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Abstract

This paper is an expository introduction to recent and current work on geometries associated with minimal
parabolic subgroups and maximal 2-local subgroups of finite sporadic simple groups, based on lectures
given by the author at the Canberra Group Actions Workshop, held at the Australian National University
in June 1993.
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1. Introduction

The purpose of this paper is to survey certain ideas which have been used in recent
work on geometries related to the sporadic (finite) simple groups. The common feature
of such work is the exploitation of the way certain groups of order two act upon the
points of the geometry. Geometries (see Section 2 below for definitions), in the sense
used here, were introduced in Buekenhout [1, 2]. Such concepts were an outgrowth
of the theory of buildings and a desire to have an enlarged framework into which the
sporadic simple groups and their geometries would also fit. For an excellent account
of the evolution of these ideas see Tits [19].

Earlier interest in sporadic group geometries concentrated primarily on geomet-
ries whose rank 2 residues were either generalized m-gons or the so-called 'circle
geometries' (see [19]). Later additions to the family of interesting geometries were
made in [9] and [10]. Among other interesting geometries we should also mention the
Peterson geometries (see [7]). The collections in [9] and [10] were directly inspired
by analogous ideas in buildings, and it is these geometries, the minimal parabolic
geometries and maximal 2-local geometries, that we shall focus upon here.
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36 Peter Rowley [2]

In the following section we shall review definitions and notation about geometries
sufficient for our purposes. Then we shall survey the success to date in using the 'Z2-
action' approach. In order to convey what these methods entail we give (in Sections 3
and 4) some typical arguments, which have been selected from the preprint [11].

As an aside we mention that geometries may be also studied by considering covers
of the geometry; for an indication of what is involved here we refer the reader to [8]
and [6].

This paper is based on lectures given at the Canberra Group Actions Workshop,
June 1993—the author wishes to thank the organizers for their hospitality.

2. Geometries

DEFINITIONS AND NOTATION. We say that (F, *) is a geometry of rank n if and
only if

r = r0 u r\ u • • • u r«_,
where each F, ^ 0 and * is a symmetric incidence relation on F such that x * v never
holds when x and y are in the same F,. As is customary we suppress * and say that F
is a geometry. We say that x e F is of type i if and only if x e F,. We establish the
convention that objects of type 0 will be called points and those of type 1 lines.

A subset & of F is called a flag of F if x * y for each x, y e & with x ± y (so
that distinct elements of & must be of different types). The type of a flag & is the set
{i | & contains an object of type i}.

We say that points a, b e Fo are collinear provided there exists I e F, such that
a * I and b * I. A structure of frequent interest (and particularly so in this paper) is
the point-line collinearity graph <$ of F. The vertices of this graph are the elements
of Fo, with a, b e Fo adjacent in <$ if and only if they are collinear in F.

Any nonempty subset A of F can be regarded as a geometry via the restriction of
* to A, the separation of elements of A into types being given by the decomposition

A = (J(F, n A)
16/

where / = {/ | F,- D A ^ 0}. In such situations we sometimes call A a subgeometry
ofF.

Residues of flags are an important source of subgeometries. If & is a flag in F
then the residue of ^ (in F) is the set T? defined by

V? := {y e F | y * x for all x € &}.

Provided it is nonempty, T& is a (sub)geometry. For the special case & — [x] we
write Tx instead of F(x}; note that if x is of type / then Tx contains no objects of type /.
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Many interesting geometries are residually connected. This means that for every
flag & of r (including the empty flag) for which the rank of I> is at least 2, the
graph whose vertices are the elements of FV and whose edges are the pairs of incident
elements of IV is a connected graph. We are also interested in geometries with the
following property: if a, b, c are objects of types i, j , k (respectively) with i < j < k,
then a * b and b * c imply a * c. (Obviously this property presupposes some fixed
ordering of the types.) Geometries satisfying this are called string geometries.

We now look at Autr, the group of automorphisms of F, where an automorphism
is a type and incidence preserving permutation of F. That is, AutF is the set of all
g € SymmF such that for all x, y e F, if x e F, then xs e F,, and if x * y then
x8 * yg. A subgroup G of AutF is said to be flag transitive on F if, for every pair
of flags ^, &' which are of the same type, there exists a g e G with &' = &g. In
particular, this condition implies that G must be transitive on each F,.

