 = 1; or
they are x0 — 12a2 — 12a + 2, x, = 18a — 6, x2 = 3, x3 = 0.

We use this result to deduce all bipackings on eight elements. The bound is 18,
and, if it is attained, there are six blocks containing A, six containing B, and six
containing only I,...,6. If we assume that block 123 is repeated, then we get
blocks

123, 123, 145, 246, 356, 456.

The first blocks are then

A\X, A\X, A2X, A2X, AIX, A3X,
BIX, BIX, B2X, B2X, B3X, B3X,

and we need pairs 14, 15, 16, 16, 24, 25, 25, 26, 34, 34, 35, 36. If we assume that
there are no further repeated blocks, then we can write

,416, B16, A25, 525, ,434, 534,

and complete the design uniquely with

,414, 515, 524, ,426, .435, 536.
On the other hand, if a pair is repeated we may write

,416, A16, 514, 515, 526, 536.

This forces us to select .425, ,434 and complete the design with either .425, .434,
524, 535, or with ,424, ,435, 525, 534. We thus have
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THEOREM 4. There are three non-isomorphic bipackings on eight elements which
contain repeated blocks on the non-singular elements, and these contain a total or
one, two, or four repeated blocks. The bipackings can be written as

123, 123, 145, 246, 356, 456,

together with

/AN A\6, A25, A34, A14, A26, A35,
[ ' 516, 525, 534, 515, 524, 536;

or

or

,416, .416, ,425, .425, .434, ,434,
514, 515, 526, 536, 524, 535;

(c) ,416, .416, A25, A24, A34, A35,
V ; 514, 515, 526, 536, 525, 534.

Now let us assume that there are no repeated blocks on 1,...,6, and take a
block 123. If there is a block 456, then the other four blocks in the non-singular
set must contain two each of 1,... ,6. Since there are two blocks disjoint to 123
(and to 456), there must be exactly one pair of the form ,123 (and one pair of the
form .456) in the first 12 blocks. So we may take the last six blocks as including

12*, 13*, 2XX, 3XX,

where the * ' s denote elements from {4,5,6}. There is no loss in generality in
writing

12*, 13*, 245, 346,
and thus we get

(A) 125, 136, 245, 346,

or

(B) 126, 135, 245, 346.

In case (A), we need blocks

A\X, A\X, A2X, A3X, A23, A56,
51* , 51* , 52* , 5 2 * , 53* , 5 3 * ,

and we need pairs 14, 14, 15, 16, 24, 26, 26, 34, 35, 35.
If there are no repeated blocks, we take ,114, 514, ,426, 526, ,435, 535, and can

not complete A\X. So we must take a repeated block. If 14 is repeated, we get

,414, ,414, ,426, .435, A23, A56,
515, 516, 524, 526, 534, 535;
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or we get

A\5, A16, .424, .434, A23, A56,
£14, £14, £26, £26, £35, £35.

If 14 is not repeated, but 26 is, we get (the case of a repeated 35 is isomorphic via
the permutation (23)(56))

,414, £14, £26, £26, .424, .435,
A\6, £15, £34, £35.

In case (B), we need blocks

A\X, A\X, A2X, A3X, A23, A56,
B\X, B\X, BIX, B2X, B2X, £3* ,

and we need pairs 14, 14, 15, 16, 24, 25, 26, 34, 35, 36. We are thus forced to
select

(Bl) ,414, ,414, .425, ,436, £15, £16, £24, £26, £34, £35;

or

(B2) £14, £14, ,415, .416, A24, .434, £25, £26, £35, £36;

or

(B3) ,414, £14, ,415, £16, ,424, ,436, £25, £26, £34, £35;

or

(B4) ,414, £14, ,415, £16, ,426, ,434, £24, £25, £35, £36.

Thus we have

THEOREM 5. If the non-singular blocks of a (2,3,8) bipacking contain two disjoint
unrepeated blocks, then there are seven such non-isomorphic bipackings.

