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Abstract. The origin of magnetic cycles in the Sun and other cool stars is one of the great the-
oretical challenge in stellar astrophysics that still resists our understanding. Ab-initio numerical
simulations are today required to explore the extreme turbulent regime in which stars operate
and sustain their large-scale, cyclic magnetic field. We report in this work on recent progresses
made with high performance numerical simulations of global turbulent convective envelopes. We
rapidly review previous prominent results from numerical simulations, and present for the first
time a series of turbulent, global simulations producing regular magnetic cycles whose period
varies systematically with the convective envelope parameters (rotation rate, convective lumi-
nosity). We find that the fundamentally non-linear character of the dynamo simulated in this
work leads the magnetic cycle period to be inversely proportional to the Rossby number. These
results promote an original interpretation of stellar magnetic cycles, and could help reconcile
the cyclic behaviour of the Sun and other solar-type stars.

Keywords. Sun: magnetic fields, Sun: interior, stars: magnetic fields, (magnetohydrodynamics:)
MHD

1. Introduction
Cool stars such as the Sun possess a convective envelope that is thought to be at the

origin of their internal large-scale flows (differential rotation, see Brun & Toomre 2002,
meridional circulation, see Featherstone & Miesch 2015) and dynamic magnetic fields
(see, e.g. Brun et al. 2015). Many possible mechanisms sustaining a dynamo in a con-
vective envelope have been invoked in the literature (see, e.g. the review Charbonneau
2010), most of which rely on some parametrization of the magnetohydrodynamical tur-
bulence that animates the convective layer. The magnetism of solar-like stars hence is a
formidable theoretical challenge due to the extreme parameter regime in which interiors
of stars operate. The magnetic field of a star furthermore plays a crucial role during
its life, by shaping its wind and astrosphere (Cranmer 2012), determining its rotational
braking (Réville et al. 2015), and even affecting its (exo)planets habitability (Lammer
et al. 2009; Gallet et al. 2016).

In particular, the cyclic aspect of solar magnetism (and stellar magnetism, see e.g.
Noyes et al. 1984; Baliunas et al. 1995; Saar & Brandenburg 1999; Bohm Vitense 2007;
Egeland et al. 2015; Metcalfe et al. 2016) remains as of today one of the great mys-
teries of stellar astrophysics. Indeed, if the dynamo process sustaining the large-scale
cyclic magnetic field of the Sun is rooted in the convective turbulence itself, how can a
characteristic time-scale of eleven years emerge since all hydrodynamical time-scales are
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significantly different? In other words, what sets the magnetic cycle period of the Sun and
of other cool stars? Observational constraints on the magnetic cycle of distant stars are
difficult to acquire because they require repeated monitoring of stars over long (at least
decadal) periods of time. As a result, only a few observational programs (see previously
cited efforts) have as of today been able to provide very useful observations of magnetic
cycles in stars different than the Sun. Numerical simulations of stars hence provide as of
today promising laboratories to explore the possible drivers of cyclic magnetic activity
in stars.

In the past decade, significant progress has been made in understanding the sustain-
ment of large-scale magnetic fields in turbulent convection zones of stars thanks to global,
3D numerical simulations. Only a handful simulations, though, present today a cyclic be-
haviour. We quickly review the current state of the art for modelling magnetic cycles in
stars with global turbulent simulations in Section 2 (the reader may find a more detailed
review in the Section 2.3 of Brun et al. 2015). In Section 3 and 4 we will present for the
first time a series of numerical simulations exhibiting a cyclic behaviour, with a period
that systematically varies with the rotation and luminosity of the modelled star.