For each x e F w e define

Q(x) :={geGx\y
s = y for all y e Vx },

where Gx is the stabilizer of x in G. It is clear that Q(x) is a normal subgroup of Gx,
and Gx/Q(x) is a subgroup of AutF*.

We now give two examples of geometries with the kind of properties that interest
us. These two play fundamental roles in Sections 3 and 4 below.

EXAMPLE 2.1. Let V be a three dimensional vector space over the field with two
elements, and let Ao and At be, respectively, the sets of all 1-dimensional and 2-
dimensional subspaces of V. Then A := Ao U A! is a (rank 2) geometry where, for
x e Ao and y e Ai, we define x * y whenever x c y. It is straightforward to check
that GL3(2) is flag transitive on A. Furthermore, \AX\ = 3 = \Ay\ for all x e Ao

and y e A]. Since any two distinct 1-subspaces of V are contained in a unique
2-subspace, the point-line coUinearity graph of A is a complete graph on 7 vertices.

Example 2.1 looks rather innocent and uninteresting, but it makes frequent appear-
ances as a residue in many geometries associated with the sporadic groups.

EXAMPLE 2.2. Our second example is in fact the triple cover of the generalized
quadrangle associated with the group Sp4(2) = S6. It is a rank 2 geometry, but it
is convenient for us to suspend our convention on names of types, using 'line' and
'plane' rather than 'point' and 'line' for the two types. We describe each line as a
6-tuple (a1a2|a3a4|a5«6) where the a, are elements of the set [A, B, C}. Let A! be the
set of all such 6-tuples appearing in the 'Lines' part of Figure 1. The planes of the
geometry are similar 6-tuples, except that two of the entries of each plane 6-tuple are
dots rather than elements of [A, B, C}. Let A2 be the set of all such 6-tuples listed
under 'Planes' in Figure 1. Let A := Ai U A2, and for / = (aia2\a3a^\a5a6) e Aj
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and n = {Jb\b2\bib^\b5b6) e A2 we define I * n if bt = a, whenever ft, is not a dot.
So for example, referring to the labelling in Figure 1, if / = (1, 4, 5) and n = 8
then A, = {1,4, 5} and A,, = {(3, 8,9), (8, 37,42), (8, 38,41)}. Observe that the
labelling has been chosen so that a line labelled (/, j , k) is incident with a plane
labelled m if and only if m 6 {/, j , k}.

The coplanarity graph of A has vertex set A1; with lu l2 e A} being adjacent
vertices if and only if h * n and l2 * n for some n e A2. Now fix / = (1,4, 5) € A].
For each i from 1 to 4 the lines in the subset a,(a, /) c Ai indicated in Figure 1
(ignore the 'a ' for the moment) are precisely those vertices of distance i from / in the
coplanarity graph. Observe that

| a , ( o , / ) | = 6 , | a 2 ( a , / ) |=24 , |a3(a,/) | = 12 and |«4(a , / ) |=2 .

The explicit description of Example 2.2 that we have given will be used heavily in
Section 4 below.

In the next three theorems it is assumed that F is a residually connected string
geometry and G a flag transitive subgroup of AutF. Our purpose in stating these
theorems is to illustrate the kind of results that can be obtained by use of the Z2-action
method, exploiting the way certain involutions in G act upon F and its subgeometries.
The beginnings of this method lie in a paper of Segev [18], where the following
theorem is established.

THEOREM 2.3. (Segev) Suppose that F has diagram m 4 « = •
and that for each a e Fo and X e F3, 0 1 2 3

(i) Fa is the dual of the maximal 2-local geometry of M24,
(ii) Tx is the geometry of points and lines and one class of maximal singular

subspaces of the Q.%(2)-building.
Then F is isomorphic to the maximal 2-local geometry of CO], and G = Cop

The precise meaning of the diagram need not concern us here; we note only that it
provides information on the residues of flags. Thus the theme of Segev's paper is that
information about the residues may enable the whole geometry F to be determined.
Next we state two more recent results (along the same lines) which have also employed
the Z2 -action approach.

