Bull. Austral. Math. Soc. Vol. 46 (1992) [361-365]

A NOTE ON ANALYTIC CAPACITY

NGUYEN XUAN UY

Let K be a 2-dimensional Cantor set. In this note we prove, in two cases, the analytic capacity and the continuous analytic capacity of K are equal.

1. INTRODUCTION

Let K be a compact set of the complex plane C and let $U = C \setminus K$. Let $H^{\infty}(U)$ denote the algebra of all bounded analytic functions on U and let A(U) denote the algebra of those functions in $H^{\infty}(U)$ that have continuous extentions throughout the entire plane. The analytic capacity and the continuous analytic capacity of K are defined respectively by

$$\begin{split} \gamma(K) &= \sup\{|f'(\infty)| : f \in H^{\infty}(U), |f|_U \leq 1\},\\ \alpha(K) &= \sup\{|f'(\infty)| : f \in A(U), |f|_{\mathbf{C}} \leq 1\}. \end{split}$$

If E is an arbitrary subset of C, then $\gamma(E)$ (respectively $\alpha(E)$) is defined as the supremum over $\gamma(K)$ (respectively $\alpha(K)$) for all compact $K \subseteq E$. It is clear that both α and γ are monotonic set functions with $\alpha(E) \leq \gamma(E)$ for arbitrary set E and $\alpha(E) = \gamma(E)$ if E is open. It is also true that $\alpha(K) = \gamma(K)$ if K is bounded by a finite number of disjoint analytic Jordan curves. (See [4, Chapter 1, Section 4]). In general, however, these two quantities are not commensurate. For example, if K is a circle or a line segment, then $\gamma(K) > 0$ by the Riemann mapping theorem but by Morera's theorem $\alpha(K) = 0$. We refer to [2, 4, 7], and [9] for more results concerning analytic capacity. For our purpose, we shall mention the following results.

In the sequel, $\Delta(z,r)$ will denote an open disk of radius r and center z, and A(U) is said pointwise boundedly dense in $H^{\infty}(U)$ if for each $f \in H^{\infty}(U)$, there exists a sequence $\{f_n\}$ in A(U) such that $\sup_n ||f|| < \infty$ and $f_n(z)$ converges to f(z) for each $z \in U$.

THEOREM 1. (Gamelin and Garnett [3].) Let K be a compact set of the complex plane and let $U = C \setminus K$. Then the following are equivalent.

(i) A(U) is pointwise boundedly dense in $H^{\infty}(U)$.

Received 1st November, 1991.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 \$A2.00+0.00.

(ii) There exist constants r > 1 and A > 0 such that for all $\delta > 0$ sufficiently small,

$$\gamma(\Delta(z,\delta)\cap K)\leqslant Alpha(\Delta(z,r\delta)\cap K),\qquad z\in\partial U.$$

THEOREM 2. (Davie [1]) If A(U) is pointwise boundedly dense in $H^{\infty}(U)$, then for every $f \in H^{\infty}(U)$, there exists a sequence $\{f_n\}$ in A(U) with $\sup_n ||f_n|| \leq ||f||$ and $f_n(z) \to f(z)$ pointwise.

REMARK: Suppose A(U) is pointwise boundedly dense in $H^{\infty}(U)$. Then the Ahlfors function g for K will be a pointwise limit of a sequence $\{g_n\}$ in A(U) with norms bounded by 1. This implies $g'_n(\infty) \to g'(\infty)$ and $\alpha(K) = \gamma(K)$.

2. ANALYTIC CAPACITY AND CANTOR SETS

It is known that if K is any compact subset of a rectifiable curve, then $\alpha(K) = 0$ (see [4, p.66]) but $\gamma(K) = 0$ if and only if K has a zero arc length (see [6]). In view of these results, we consider analytic capacity of 2-dimensional Cantor sets K defined as follows and examine the relationship between $\alpha(K)$ and $\gamma(K)$.

Let $\{\lambda_n\}$ (n = 0, 1, 2, ...) be a decreasing sequence of positive numbers with $\lambda_0 = 1$ and $\lambda_n < \lambda_{n-1}/2$ for n = 1, 2, ... Let $L_0 = [0,1]$, and at each stage $n \ge 1$, construct L_n from L_{n-1} by replacing each component of L_{n-1} by its two endmost intervals of length λ_n . Let $Q_n = L_n \times L_n$. Then Q_n is a union of 4^n squares $Q_{n,j}$ $(j = 1, 2, ..., 4^n)$. Let $K = \cap Q_n$ and $K_{n,j} = K \cap Q_{n,j}$. We will prove $\alpha(K) = \gamma(K)$ in two cases. First, we need the following theorem.