Finally, let us assume that the last six blocks contain 123 but not 456. We then

have five blocks containing symbols 1,1,2,2,3,3,4,4,4,5,5,5,6,6,6. If there are

x blocks of the form aab and y blocks of the form abb, where a G {1,2,3} and

b G {4,5,6}, we find that x = 1, _y = 4, and hence we must take the blocks as

*45, X45, *46, X56, XX6,

whereXG {1,2,3}.
We may then assign the blocks to be

(C) 123, 145, 245, 346, 126, 356;

or

(D) 123, 145, 245, 346, 136, 256.
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Case (C) leads to

(C]) AXX, AX3, A23, A2X, A46, A56,
{ ' BXX, BXX, B2X, B2X, B3X, 5 3 * ;
or

(C2) AXX, AX3, A2X, A2X, A3X, AXX,
{ ' BXX, BXX, B2X, 523, 5 3 * , BXX.

(C,) requires pairs 14. 15. 16, 24, 25. 26, 34, 35, and hence completes to

,413, ,423, ,446, ,456, 516, 526, 534, 535,
,414, A25, 515, 524

(use (45) to prescribe ,414).

(C2) also requires pairs 14, 15, 16, 24, 25, 26, 34, 35,46, 56, and can be written

(by use of the permutation (45)) as

(c x AXX, AX3, A2X, A2X, A3X, ,446,
( 2> BXX, BXX, B2X, 523, 5 3 * , 556.

This case completes to

(c x ,414, ,413, ,446, 515, 516, 523, 556,
1 2u) 524, 534, ,425, ,426, ,435,
or

,415, ,413, 514, 516, 523, ,446, 556, A26,
A24, A35, 525, 534,

or

(c , C2|2 with the last four blocks as
21 ,425, ,434, 535, 524,

or

(c x ,416, ,413, ,446, 514, 515, 523, 556,
K 2u) 526, 534, 535, ,424, ,425.

In case (D), with blocks

123, 145, 245, 136, 346, 256,
we need pairs 14, 15, 16, 24, 26, 34, 35, 35, in the skeleton

AXX, AX2, A23, A3X, A46, A56,
BXX, BXX, B2X, B2X, B3X, B3X,

or

, D 2 x AXX, AX2, A2X, A3X, A3X, AXX,
1 ' BXX, BXX, B2X, 523, 5 3 * , BXX.

(D,) can be completed by .414, ,435, or ,415, ,434 (2 ways). (D2) can be written as:

/ D x AXX, AX2, A2X, A3X, A3X, A46,
1 2x) BXX, BXX, 5 2 * , 523, 5 3 * , 556,

1 2n)
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or

/ D \ AIX, AM, A2X, A3X, A3X, A56,
V 22> B\X, BIX, B2X, 5 2 3 , B3X, B46.

(D2 1) can be completed using ,435, A35, A24, A16, or by using ,435, A35, A14,

,426; or by using ,435, ,434, ,415, A26. (D2 2) can be completed using ,434, .435,

,414, A26, or by using ,434, ,435, ,416, ,424. These results can be summed up in

THEOREM 6. In case the non-singular blocks of a (2,3,8) bipacking do not contain

two disjoint blocks, then there are twelve non-isomorphic bipackings.

Combination of the last three theorems finally gives

THEOREM 7. There are twenty-two non-isomorphic (2, 3,8) bipackings.

3 . The bipacking number for v = 6a + 2

In the last section, we obtained the upper bound for Z>2(2,3,6a + 2) as

12a2 + 6a. We now show that this bound is always attained.

First, we refer to Theorem 14.3 of [7] and modify it slightly. In that theorem,

four results were shown; these will be summarized here.

(a) Triples can be written on the integers 0 < x < 12 A: such that all differences

from 1 to 12 k occur and the differences in a triple are such that one difference is

the sum of the other two. For example, if k = 1, then the triples (0,1,6), (0,2,11),

(0,3,10), (0,4,12), give rise to differences such that 1 + 5 = 6, 2 + 9 = 1 1 ,

3 + 7 = 10, 4 + 8 = 12.

(b) Triples can be written on the integers 0 < x ! £ l 2 & + 3 such that all

differences from 1 to \2k + 3 occur and the differences in a triple are such that

one difference is the sum of the other two. For example, if k = 1, then triples

(0,1,7) , (0,2,14), (0,3,11), (0,4,13), (0,5,15), give rise to differences such that

1 + 6 = 7, 2 + 12 = 14, 3 + 8 = 11, 4 + 9 = 13, 5 + 10 = 15.