THEOREM 2.4. (Rowley and Walker [13]) Assume F is a rank 3 geometry with
type set {0, 1, 2} such that for each a e Fo and X e F3,

(i) Ta is the geometry of duads and triduads of the Steiner system 5(22, 3, 6)
andGa/Q(a) = M22:2,

(ii) Fx is the geometry of points and lines of a projective plane of order 2 (hence
isomorphic to Example 2.1J.
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Lines

(AA\AA\AA)
(1,4,5)

(CB\AA\AA)
(1,10,11)

(BC\AA\AA)
(1,12,13)

(AA\CB\AA)
(4,16,20)

(AA\BC\AA)
(4,17,21)

(AA\AA\CB)
(5,14,19)

(AA\AA\BC)
(5,15,18)

a2(a,l)

(AC\AB\CB)
(14,23,42)

(CA\AB\BC)
(18,29,37)

(AB\BC\CA)
(17,45,24)

(CB\BA\CA)
(11,38,24)

(AB\AC\CB)
(14,45,27)

(BA\AC\BC)
(18,35,33)

(AC\BC\BA)
(17,43,22)

(CB\CA\BA)
(11,36,25)

(CA\BA\CB)
(19,28,38)

(AC\CB\AB)
(16,23,40)

(CA\BC\AB)
(21,28,39)

(BC\AB\CA)
(12,32,42)

(,BA\CA\CB)
(19,34,31)
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(BA\BC\AC)
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(15,44,25)

(CA\CB\BA)
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(10,26,37)

(BC\BA\AC)
(13,30,41)

(AC\BA\BC)
(15,22,41)

(BA\CB\CA)
(20,34,32)

(CB\AC\AB)
(10,27,39)

(BC\CA\AB)
(13,31,40)

(BB|AC|BB)
(6,27,33)

(BA\CC\CC)
(3,34,35)

(BB|CA|BB)
(6,25,31)

(AB\CC\CC)
(3,44,45)

(AC|BB|BB)
(2,22,23)

(CC\AB\CC)
(8,37,42)

(CA|BB|BB)
(2,28,29)

(CC\BA\CC)
(8,38,41)

(BB\BB\CA)
(7,24,32)

(CC\CC\BA)
(9,36,43)

(BB\BB\AC)
(7,26,30)

(CC\CC\AB)
(9,39,40)

(BB\BB\BB)
(2,6,7)

(CC\CC\CC)
(3,8,9)

Planes
(..\AA\AA)

1

(BB|BB|..)
7

(BC\.A\A.)
13

(,A\.A\CB)
19

(.B\CA\B.)
25

(B.\CA\.B)
31

(C.\AB\.C)
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(.C\.C\BA)
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(..|BB|BB)
2

(CC|..|CC)
8

(A.\A.\CB)
14

(.A\CB\.A)
20

(.B\.B\AC)
26

(B.\.B\CA)
32

(C.\BA\C.)
38

(AB\C.\.C)
44

(..|CC|CC)
3

(CC|CC|..)
9

15

21

(.B\AC\.B)
27

33

(C.|.C|AB)
39

04B|.C|C.)
45

4

10

16

(AC|B.|B.)
22

28

34'

(.C|C.|AB)
40

5

(CB|.A|.A)
11

' 17 '

23

(CA|.B|B.)
29

(BA\.C\.C)
35

(.C|BA|.C)
41

(BB|..|BB)
6
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(.A|A.|BC)
18

(,B|.B|CA)
24

(B.|B.|AC)
30

(C.\C.\BA)
36

(,C|AB|C.)
42

FIGURE 1
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Assume further that the stabilizer Gatx is finite whenever {a, I, X] is a maximal
flag.

Then F is isomorphic to the Co2 minimal parabolic geometry, and G = Co2.

THEOREM 2.5. (Rowley and Walker [16, 17]) Assume V is a rank 3 geometry
with type set {0, 1, 2} such that for each a e To and X e f3)

(i) Ta is the geometry of duads and triduads of the Steiner system 5(22, 3, 6)
andGa/Q(a) = M22,

(ii) Fx is the geometry of non-zero isotropic vectors and isotropic 2-spaces in a
4-dimensional GF(4)-unitary space and GX/Q(X) = U4(2): 2.

Assume that Galx is finite whenever {a, I, X] is a maximal flag.
Then T is isomorphic to the F/22 minimal parabolic geometry, and G = F/22.

(In the preceding two theorems, and below, our notation for group extensions is
that used in the Atlas [3]: a colon indicates a split extension and a raised dot a nonsplit
extension.)

A partial study of the point-line collinearity graph of the maximal 2-local geometry
for F/'24 was made in [20], while in [14, 15] a complete description is given of the
point-line collinearity graph of the maximal 2-local geometry for J4. This latter graph
has 173,067,389 vertices and has a very intricate structure (partly because each line
is incident with 5 points).