2. Cycles in global turbulent numerical simulations
Large-scale magnetic fields in turbulent global numerical simulations. The basis of 3D

global modelling of stellar interior flows and magnetism was first developed in the pio-
neering work of Gilman & Miller (1981); Gilman (1983); Glatzmaier (1984, 1985); Brun
et al. (2004). At that time, global scale magnetism was already achieved in turbulent
simulations using enhanced diffusivity coefficients (which are still widely used today) to
model the contribution of the scales unresolved by the numerical model. In those models
the large-scale field was nonetheless less energetic than the small scale magnetic field,
which is ubiquitously produced by the turbulent convective motions under the influ-
ence of rotation as long as the magnetic Reynolds number exceeds the critical onset of
dynamo action. Many teams have since then attempted to carry out such simulations,
mainly in the solar/stellar physics and planetary dynamo communities (a convective dy-
namo benchmark conducted by Jones et al. 2011). One very intriguing regime was in
particular discovered by Brown et al. (2010), in which persistent wreaths of magnetic
field are sustained near the bottom of the convection zone, inside the turbulent region
itself.

Reversing magnetic fields in turbulent global numerical simulations. Many simulations
then started to show quasi-regular magnetic field reversals, using the ASH code (Brown
et al. 2011; Augustson et al. 2013; Nelson et al. 2013), the PENCIL code (Käpylä et al.
2013), the MagIC code (Gastine et al. 2012), or the PaRoDy code (see Schrinner et al.
2012, 2014). In addition, evidence of buoyantly rising magnetic wreaths was found by
Nelson et al. (2011). Finally, an almost cyclic activity was also found in simulations of the
fully convective M-star Proxima Centauri by Yadav et al. (2016). In all these simulations,
the large-scale magnetic field is observed to invert quasi-regularly on a yearly timescale,
over a period of several hundreds of rotation periods of the star. Nevertheless, the detailed
mechanism setting the exact inversion timing remains to be clarified as of today.

Cyclic magnetic fields in turbulent global numerical simulations. Only a handful of
global turbulent simulations successfully produced truly regular magnetic cycles. The
first solar-like cycles were arguably obtained by Ghizaru et al. (2010), using the EULAG
code with an implicit large-eddy simulation approach (see Section 3.1). These results
were subsequently analyzed (Beaudoin et al. 2013; Lawson et al. 2015) and compared
to classical mean-field theory (Racine et al. 2011; Simard et al. 2013; Beaudoin et al.
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2016; Simard et al. 2016), revealing an α2 − Ω like behaviour with significant departure
from isotropic mean field α and β tensors. In the meantime, Käpylä et al. (2012) also
reported on cyclic solutions in global spherical wedges using the PENCIL code. In their
solution, the cycle period was found to be much shorter (of the order of a few years), but
presented a clear equatorial propagation of what would be equivalent to a solar activity
band. In the simulations of Gastine et al. (2012), almost cyclic solutions are reported but
exhibit a polar propagation and tend to show strong hemispheric decoupling. Finally,
Augustson et al. (2015) also found a cyclic solution (also with a short cycle-period of a
few years) using a hybrid dynamic-Smagorinski approach as a sub-grid scale model. They
interestingly found a cyclic solution showing self-consistently a long period of minimal
activity, that may relate to epochs like the so-called Maunder minimum of the Sun. So
it is now clear that 3D global simulations can yield cyclic magnetic behaviour but such
solutions are quite sensitive to the global parameters of the simulations, making it im-
possible to study their properties through an exploration of the parameter space and to
deduce systematic trends.

3. An implicit large-eddy simulation of a convection zone exhibiting
cyclic magnetism

3.1. Numerical model
The numerical simulations presented in this work are based on the hydrodynamical sim-
ulations presented in Strugarek et al. (2016). They consist in a spherical shell with a
solar-like aspect ratio (Rbottom = 0.7Rtop) subject to a convective instability. The EU-
LAG code (Smolarkiewicz & Charbonneau 2013) is used to solve the Lipps-Helmer set
of ideal MHD equations, written in the stellar rotating frame Ω� as

∇ · (ρ̄u) = 0 , (3.1)

Dtu = −∇
(

p

ρ̄

)
− S

cp
g − 2Ω� × u , (3.2)

DtS = − (u · ∇) Sa − S

τ
, (3.3)

DtB = (B · ∇)u − B (∇ · u) . (3.4)