(c) Triples can be written on the integers 0 *£ x: < 12 A; + 7 such that all

differences from 1 to 12k + 7 occur with the exception of 12k + 6; furthermore,

the differences in a triple are such that one difference is the sum of the other two,

and there is a triple whose differences are 2, \2k + 5, 12k + 7. For example, if

k=\, then triples (0,1,9), (0,2,19), (0,3,15), (0,4,14), (0,5,16), (0,6,13). give

rise to differences such that 1 + 8 = 9, 2 + 17 = 19, 3 + 12 = 15, 4 + 10 = 14,

5 + 11 = 16, 6 + 7 = 13.

(d) Triples can be written on the integers 0 ^ x ^ 1 2 ^ + 10 such that all

differences from 1 to Ilk + 10 occur with the exception of \2k + 9; furthermore,
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the differences in a triple are such that one difference is the sum of the other two,

and there is a triple with differences 2, 12 k + 8, 12 k + 10. For example, if k — 1,

then triples (0,1,19), (0,2,22), (0,3,13), (0,4,16), (0,5,14), (0,6,17), (0,7,15),

give rise to differences such that 1 + 18 = 19, 2 + 20 = 22, 3 + 10 = 13, 4 + 1 2

= 16, 5 + 9 = 14, 6 + 11 = 17, 7 + 8 = 15.

We now modify this theorem to give the following result.

THEOREM 8. Let an integer s — 12 k + u be given (u — 0 ,3 ,6 ,9) . Then it is

possible to divide the integers in the interval 0 *£ x < 12A: + u into triples, not

necessarily all distinct, such that these triples, together with two pairs, will generate

all differences modulo 24k + 2« exactly twice.

PROOF. The general proof can be most easily illustrated by looking at the four
cases and doing the constructions in the case k — 1.

(a) First we consider s = 12 k, and refer to the triples guaranteed by Theorem
14.3 of [7]. For example, if s = 12, they are (0,1,6), (0,2,11), (0,3,10), (0,4,12).
Duplicate these triples except for the triple containing 12. Keep only one copy of
it, and use pairs (0,4) and (0,8). Each triple now generates six differences
(modulo 24k), and the fact that 12A = -\2k explains the omission of the repeat
on the difference 12 k.

(b) Now we consider s = 12k + 3. Proceed as in part (a), modulo 24k + 6. For
example, if k = 1, we get triples (0,1,7), (0,2,14), (0,3,11), (0,4,13), all repeated
twice, along with (0,5,15), (0,5), (0,10).

(c) In this case, s — \2k + 6, and we work modulo 24A; + 12. Here we use the
triples involving numbers up to 12 A; + 4 only, that is, we delete the triple
involving differences 2, \2k + 5, \2k + 1. When we duplicate these triples, we
have all differences modulo 24k + 12 occurring twice except for 2, 2, \2k + 5,
\2k + 5, 12A: + 6. To get these, we take the triple (0,2,12A: + 7) and the pairs
(0,2), (0,12A: + 6), noting that 12A: + 7 = -(12Jfc + 5).

(d) In this case, s = \2k + 9, and we work modulo 24k + 1 8 . The construction
uses the previous triples from (d), and proceeds exactly as in part (c). Thus, all
triples are duplicated save that involving the differences 2, \2k + 8, \2k + 10; it
is replaced by (0,2,12 k + 10) and the pairs (0,2), (0,12Jt + 9).

The theorem just proved allows us to construct cyclically generated bipackings
for t; = 6a + 2. We consider the two singular elements of frequency 6a to act as
infinite elements and we cycle the other 6a elements (of frequency 6a + 1)
modulo 6a. There are altogether 6a blocks containing A, 6a containing B, and
12a2 — 6a containing only 1,2,...,6a. Divide the situation into four cases
according as 6a takes the form 24A:, 24A: + 6, 24A: + 12, 24A; + 18. By Theorem
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8, we always get two pairs and a collection of triples such that all differences

modulo 6a occur exactly twice. Put A with one pair, 5 with the other pair, and

keep the triples; then develop these triples cyclically modulo 6a, A and 5 acting

as infinities. This constructs our required bipacking in 6a(2a — 1) blocks. Hence,

we have

THEOREM 9. D2(2,3,6a + 2) = 12a2 + 6a.