3. Z2-action

We illustrate the Z2-action method with arguments and results drawn from [11].
The following situation will be assumed to hold.

HYPOTHESIS 3.1. Let V = To U T, U T2 be a residually connected rank 3 geometry
and G a flag transitive subgroup of Autf. Assume that for all a e Fo, I e H and
X e F2 the following conditions are satisfied:

(i) Fa is isomorphic to the geometry A described in Example 2.2;
(ii) Fx is isomorphic to the geometry A described in Example 2.1 ;

(iii) if a * / and I * X then a * X;
(iv) Q(a) is elementary abelian of order 26 and Q(X) isextraspecialoforder2i+6,

the quotient groups Ga/Q(a) and GX/Q{X) being 3 ' S6 and GL3(2) respectively;
(v) if a * X then r(X), the generator of Z(GX) = Z(Q(X)), is contained in

Q(a).

Hypothesis 3.1 looks like—and indeed is—the result of certain reductions, and
it is the point at which the hard work starts. Later in this section we will place
Hypothesis 3.1 in context. For now we remark that our perspective is that of deducing
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global information about F from the local data listed in Hypothesis 3.1. In the
argument we present Hypothesis 3.1(iv) plays virtually no role, and is given just to
fill out the picture. However, the element r(X) e Q(X) is the star of the show.

Objects of type 2 will be referred to as planes and (as usual) those of type 0 and 1
will be called, respectively, points and lines. Note that Hypothesis 3.1(i) explains the
presence of the a in the notation a, (a, /) that appears in Example 2.2.

We adopt the following useful notation: for S c r and i € {0, 1, 2} let r,(5) :=
{ v e F,-| y * s for all j e S }. If 5 = {x} then we write rt(x) for F, ({*}).

If / e ry and X e F2 with I * X, then, by Hypothesis 3.1(ii), / is incident with
exactly three points in Fx- Hence, by Hypothesis 3.1(iii), / is incident with exactly
three points in F. In view of the transitivity of G on Fi it follows that each line in F is
incident with exactly three points. Now let a G Fo, / e Fi(a) and X e F2(a) (so that
/, X e Fa). Without assuming that I * X, Hypothesis (3.1)(v) and a * X imply that
T(X) e Q{a); therefore r(X) fixes /, as / G Fa. Hence T(X) leaves Fo(/) invariant,
and of course r(X) fixes a. But what does r(X) do to the two points in F0(/)\{a}?

LEMMA 3.2. (Z2-action) Let a e Fo, / e F^a) and X e F2(a), and let / e A h

X e A2 be the 6-tuples in Figure 1 that correspond to I, X. Then r(X) interchanges
Fo(l)\{a] if and only ifX and I agree in exactly one entry.

We discuss briefly the lemmas corresponding to Lemma 3.2 for the geometries
pertaining to the results mentioned at the end of Section 2. For Theorem 2.3 the lines
and the objects of type 3 correspond respectively to sextets and octads in the Steiner
system 5(24, 5, 8), and there x{X) interchanges F0(/)\{a} if and only if the octad X
meets the tetrads of/ in (3, I5) (see [18, (4.19)]). In Theorems 2.4 and 2.5 the residue
of a point is the same, but for the Co2 case lines correspond to duads and planes
(objects of type 2) to triduads, whereas for the Fi22 case it is the other way around.
For Theorems 2.4 and 2.5 the criterion in the lemma analogous to Lemma 3.2 is that
the duad and the hexad (which supports the triduad) intersect in exactly one element.
In the J4 maximal 2-local geometry lines and planes correspond, respectively, to trios
and sextets of S(24, 5, 8). Then we have that xx(X) ^ x for all x e. F0(/)\{a} if and
only if the trio / cuts the sextet X in 222213111111311111 (meaning that the 3 octads
of / intersect the tetrads of X in the sizes given).

LEMMA 3.3. Let a e Fo and I e F^a). Then Ga is transitive on Tx(a), and the
Gal-orbits on F^a) are {/}, d\{a, I), a2(a, I) oe3(a, I), a4(a, I).

Note that since a, (a, /) consists of those lines in Fa whose distance from / in the
coplanarity graph is i, it follows that if g e AutF then a, (a, I)8 = a, (as, lg).