In these anelastic equations the variables are perturbed quantities around a background
isentropic state denoted with bars. In addition, an ambient hydrostatic state, denoted
with the subscript a , was substracted from the equations. Dt is the material derivative.
We recall that we use standard notation for the basic fluid quantities, i.e. u is the
fluid velocity, ρ its density, p its pressure, S its specific entropy, B the magnetic field,
and cp = 3.4 108 erg/g/K the specific heat at constant pressure. The background state is
chosen to cover 3.22 density scale heights, which allows moderately small-scale convective
structures at the top of the convective layer while retaining non-negligible stratification
throughout the domain. The grid is held constant in all the simulations presented here,
and is chosen relatively coarse (51 × 64 × 128) to allow the exploration of decadal
time-scale phenomena over a parameter space exploration.

As we consider a spherical, fully convective shell, boundary conditions are extremely
important. The top and bottom boundaries are classically assumed to be stress-free walls.
The magnetic boundary conditions are more delicate and were reported in equivalent
setups (e.g. Brown et al. 2010) to significantly change the simulated dynamo. Here we
use a radial field top boundary condition, to mimic the connection of the top of our
convective envelope to a chromosphere and lower corona. At the bottom of our domain, we
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use a perfect conductor boundary condition to resemble the connection to an underlying
conductive layer such as a stably stratified zone.

The convective instability is forced by the conjunction of the advection of the unstable
ambient entropy profile Sa , and a Newtonian cooling term of characteristic timescale
τ (for details, see Prusa et al. 2008; Smolarkiewicz & Charbonneau 2013). The am-
bient entropy profile Sa is defined in Strugarek et al. (2016) and is controlled by an
entropy contrast ΔS throughout the modelled convective shell (in the model shown here,
ΔS ∈ [8, 15] × 103 erg/g/K). The Newtonian cooling in Equation 3.3 damps entropy
perturbations over the timescale τ which is always chosen to exceed the convective over-
turning time. It ensures that on long time-scales, the model mimics a stellar convection
zone remaining in thermal equilibrium (e.g. Cossette et al. 2016).

The resulting convective turbulence organizes such as to transport heat outward and
is characterized by a convective luminosity calculated a posteriori and defined as

Lc = 4πρ̄cP 〈vrT 〉t,ϕ , (3.5)

where T is the temperature perturbation and cP the specific heat at constant pressure,
and 〈〉t,ϕ stands for the average over time and the azimuthal angle ϕ. Due to the particular
convection forcing in our setup, and the existence of radial wall boundaries, the convective
luminosity vary with radius in our models. Here we choose to estimate the convective
luminosity Lbc by averaging it over the [0.75R�, 0.8R�], which is safely away from the
lower boundary but close to the bottom part of the domain where the dynamo action
primarily takes place (see below).

The EULAG code solves the ideal set of MHD equations, and as a result do not
resolves any explicit dissipative process. Note that explicit dissipative process can be
solved in the EULAG code, the results presented here nonetheless do not take them
into account. The approach used here is a so-called implicit large-eddy simulation, in
which the advective scheme MPDATA (Prusa et al. 2008; Smolarkiewicz & Charbonneau
2013) adds up the necessary numerical dissipation to ensure the stability of the numerical
scheme. This results in a very time- and space-dependant effective dissipation that occurs
only in strong gradient regions. This approach has the advantage that the largest scales
in the domain are saturated and sustained by inviscid non-linear processes as in real
stellar convection zones, while the numerical dissipation acts mostly at small-scale. This
scheme was shown to be compatible with classical turbulent cascades in 3D isotropic and
homogeneous turbulence (Domaradzki et al. 2003) and with standard laplacian viscosity
and heat diffusion (at small scale) in spherical convective shells (Strugarek et al. 2016).

3.2. Cyclic magnetic fields in turbulent convection zones
We consider a set of 7 numerical simulations covering about a factor of 2 in rotation
rate and 3 in convective luminosity. After a transient phase of exponential growth of the
magnetic field, the magnetic energy saturates in all the models at about 10% of the total
kinetic energy.