We illustrate the procedure by giving the bipackings constructed by this
algorithm for v = 8,14,20,26.

EXAMPLE 1. Elements 1,2,3,4,5,6, A, B. This is case (b), and we use the triple
(0,1,3) and the pairs (0,1), (0,2). Hence we write the bipacking as (1,3,6),
{A, 1,6), (B, 2,6), modulo 6, where we write 6 rather than 0. In developed form, it
can be depicted as

136 .416 526
241 A2\ 531
352 ,432 B42
463 ,443 553
514 .454 564
625 ,465 515

A more interesting case occurs for v = 32; the theorem then generates the
bipacking from the blocks

(1,7,30), (1,7,30), (2,14,30), (2,14,30), (3,11,30), (3,11,30),

(4,13,30), (4,13,30), (5,15,30), (,4,5,30), (5,10,30), modulo 30.

EXAMPLE 2. If v — 14, we have A, B, and 12 other elements; so we use case (c).
The theorem gives a bipacking generated by

(1,4,12), (1,4,12), (2,7,12), (,4,2,12), (5 ,2,12) , modulo 12.

EXAMPLE 3. If v = 20, we have ,4, 5, and 18 other elements; so we use case (d).
The theorem gives a bipacking generated by (1,6,18), (1,6,18), (3,7,18), (3,7,18),
(2,10,18), (,4,2,18), (5,9,18), modulo 18.

EXAMPLE 4. If v = 26, we have A, B, and 24 other elements; so we use case (a).
The theorem gives a bipacking generated by (1,6,24), (1,6,24), (2,11,24),
(2, 11,24), (3,10,24), (3, 10,24), (4,12,24), (A,4,24), (B, 8,24), modulo 24.
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4. Bipacking number for v = 6 a + 5

There are certain similarities between the cases v — 6a + 5 and v = 6a + 2.
First, we easily find that the bound is 12a2 + 18a + 6, and this is achieved if and
only if there are two singular elements A and 5 of frequency 6a + 3 each and
6a + 3 elements, each with frequency 6a + 4. The construction given to achieve
the bound is as follows.

Take a resolvable triple system (this is always possible; see [10]) on the 6a + 3
elements and duplicate it to give a resolvable BIBD with parameters

(6a + 3,(6a + 2)(2a + l ) ,6a + 2,3,2).

This design will have 6a + 2 resolution classes. Take all the triples in 6a of these
classes, and let the remaining resolutions be called R(A) and R(B). Split the
triples of R(A) into pairs, three from each triple, thus giving a total of 6a + 3
pairs; associate these pairs with symbol A. In the same way, use R(B) to produce
6a + 3 pairs to associate with symbol B. This produces a bipacking for v = 6a + 5
as described in

THEOREM 10. Z>2(2,3,6a + 5) = 12a2 + 18a + 6, and the bipacking has two
singular elements A and B of frequency 6a + 3. The pair AB does not occur, but all
other pairs occur twice, and all elements other than A and B have frequency 6a + 4.

EXAMPLE 5. Let v — 11, and take the affine plane on 1,.. . ,9, in the usual form
123, 456, 789; 147, 258, 369; 159, 267, 348; 168, 249, 357. Then we get our
bipacking of 36 triples as follows.

Take the 12 triples of the affine plane and then repeat all of them except the six
triples of the last two resolutions; this gives 18 triples. Add nine triples ^115, A\9,
A59, A26, All, A61, A34, A3&, A4S, and then add nine more triples 516, 518,
568, 524, 529, 549, 535, 537, 557.