Our next result gives a glimpse of what can be done with Lemma 3.2.
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LEMMA 3.4. (Two points determine a line) Let a and b be distinct collinear points
ofT.Then\Tx{.{a,b})\ = \.

PROOF. Suppose /, m € T\{{a, b}) with / ^ m, and argue for a contradiction.
Working in Ta (note that /, m e Ta) we may, without loss of generality since Ga is
transitive on Fi(a), take / = (AA|AA|AA) = line (1, 4, 5).

If m € ai(a, 0, then / and m are coplanar; that is, there exists X e F2(a) such that
I * X and m * X. (Specifically, the required X will be plane 1, plane 4 or plane 5.)
So m, I e Fx and, by Hypothesis 3.1(iii), a, b e Fx also. Then we have two distinct
points both incident with two distinct lines in Tx = A, which is impossible. Therefore
m g at(a, I).

Since, by Lemma 3.3, a2(a, 1), a3(a, /), and ct4(a, /) are Ga,-orbits, it suffices to
examine the following three cases:

(i) m = (AC|Afi|CB),line(14,23,42),
(ii) m = (BB\AC\BB),lim(6,27,33),

(in) m = (CC\CC\CC), line (3, 8, 9).
In cases (i) and (ii) let X = (..|AA|AA) (plane 1) and in case (iii) let X =

(CB\A.\ A.) (plane 10). Using Lemma 3.2 we see that r(X) fixes ro(/)\{a} pointwise
and interchanges ro(m)\{a}. But this gives a contradiction, since b is in both ro(/)\{a}
and ro(m)\{a}.

We now give some of the history behind Hypothesis 3.1. For the balance of this
section we assume (i), (ii) and (iii) of Hypothesis 3.1, and assume in addition that if
{a, /, X} is a maximal flag of T then Ga/Q(a) = 3 ' S6, GX/Q(X) = GL3(2) and

= GL2(2) x GL2(2).

THEOREM 3.5. (Rowley [12]) \G\ = 29 or 210.

Actually more detailed information about the structure of Gatx is obtained in [ 12]; in
particular, in the \G\ = 210 case Hypothesis 3. l(iv),(v) hold. The proof of Theorem 3.5
is group theoretic in character. The motivation for looking at such Y and G comes
from there being examples in 'nature'—the \GaiX \ = 210 case occurs in M24 and He.

THEOREM 3.6. (Heiss [4], Ivanov [5]) If\Galx\ = 210, then G = M24 or He, and
if\Galx\ = 2\ then G = 37" Sp6(2).

Theorem 3.6 was obtained making essential use of a computer implementation
of the Todd-Coxeter algorithm. Subsequently this result has been applied to other
problems; so it would be desirable to have a computer-free proof of Theorem 3.6.
Moreover, since the |Ga/x| = 210 case appears (in connection with residues of certain
flags) in other geometries, associated with such sporadic groups as 1, M and Fi'24,
insights gained from a computer-free proof of Theorem 3.6 could be valuable for other
geometries.
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4. Z2-action in action

Recall that our aim is to derive global information about F. Observe, for example,
that it is by no means clear from Hypothesis 3.1 that F is a finite geometry. We
concentrate our attention upon &, the point-line collinearity graph of F. Our strategy
is to fix a point a and 'work out' from a, investigating the ith disc of a,

A l - ( a ) : = U e r 0 | d ( a , j r ) = i}

for / = 1, 2, 3 , . . . , where d(, ) denotes the distance in <S. Since <S is a connected
graph, this approach may ultimately determine F.

Beginning with A](a) we have

LEMMA 4.1.

(i) |A,(a) |=90,
(ii) A! (a) is a Ga -orbit,

(iii) ifb e Ada) and {/} = Fi({a, b\), then ~Gab = Gai (where for H < Ga we
write Hfor HQia)/Q(a)).

PROOF.

(i) We have seen that |F0(/)| = 3 for all / e F^ hence each / e Fi(a) is incident
with two points other than a. By Lemma 3.4 each b e Ax(a) is incident with a
unique / e F,(a), and so it follows that |Ai(a)| = 2|F,(a)|. But |ri(a) | = 45 by
Hypothesis 3.1(i); so |A,(a)| = 90.