We display the time evolution of the energies in a subset of three of our models in
Figure 1. The three simulations exhibit a cyclic magnetic energy (black, ‘ME’) and the
cyclic behaviour is found in both the mean toroidal (magenta, ‘TME’) and fluctuating
(yellow, ‘FME’) components of the magnetic energy. The three magnetic energies oscillate
in phase, and in these simulations the fluctuating magnetic energy dominates over the
mean toroidal energy. The same cycle is also found in the differential rotation energy
(green, ’DRKE’, see also the differential rotation pattern on the right panels) and in
the total kinetic energy (blue, ‘KE’). Epochs of maximum DRKE correlate very well
with minima of magnetic energy, suggesting an energy beating between the magnetic
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Figure 1. Magnetic cycles in three representative models. The left panels show energies as a
function of time, integrated over the all convective envelope. The total kinetic energy (KE) is
shown in blue, the differential rotation kinetic energy (DRKE) in green, and the convective
kinetic energy (CKE) in red. The total magnetic energy (ME) is shown in black, the toroidal
magnetic energy (TME) in magenta and the turbulent magnetic energy (FME) in yellow. The
global parameters of the models (convective luminosity Lbc , rotation rate Ω� ) are indicated
in each plot. The right panel show the differential rotation profile on the meridional plane,
color-centered on the model rotation rate Ω.

and differential rotation energy reservoirs along the observed cycles. Supporting this
interpretation, the convective kinetic energy (red, ‘CKE’) does not show any significant
modulation with the magnetic cycle, which suggests a dynamo scenario in which energy
is exchanged between the large-scale differential rotation and the small and large-scale
magnetic energy, and points to a significant back-reaction of the Lorentz force on the
balance sustaining the large-scale differential rotation profile (right panels in Figure 1).
Indeed, when the magnetic energy decreases the differential rotation is able to grow back
until the magnetic back-reaction sets in again. The differential rotation profile remains
solar-like (fast equator, slow poles) in the whole set of simulations presented here, but
its amplitude and detailed latitudinal profile change significantly in our simulation set.
As a result, the dynamo mechanism at the heart of these simulations seems to be robust
with respect to the detailed profile of the differential rotation.

The azimuthal component of the cyclic large-scale magnetic field is shown in Figure 2
in a time-latitude diagram at depth r = 0.75R�, near the bottom of our domain. Three
snapshots of the azimutal magnetic field on the meridional plane are shown, showing the
reversal of the large-scale field. The azimutal field is primarily located in the bottom half
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Figure 2. Azimuthal component of the mean magnetic field 〈Bϕ 〉ϕ in the same series of models
as in Figure 1. 〈Bϕ 〉ϕ is shown in a time-latitude diagram at r = 0.75 R� on the left panel. The
three meridional plane snapshots in the right panels are taken at the time labeled by the dashed
magenta lines.

of our convection zone and at mid-latitude, right outside of the inner tangent cylinder. A
clear equatorial propagation of the azimuthal field is observed on the left panels, confined
at mi-latitude near the maximum of the latitudinal shear. In all models, the magnetic
field reaches a few tenths of a Tesla at the base of the convective envelope.

We readily see in Figure 2 that the large-scale azimuthal field is either symmetric (i.e.
quadrupolar) or anti-symmetric (i.e. dipolar) with respect to the equator depending on
the model and on the epoch of the model. We show in Figure 3 the dipolar/quadrupolar
ratio at R = 0.75R� in the first model (L� = 0.33L�, Ω = 0.7Ω�). The magnetic
cycle clearly appears (over-plotted in grey in Figure 3), on top of which the large-scale
field oscillates between periods of predominantly dipolar and predominantly quadrupolar
geometries, with no clear regularity (longer time integrations would be required with this
simulation to confirm this lack or regularity). The beating between the two topologies
suggests a coupling between the dynamo families in our models (McFadden et al. 1991;
Gubbins & Zhang 1993; Knobloch et al. 1998), which is often a trace of a strongly non-
linear dynamo regime. In both situations, the dominant polarity is maximized (resp.
minimized) during epochs of maxima (resp. minima) of magnetic energy, which differs
from the situation observed in the Sun (DeRosa et al. 2012).