5. Survey of small bipackings

With v = 3, the unique bipacking is (123), (123). With v — 4, the unique
bipacking is the tetrahedral design (123), (124), (134), (234). With v = 5, the
unique bipacking is ,412, A\3, A23, 512, 513, 523. With v = 6, there is a unique
(6,10,5,3,2) design with intersection numbers x{ = 6, x2 = 3; it has blocks

(123), (125), (136), (234), (145), (146), (246), (256), (345), (356).

With v = 7, there are four non-isomorphic solutions; these are given by putting
together two designs (7,7, 3, 3,1) and may have 0,1,3, or 7, repeated blocks; for

https://doi.org/10.1017/S1446788700023247 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023247


224 R. G. Stanton, M. J. Rogers, R. F. Quinn and D. D. Cowan [ill

details, see [6]. For v = 8, we have displayed the twenty-two non-isomorphic
solutions in Section 2. For « = 9, there are 36 non-isomorphic designs
(9,24,8,3,2); these appear in the Ph.D. Thesis of E. J. (Morgan) Billington and
are also derived in [1]. Another listing without details also appears in [4]. Some of
these designs can be found by putting together two aff ine planes (9,12,4,3,1).

The designs (10,30,9,3,2) for v = 10 are discussed in [3]; there are many
non-isomorphic solutions.

We do not believe that the number of non-isomorphic bipackings has yet been
determined for any values of v greater than 10.

6. Lambda packings

In this section, we consider the general question of finding Dx(2,3, v); it turns
out that the question requires only slight extensions from our knowledge of
£>,(2,3, u)andZ>2(2,3, v).

First, we work out the obvious bound on Dx. By analogy with Lemma 1, we
immediately derive

LEMMA 4. DX(\,2,V) = [\V/2\.

Similarly, we can extend Lemma 3 to

LEMMA 5. Dx(2,3, u) < [v[\(v - l ) /2 j /3 j .

We call this bound by the name

BA(2,3,«)=LoLX(c-l) /2j /3j ,

and work it out for v = 6a + b. The results are given in

THEOREM 11.

Bx(2,3,6a) = (6a2 - 2a)\ + 2a[X/2\,

Bx(2,3,6a + 1) =\(6a2 + a),

Bx{2,3,6a + 2) = \{6a2 + 2a) + 2a[X/2\ + L21.A/2J/3J,

Bx(2,3,6a + 3) - \(6a2 + 5a + 1),

Bx(2y3,6a + 4) = A(6a2 + 6a + 1) +(2a + l) lA/2j + [(A +

Bx(2,3,6a + 5) = (6a2 - 2a)A + 2a[A/2j .
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Now, if we can achieve a packing in Bx blocks, the number of pairs omitted will
be

P(\,v) = Xv(v~ l) /2 - 3Bx(2,3,v);

this number is the key to obtaining the packing number Dx{2,3, v) and can now

be evaluated. The results are given by

THEOREM 12. The number of pairs omitted in a packing that attains the bound

Bx(2,3,v)isgivenby:

P(X,6a) = 3aA-6a|.A/2j = 0 (A even) and 3a (Xodd);

P(X,6a + 1) = 0;

P(X6a + 2) = A(3a + 1) - 6a[A/2j - 3[2L\/2j/3j;

P(X,6a + 3) = 0;

P(X,6a + 4) = X(3a + 3) - 3(2a + l)LA/2] ~ 3[(X + L V 2 J ) / 3 J

= 0 (A even) and 3a + 3 (Xodd);

P(X,6a + 5) = A - 3LA/3J.

Because of the existence of the BIB design with parameter set (v, v(v — \)t,
3(u — 1)?, 3,6r), it is immediate that, if we set X = 6t + u, then these numbers
P(X, u) depend only on u and not on t. For v = 6a + b, we present these
numbers in a list involving u and then in a table.

P(6t + u,6a) — 0 (u even) and 3a (w odd);
P(6t + u,6a+ l) = 0;
P(6t + u,6a + 2) = u- 3 [u /3 ] (u even) and 3a + u ~ 3 [(w - l ) / 3 j (u

odd);
^(6/ + w,6a + 3) = 0;
P(6t + u,6a + 4) = 0 (M even) and 3a + 3 (w odd);
P(6t + u,6a + 5) = u- 3[u/3\.