(ii) Let / = (AA|Ai4|AA) = line(l,4,5) € T^a) and {b, b') = ro(/)\{a}. Ifc
is an arbitary point in A, (a) and {m} = F] ({o, c}) then since Ga is transitive on Fi (a)
there exists g e Ga withm* = /, and hence cg e F0(/)\{a}. So it suffices to prove that
b and V are in the same Ga -orbit. But choosing X = iAC\B.\B.) = plane 22 e F2(a)
and appealing to Lemma 3.2 gives that r (X) interchanges {b, b'}, and since x (X) e Ga

(because T(X) e Qia) by Hypothesis 3.1(v)) we have (ii).
(iii) By Lemma 3.4, Gab < Gat. Since there exists r (X) e Q{d)\Gb (see part (ii))

we have [Ga, : Gab] = 2 = [Q(a) : Qia) fl Gb]. Hence (iii) holds.

From Lemma 4.1(iii) it follows that if b e Aj(a) and {/} = rxi{a, b}) then the
orbits of Gai, onFi(a) are the same as the orbits of Gah since Qia) acts trivially on Fa.
Thus, by Lemma 3.3, the sets a, (a, /) are Gafc-orbits.

It is convenient at this point to introduce a notational convention which has proved to
be very useful in practice. Suppose that a, b e Fo are collinear, so that Fi ({a, b}) = {/}
for some / € Fi (by Lemma 3.4). Then we shall denote / by a + b or by b + a, but
we will use a + b when looking at / as a line in Ta, and b + a when looking at it as a
line in F*. We also define

Tia + b) = Tib + a) := {r(X) | X e F2 and X * (a + b)).
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Note that \T(a + b)\ = 3 (since each line in A is incident with three planes).
Note that if r(X) G T (a + b) thena * X and b * X, by Hypothesis 3.1 (iii). Hence,

using Hypothesis 3. l(v), r(X) e Q(a)nQ(b). That is, r(X) fixes all lines and planes
incident with either a or b. It is this fact that underlies the importance of T(a + b).

LEMMA 4.2. Let a, b, c G To be distinct points with a and b collinear and b and c
collinear (so that d(a, b) = 1 = d(b, c)) and b + a ^ b + c.

(i) Ifb + ce cti(b, b + a)U a4(b, b + a), then each z(X) e T(b + a) fixes
ro(b + c) pointwise.

(ii) Ifb + c e a2(b, b + a)U a3(b, b + a), then one of the three elements r (X) e
T(b + a) fixes ro(b + c) pointwise, while the other two interchange Ta{b + c)\[b}.

PROOF. Note first that all the ingredients of the situation are preserved by auto-
morphisms of P. Thus, for example, if g G G then b + c G a, (b, b + a) if and only
if bg + cs G «,(£«, bg + ag), and r(X) e T(a + b) fixes Y0(b + c) pointwise if and
only if g~lr(X)g = r(Xs) e T(as + b8) fixes Y0{bg + cs) pointwise. Now, working
in Fb, we may apply an element of Gb and assume without loss of generality that
b + a = (AA\AA\AA). Then T(b + a) = {r(X,), x(X2), r(X3)}, where

Xi = (AA\AA\..), X2 = (AA\..\AA), X3 = (..\AA\AA).

Since the at(b, b + a) are G(,a-orbits, in each case we only need check one orbit
representative as a candidate for b + c (and we can choose it at random).

(i) Ifb+c e al(b,b+a)lakeb + c = (CB\AA\AA),andifb + c G aA{b,b+o)
takeb + c = (CC\CC\CC). Then for each X, the number of entries of 6+c which are
the same as the corresponding entry of X, is 0,2 or 4, whence (i) holds by Lemma 3.2.

(ii) If b + c G a2(b, b + a) take b + c = (AC\AB\CB). By Lemma 3.2,
T{X\) fixes F0(b + c) pointwise and r(X2), r(X3) interchange Y0(b + c)\{b}. If
b + c e a3(b, b + a), take b + c = (BB\AC\BB) and use Lemma 3.2 again.

We now investigate triangles in <£. These are crucial in many respects (see, in
particular, Theorem 4.6).

LEMMA4.3. Let{a,b,c}beatrianglein&,andputrl([a,b}) = [m},ri({b, c}) =
{/} and Ti({a, c}) = {k}. Then either

(i) a, b, c, m, I, k e Txfor some X e T2, or
(ii) m G a4(a, k), I G a4(b, m) andk € a4(c, I).