The dynamo acting in our simulations operates for differential rotations of various
strength and profile (see the right panels of Figure 1). This warrants further
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Figure 3. Dipolar/quadrupolar ratio (thick black line) as a function of time at r = 0.75 R�,
for the first models shown in Figures 1 and 2. The volume-integrated toroidal magnetic energy
(TME) is overlaid as a thin grey line.
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Figure 4. Toroidal field inversion in our modelled dynamo. The color map represents the tem-
poral fluctuation of the differential rotation, defined as δΩ = Ω − 〈Ω〉t . Red tones denote an
acceleration with respect to the mean differential rotation, while blue tones denotes a deceler-
ation. The [−0.1T, 0.1T] contours of 〈Bϕ 〉ϕ are overlaid in grey. Contours of the action of the
differential rotation on the mean magnetic field are shown in white, and correlate very well
with the cyclic destruction of 〈Bϕ 〉ϕ . Positive contours are shown with solid lines, and negative
contours with dashed lines.

investigation on the origin of the magnetic reversals in our models. We display in Figure 4
iso-contours of the azimuthal component of the mean magnetic field at 0.1 T in grey on a
time-latitude diagram zoomed over a particular subset of cycles. We overplot the contri-
bution of the differential rotation shear to the time-evolution of 〈Bϕ 〉ϕ as white contours
(for all contours, plain line denote positive value and dashed lines negative values). We
observe that the mean component of the induction associated with the mean azimuthal
flow correlates very well with the destruction of the mean azimuthal magnetic field. The
background colormap actually reveals the origin of the reversals. It shows the deviation
from the mean differential rotation over time. Red threads originating at high latitudes
and propagating poleward trace acceleration epochs in the differential rotation that trig-
ger the polarity reversal of the mean magnetic field. These modulations of the differential
rotation take their roots in the non-linear feedback of the magnetic field on the balance
establishing the differential rotation through the Lorentz force. As result, the reversals
observed in our simulations originate from a non-linear modulation of the differential
rotation due to the presence of a large-scale magnetic field. Taken at face value, these
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considerations suggest a dynamo mechanism in which the cycle period, which is a tracer
of the strength of dynamo action, is expected to decrease as the differential rotation
weakens (since the non-linear magnetic feedback is then able to impact more efficiently
the balance establishing the differential rotation). This is indeed what we observe, and
we now turn to our full set of numerical simulations to determine what are the control
parameters setting the cycle period in our non-linear, global dynamo.

4. Modulation of the cycle period in global dynamo simulations
We saw in Figure 2 that the cycle period of our simulated dynamos varies when the

luminosity or the rotation rate of the model changes. In order to robustly estimate the
cycle period in our models, we consider the azimuthally averaged azimuthal component
of the magnetic field bϕ (r, θ, t) = 〈Bϕ 〉t,ϕ . At each (r, θ) point on the meridional plane, we
compute the Fourier transform of bϕ . We automatically identify the peak in the Fourier
spectrum, and calculate the width of the peak (defined as the width for which the Fourier
spectrum decreases to 10% of its peak value) to be used as a proxy for an error bar. We
then compute the probability density function of the cycle periods obtained for each
(r, θ), and define the cycle period of the model as the peak in this distribution function.
The error-bar is then also averaged over the (r, θ) points close to the peak cycle period.