0
1
2
3
4
5

0

0
3a
0
3a
0
3a

1

0
0
0
0
0
0

2

0
3a + 1

2
3a + 3

1
3a + 2

3

0
0
0
0
0
0

4

0
3a + 3

0
3a + 3

0
3a + 3

5

0
1
2
0
1
2

TABLE I. Values of P(6t + u,6a + b)
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Now it is impossible for a single pair to be missing from a packing design. So
Bx(2,3, v) can not be equal to Dx(2,3, v) for v = 6a + 2, A = 6t + 4, or for
v — 6a + 5, X = tt + 1 or A = 6t + 4. In all other cases, the bound is exact.

THEOREM 13. Dx(2,3, v) = Bx(2,3, v) for all X and v except for v = 2, X = 4
(mod 6); v = 5, X = 1 (mod 6); v = 5, X = 4 (mod 6). //J ?/;e.se ^ree exceptional
cases, Dx(2, 3, o) = Bx(2,3, ») - 1.

PROOF. The values of D^(2,3, t>) are given in Theorem 4 of [8], and the values
of D2(2,3, v) are given in Section 4.

When P(X, v) = 0, the bound is attained, since all BIB designs made up of
triples exist.

For v = 0 (mod 6), a BIB design exists for X even. A design omitting 3a pairs
exists for u = 1. Consequently, for X odd, we can achieve the bound by juxtapos-
ing a packing design for X = 1 and a BIB design for X — 1.

The same construction of juxtaposing a packing design for X = 1 and a BIB
design for A — 1 gives a design meeting the bound for v = 4 (mod 6).

For v = 5 (mod 6), A = 1 (mod 6), the bound fails by 1 [8], and is achieved for
A = 2 (mod 6) [see Section 4]. For A = 4 (mod 6), we can achieve the value
Bx(2,3,v) — 1 by using a BIB design for A — 1 together with a packing design for
A = 1. For A = 5 (mod 6), we can achieve the bound by using a BIB design for
A — 2 together with a bipacking.

Finally, for v = 2 (mod 6), we have a packing meeting the bound for A = 1
(mod 6) [8]; we also have a packing for A = 2 (mod 6) in Section 4. For A = 3
(mod 6), we use a packing for A — 2 together with a bipacking for A = 2. For
A = 5 (mod6), take a packing for A — 4 that omits (1,2), (3,4), . . . ,(v — 1, u);
and take two bipackings, one that omits pairs (1,3), (1,3), and one that omits
pairs (2,3), (2,3). Altogether, we now omit 3a + 5 pairs and this can be decreased
to 3a + 2 by including the triple 123. Hence, the only outstanding case is v = 2
(mod 6), A = 4 (mod 6).

It will obviously suffice to discuss the case A = 4, since we can always add
arbitrary multiples of the design (v, v(v ~ 1), 3(v — 1), 3,6). First, we note that a
design with A = 1 omits v/2 pairs forming a complete one-factor of Kv. So, if we
put together four designs with A = 1, we get a design omitting four one-factors.
For v = 8, let these one-factors be:

(12) (34) (56) (78);
(17) (35) (46) (28);
(13) (24) (57) (68);
(14) (26) (58) (37).
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Then we can add triples (134), (246), (568), (357), so that only pairs (12), (28),
(87), (71), are omitted. With four omitted pairs, we thus achieve the bound
B x ( 2 , 3 , 8 ) - 1 .

This is the beginning of an induction. We have shown that, for a — 1, we can
select four one-factors of K6a+2 so that these one-factors can be grouped into
triples and leave only four pairs over. If we suppose this has been done for a
particular v = 2 (mod 6), then we show how to extend the selection to v + 6.
Merely add six new points A, B, C, D, E, F, to Kv and extend the existing four
one-factors by the one-factors

AC, BD, EF; AB, CF, DE;
AD, BD, CE; AE, BC, DF.

This gives us four one-factors of Kv+6, and we can remove the triples formed
from Kv together with ABC, ADE, BDF, CEF, to leave four pairs, as required
(indeed, since these pairs will remain as in K%, they will still form the cycle
(1287)).

This construction completes the proof of the theorem and the determination of
Dx(2,3,o).
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