PROOF. We assume that (ii) does not hold and show that (i) does. If any two of m,
I and k are equal, then this line is incident with all of a, b and c, and by Lemma 3.4 it
is the unique line incident with any pair of these points. So m = / = k, and (i) holds
with any choice of X e T2{m). So we may suppose that k, I and m are all distinct.
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In view of our supposition that (ii) does not hold, we may assume that / g a4 (b, m).
Therefore / e at(b, m) U ot2(b, m) U a3(b, m). Suppose / e a2(b, m) U as(b, m).
Then appealing to Lemma 4.2(ii) yields the existence of an element r(X) e T(m)
with T(X) interchanging ro(l)\b. Thus ro(/) = {b,c,crm}. Furthermore, x{X)
fixes k as well as /, since r(X) e Q(a) D Q(b), and since c e F0(fc) it follows that
czm £ ro(k) also. Hence, using Lemma 3.4 and the fact that c ^ cHX\

a contradiction. So / e ax(b,m), which implies that l,m e F^X) for some X e
r2(b). Hence a, b, c e Tx by the string condition Hypothesis 3.1(iii), and then, by
Hypothesis 3.1(ii) and Lemma 3.4, it follows that k e Fx also. So (i) holds and the
lemma is proved.

Triangles in # which satisfy (ii) of Lemma 4.3 will be called a4-triangles.
InLemma4.1 we have learnt all there is to know about A i (a); so now we focus upon

A2(a). Let c € A2(a) (that is, d(a, c) = 2). Then there exists b € A{(a) n Aj(c),
and so we have lines b + a and b + c (in Fft). Observe, using Lemma 4.1(iii) (with
a and b interchanged), that Gab = Gbb+a (where Gbb+a = Gb/Q(b)). Thus, because
we will only be interested in Ga -orbits, we want to know for which i do we have
b + c e cti(b, b + a). Now i = 1 is not possible since it would mean that b + c
and b + a are both incident with some X e F2, which leads to a, c e Fx, and then
d(a, c) = 1 by Hypothesis 3.1(ii). We now take a closer look at the case / = 2, and
begin by denning

Al
2(a):= {c € A2(a) \ there exists b e A, (a) n A,(c) with b + c e a2(b, b + a)}.

LEMMA 4.4. A\(a) is a Ga-orbit.

PROOF. Let cu c2 e Al
2(a), and for each / = 1, 2 let bt € Ai(a) n Ai(c,) with

bt + Cj € a2(bj, bj + a). In view of Lemma 4.1(ii) there exists g e Ga with b\ = bu

and so replacing c2 by c\ we may suppose that b\ = b2 = b (say). Then we have
be Aiia) D A{(ci) f) A ^ ) . By similar reasoning, since a2(b, b + a) is aGi,o-orbit
we may further suppose that b + C\ = b + c2. From Lemma 4.2(ii) there exists
T(X) e T(b + a) such that r(X) interchanges T0(b + ct)\{b} = {cu c2). Hence, as
T(X) e Ga, we have shown that C\ and c2 are in the same Ga-orbit. Since it is clear
that c e A\{a) and g e Ga imply that c8 e Al

2(a), the lemma holds.

Fore e A^(a) we put {a, c}L = Ai(a) nA,(c).

THEOREM 4.5. Let c e A\(a). Then \{a, c}x| = 3.
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Apart from being useful for the analysis of other configurations in # , Theorem 4.5
enables us to calculate lA^a)!. We do this by counting in two ways the number of
pairs (b, c) with c e A2(a) and b e A^a) D Ai(c) with b + c e a2(b, b + a). By
Theorem 4.5 this number is 3| Aj(a)|, since c must be in A\{a), and for each c there
are 3 possibilities for b. On the other hand there are |A](a)| possibilities for b, for
each of these there are \a2{b, b + d)\ possibilities for the line b + c, each giving 2
possibilities for c. Thus

3\A1
2(a)\=2\A1(a)\\a2(b,b + a)\,

which yields \A\(a)\ = (2 x 90 x 24)/3 = 1440.
Moreover, knowing [a, c}L assists us in identifying Gac (as a subgroup of Ga),

which is itself important for investigating Ga -orbits of A3(a).