THEOREM 3. Let K be a Cantor set and let $U = \mathbb{C}\setminus K$. Then A(U) is pointwise boundedly dense in $H^{\infty}(U)$ if and only if there exists a constant B > 0 such that for all n sufficiently large,

(1)
$$\gamma(K_{n,j}) \leq B\alpha(K_{n,j}), \quad 1 \leq j \leq 4^n.$$

PROOF: First, observe that if two compact sets K and K' are separated by a straight line L that is, if K is contained in one open half-plane defined by L and K' is contained in the other open half-plane, then there exists an absolute constant C > 0 such that

(2) $\alpha(K \cup K') \leq C(\alpha(K) + \alpha(K'))$

and

(3) $\gamma(K \cup K') \leq C(\gamma(K) + \gamma(K')).$

Analytic capacity

Relation (2) follows from [2, Chapter 8, Corollary 12.8]. To obtain (3), let $\{K_n\}$ and $\{K'_n\}$ be two sequences of compact sets that are also separated by L and each has a boundary consisting of a finite number of pairwise disjoint analytic Jordan curves. We will also assume that K_n and K'_n decreases to K and K' respectively. Under this assumption $\alpha(K_n) = \gamma(K_n)$, $\alpha(K'_n) = \gamma(K'_n)$, and $\alpha(K_n \cup K'_n) = \gamma(K_n \cup K'_n)$. Therefore, by (2) $\gamma(K_n \cup K'_n) \leq C(\gamma(K_n) + \gamma(K'_n))$ and (3) is obtained by letting $n \to \infty$.

Now suppose A(U) is pointwise boundedly dense in $H^{\infty}(U)$. Take *n* sufficiently large so that $\delta = 2\lambda_n$ is sufficiently small. Let $z \in K_{n,j}$. Then $K_{n,j} \subseteq \Delta(z, \delta)$ and by Theorem 1,

$$egin{aligned} &\gamma(K_{n,j})\leqslant\gamma(\Delta(z,\delta)\cap K)\ &\leqslant Alpha(\Delta(z, au\delta)\cap K). \end{aligned}$$

Furthermore, since $\Delta(z, r\delta)$ intersects at most N $K_{n,j}$'s, where N depends only on r, we may apply (2) repeatedly to obtain $\alpha(\Delta(z, r\delta)) \leq NC^N \alpha(K_{n,j})$. Thus (1) holds with $B = NAC^N$.

Conversely, suppose (1) holds for n sufficiently large and take $\delta > 0$ sufficiently small so that $\lambda_{n+1} \leq \delta < \lambda_n$. Then $\Delta(z, \delta)$, $z \in K$, can intersect at most 9 $K_{n,j}$'s. Apply (3) repeatedly to obtain

$$\begin{split} \gamma(\Delta(z,\delta)\cap K) &\leq 9C^9\gamma(K_{n,j}) \\ &\leq 144C^{25}\gamma(K_{n+2,j}) \\ &\leq 144AC^{25}\alpha(K_{n+2,j}) \\ &\leq 144AC^{25}\alpha(\Delta(z,\delta)\cap K)) \end{split}$$

because $\Delta(z, \delta) \cap K$ contains some $K_{n+2,j}$. Then, it follows from Theorem 1 that A(U) is pointwise boundedly dense in $H^{\infty}(U)$.

THEOREM 4. If K is a Cantor set, then $\alpha(K) = \gamma(K)$ in each of the following cases.

- (i) K has a positive plane Lebesgue measure.
- (ii) There exists a constant $\rho > 0$ such that $\lambda_{n+1}/\lambda_n = \rho$ for all n sufficiently large.

PROOF: (i) Let |E| denote the Lebesgue measure of a measurable set E. Define

$$f_{n,j}(\zeta) = \iint_{K_{n,j}} \frac{dx \, dy}{z-\zeta} \qquad z = x + iy.$$

N.X. Uy

Then $f_{n,j}$ is continuous on C, $f_{n,j}(\infty) = 0$, $f'_{n,j}(\infty) = -|K_{n,j}|$ and $||f_{n,j}|| \leq 2\pi^{1/2} |dK_{n,j}|^{1/2}$. (See [4, pp.1-3]). Thus $\alpha(K_{n,j}) \geq 2^{-1}\pi^{-1/2} |K_{n,j}|^{1/2}$. On the other hand, since $|K| = 4^n |K_{n,j}|$ and $K_{n,j}$ is contained in a circle of radius 2^{-n} , we obtain

$$\begin{split} \gamma(K_{n,j}) &\leq 2^{-n} \\ &= |K|^{-1/2} |K_{n,j}|^{1/2} \\ &\leq 2\pi^{1/2} |K|^{-1/2} \alpha(K_{n,j}). \end{split}$$

By Theorem 3 and the remark that follows Theorem 2, we have $\alpha(K) = \gamma(K)$.