We further define the fluid Rossby number in our models as

Rof =
|∇ × u|

2Ω�
. (4.1)

We calculate the Rossby number Rof as function of radius and latitude, and define the
average Rossby number Ro inside the white wedge defined in the right panel of Figure 5,
which corresponds to the region where the dynamo action is strong (i.e. near the bottom
of the convection zone, excluding the polar regions). We show on the left panel the cycle
period realized in each of our seven models as a function of the Rossby number (in log
scale). The cycle period is found to be inversely proportional to the Rossby number,
Pcyc ∝ R−1.1±0.2

o . This result may seem counter-intuitive, as standard and fully linear
α-Ω dynamo models are expected to exhibit a cycle period which is directly proportional
to the Rossby number (e.g. Noyes et al. 1984). This apparent contradiction is not so
surprising, as we showed in Figure 4 that the dynamo operating in our set of simulations
is different from the standard α-Ω dynamo: temporal fluctuations of the large-scale dif-
ferential rotation associated to the back-reaction from the Lorentz force play a dominant
role in the polarity reversal. The dynamo at stake here is consequently fundamentally
non-linear (i.e. non kinematic, as in Augustson et al. 2015), and subsequently exhibits a
different scaling law compared to kinematic models of stellar dynamos. We are currently
investigating in more details the exact dynamo process presented here, and in particular
the dynamics of the poloidal field reversal, the role played by the small scale turbulence,
and the effect of the cyclic modulations on the meridional circulation pattern (see also
Beaudoin et al. 2013).

5. Conclusions
In this work we have shown for the very first time a series of global, 3D turbulent

numerical simulations of stellar convective envelopes producing regular stellar magnetic
cycles, which period varies with the rotation rate of the star and its convective luminos-
ity. The dynamo sustaining the cyclic field is found to be fully non-linear and be able to
generate large scale fields of both dipolar and quadrupolar families. The non-linearity of
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Figure 5. Left panel: cycle period as a function of the Rossby number in log scale. Right panel:
Rossby number in the meridional plane of the model shown in Figures 3 and 4 (Lbc = 0.33L�,
Ω� = 0.7Ω�) and highlighted in red in the left panel. The white wedge labels the region in which
the representative Rossby number of the simulation is evaluated.

the dynamo strikingly appears in the predominant role played by the temporal fluctua-
tions of the differential rotation driven by the feedback of the magnetic field through the
Lorentz force.

The boundary conditions, especially the lower magnetic boundary, play a dominant role
in the dynamo state achieved in the simulations. Here we considered reasonable choices
given the simplicity of our numerical setup. We also tested changing the lower magnetic
boundary condition from perfect conductor to radial field, which completely changed the
dynamo state and shut down the cycle. It seems that being able to store horizontal fields
in an underlying region is henceforth important in developing a magnetic cycle, albeit
the detailed fate of such a stored field appear not to matter in our set simulations.

We also explored various density contrasts Nρ (not shown here) from 2 to 4, which
effectively changes the Rossby number of the simulated convective envelope. All these
simulations fall on the same trend identified in Figure 5, namely the cycle period is found
to be robustly inversely proportional to the Rossby number when changing the rotation
rate, the luminosity, or the stratification of the modelled convection zone.

Several aspects require further investigations which are currently being pursued. Sim-
ulations at higher resolution are currently underway, in order to assess the robustness
of the dynamo mechanism identified in our simulations with respect to the dissipative
properties of the plasma. Furthermore, the complete dynamo loop still eludes our under-
standing and dedicated analysis are still required to fully assess the mode of operation of
the dynamo in the simulations. Finally, we are also investigating twin simulations where
a stably stratified zone is added to the bottom of the convective envelope to assess the
importance of an underlying radiative zone in setting the cycle period (e.g. Browning
et al. 2006; Lawson et al. 2015; Guerrero et al. 2016). Ultimately, we aim at reproducing
the benchmarking exercise carried out in (see Strugarek et al. 2016) for the MHD models
presented here, and evaluate the robustness of our dynamo mechanism for various small
and sub-grid scale behaviours. The dynamo presented in this work opens new possibilities
in interpreting the magnetic cycle of solar-like stars (Bohm Vitense 2007; Metcalfe et al.
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2016), and could help reinstate the Sun as a truly typical solar-type star (Salabert et al.
2016).
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