PROOF OF THEOREM 4.5. (outline). Fix c e A\(a), and let b e {a, c}± be such
that b + c e a2(b,b + a). Inspection of A = Tb reveals that there is a unique line
I e al(b,b + a) which is also adjacent to b + c in the coplanarity graph. Then there
exists X e r 2 such that l,b + a e Tx, and since Fx = A it follows that all the points
in ro(/) are in A] (a). Similarly they are in A^c) also. Thus

(4.5.1) (A, (6) U {b}) n {a, c}1 = {b0, bub2} = To(/)

where / e Fi and b0 = b.
We now assume the theorem is false and argue for a contradiction. Hence, (4.5.1)

implies that there exists d e [a, c}x with d(b, d) = 2. Thus we have the following
situation.

Kb = b0

Our next step is to rule out the possibility that a + d e a4(a, a + b). With this done,
symmetry gives us

(452) a + d e a2(a,a + b)Ua3(a,a + b) and
( ' ' c + d €

Put T(a + b) = {TI, T2, T3}; by Lemma 4.2(ii) we may suppose our notation chosen
so that t\ fixes c. We next prove that

(4.5.3) r, fixes d.
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The key observation that leads to the desired contradiction is contained in

Let /x € T(a + d). Then either /x interchanges T0(a + fr,)\{a}
(4.5.4) for all i = 0, 1, 2, or else /x fixes ro(a + b,)\{a] pointwisefor all

i =0 ,1 ,2 .

Now we bring the above information to bear on Ta. Letting a + b = (1,4, 5) we may,
without loss of generality since T(a + b) is a Gaa+(,-conjugacy class, choose xx — 5.
(For compactness of notation we will refer to planes and lines in Fa via the labelling
in Figure 1.) Now since a + b0, a + b\ and a + b2 are contained in a plane,

the three possibilities for [a + bQ, a + b\, a + b2] are:
, , „ . (a) {(1,4,5), (1,10, 11), (1,12, 13)},
( ' ' } (b) {(1, 4, 5), (4, 16, 20), (4, 17, 21)} and

(c) {(1,4,5), (5,14,19), (5,15,18)}.

Combining (4.5.3) and Lemma 3.2, we can list the possibilities for a + d.

(i) Ifa + de «2(a,a + b), thena+de {(14,23,42),
(14,45, 27), (19, 28, 38), (19, 34, 31), (15, 44, 25),

(4.5.6) (15, 22, 41), (18, 29, 37), (18, 35, 33)}.
(ii) Ifa + d e a3(a, a + b), then a + de {(7, 24, 32),
(7, 26, 30), (9, 36, 43), (9, 39, 40)}.

And here is the contradiction.

(4.5.7) All possibilities in (4.5.5) and (4.5.6) contradict (4.5.4).

Suppose a + d = (14, 23, 42) (the first possibility in (4.5.6)(i)). Then T(a + d) =
{T(14), T(23), T(42)}. By Lemma 3.2 r(14) fixes T0((l, 4, 5))\{a} pointwise and
interchanges both T0((l, 10, ll))\{a} and ro((4,16, 20))\{a}. Hence, by (4.5.4),
(4.5.5)(a) and (b) cannot hold. However, using Lemma 3.2 yet again, T(23) fixes
To((5, 14, 19))\{a} pointwise and interchanges T0((l, 4, 5))\{a}, and so (4.5.4) also
rules out (4.5.5)(c). Therefore we conclude that a + d =£ (14, 23,42).

Similar considerations eliminate all the possibilities for a + d in (4.5.6), and
complete the proof of Theorem 4.2.

Recall that there are two (very different) geometries which satisfy Hypothesis 3.1,
yet no differences have come to light so far. Consider the following subset of A2(a):

Al(a):= {c 6 A2(a) | there exists b € A](a) D A](c) with b + c € a3(b, b + a)}.

Let c e Aj(a) and let b e AY(a) (1 Aj(c) be such that b + c e a3(b, b + a). If there
exists b' G A[(ft) D A](a) n Aj(c), then we have triangles {a, b, b'} and {c, b, b'}.
Becauseft+c € a3(b,b+a), at least one of these must bean a4-triangle. In particular,
if <£ has no a4-triangle, then we must have A] (b) D A{ (a) n A! (c) = 0. The presence
or otherwise of a4-triangles turns out to be critical; as an example we have
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THEOREM 4.6. (Rowley [11]) If there exists an aA-triangle in &, then G = M24

(and F is determined).

Considerable progress has already been made in analysing <S when it possesses no
a4-triangles.
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