(ii) If $0 < \rho \le 1/4$, then $\alpha(K) = \gamma(K) = 0$. For the case $0 < \rho < 1/4$, this result follows from the fact that K can be enclosed by a finite number of rectifiable curves of total length arbitrary small. The case $\rho = 1/4$ was proved by Garnett [5]. Thus we may assume $\rho > 1/4$. First, we shall show that in this case $\alpha(K_{n,j}) > 0$ for all n and j.

Let μ be a positive Borel measure of compact support. The Newtonian potential of μ is defined by

$$U_{\mu}(\zeta) = \int rac{d\mu(z)}{z-\zeta} \qquad \zeta \in {f C},$$

and the Newtonian capacity of a set E is defined by

$$\nu(E) = \sup\{\mu(E), \text{ supp } (\mu) \subseteq E, U_{\mu} \text{ is continuous and } U_{\mu} \leq 1\}.$$

Ohtsuka [8] proved $\nu(E) > 0$ if and only if $\sum 4^{-n}/\lambda_n < \infty$. Thus, if $\rho > 1/4$ and $\lambda_{n+1}/\lambda_n = \rho$ for *n* sufficiently large, say $n \ge p$, then $\nu(K) > 0$. Then, it is also true that $\alpha(K) > 0$ because $\nu(K) \le \alpha(K)$ (see [4, p.71]). Since α and γ are translation invariant and homogeneous of degree 1, this implies $\alpha(K_{n,j}) > 0$ for all *n* and *j*, and furthermore, for $n \ge p$,

$$\begin{aligned} \alpha(K_{n,j}) &= \rho^{n-p} \alpha(K_{p,1}) \\ \gamma(K_{n,j}) &= \rho^{n-p} \gamma(K_{p,1}) \\ \gamma(K_{n,j}) &= \frac{\gamma(K_{p,1})}{\alpha(K_{p,1})} \alpha(K_{n,j}). \end{aligned}$$

which implies

This completes the proof of (ii).

REMARK: Cases (i) and (ii) represent the two extreme structures of Cantor sets. In case (i), each group of 4 $K_{n,j}$'s cluster rapidly together while in case (ii) they are scattered from each other. For this reason, it seems likely that $\alpha(K) = \gamma(K)$ for any Cantor set K.

0

[4]

Analytic capacity

References

- A.M. Davie, 'Bounded approximation and Dirichlet sets', J. Funct. Anal. 6 (1970), 460-467.
- [2] T.W. Gamelin, Uniform algebras (Prentice Hall, Englewood Cliffs, New Jersey, 1969).
- [3] T.W. Gamelin and J. Garnett, 'Constructive techniques in rational approximation', Trans. Amer. Math. Soc. 143, 187-200.
- [4] J. Garnett, Analytic capacity and measure, Lecture Notes in Math. 297 (Springer-Verlag, Berlin, Heidelberg, New York, 1972).
- J. Garnett, 'Positive length but zero analytic capacity', Proc. Amer. Math. Soc. 21 (1970), 696-699.
- [6] D.E. Marshall, 'Removable sets for bounded analytic functions', in *Linear and complex analysis-199 Research Problems*, Lecture Notes in Math., 1384, pp. 485–490 (Springer-Verlag, Berlin, Heidelberg, New York, 1984).
- [7] T. Murai, A real variable method for the Cauchy transform and analytic capacity, Lecture Notes in Math., 1037 (Springer-Verlag, Berlin, Heidelberg, New York, 1988).
- [8] M. Ohtsuka, 'Capacité d'ensembles de Cantor généralisés', Nagoya Math. J. 11 (1957), 151-160.
- [9] A.G. Vitushkin, 'Analytic capacity of sets and problems in approximation theory', Uspekhi Mat. Nauk 22 (1967), 141-199.

Department of Mathematics and Computer Science California State University, Los Angeles Los Angeles CA 90032 United States of America