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Abstract

The standardized root mean squared residual (SRMR) is commonly reported to evaluate approximate fit
of latent variable models. As traditionally defined, SRMR summarizes the discrepancy between observed
covariance elements and implied covariance elements. However, current applications of latent variable
models often include additional features like overidentified mean structures and covariates, to which the
traditional SRMR definition is not applicable. To date, SRMR extensions for models with covariates have
received limited attention. Nonetheless, mainstream software provide SRMR for models with covariates, but
values differ based on model specification and differ across programs. The goal of this paper is to formalize
SRMR definitions for models with covariates. We develop possible SRMR definitions corresponding
to different model specifications with covariates, discussing the advantages and disadvantages of each.
Importantly, some SRMR definitions are susceptible to confounding misfit and model size such that SRMR
values systematically decrease and suggest better fit when covariates are present, even if covariates have null
effects. The primary conclusion is that there may not be a single unifying SRMR definition for covariates,
but practically, researchers reporting SRMR with covariates should be aware (a) which definition is being
used and (b) which information is and is not included in the particular definition.

Keywords: Approximate fit; Conditional models; Covariates; Latent curve model; Latent growth model; Latent variable model;
Model fit

1. Introduction

The standardized root mean squared residual (SRMR) has been characterized as a standardized effect
size for evaluating the discrepancy between a model-implied covariance matrix and the covariance
matrix from the observed data in structural equation models (Maydeu-Olivares, 2017; Maydeu-Olivares
et al., 2018; Saris et al., 2009). Several recent sources have endorsed SRMR over competing fit indices
like RMSEA or CFI based on advantages like a consistent interpretation that is less dependent on model
characteristics (Shi et al., 2018; Ximénez et al., 2022), strong performance with small samples or small
degrees of freedom (Pavlov et al., 2021; Shi et al., 2022), and the ability to put an interval around the
index to account for sampling variability (Maydeu-Olivares et al., 2018; Ogasawara, 2001; Shi et al.,
2020). SRMR also tends to be the least redundant with other commonly reported metrics (Hu & Bentler,
1998; Browne et al., 2002), and commonly cited resources for model fit evaluation have suggested a “two-
index strategy” of reporting SRMR in conjunction with another index like RMSEA, CFI, Gamma Hat,
or McDonald’s Centrality Index to minimize classification error rates (Hu & Bentler, 1999).

Although recent and classical research has extolled several benefits of SRMR, a potential limitation is
that SRMR has not been rigorously studied—or formally defined—for some common types of structural
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equation models. The original definition of SRMR is valid for factor analyses where the mean structure
is saturated or absent and where no covariates are present (Jöreskog & Sörbom, 1981; Bentler, 1995);
however, the classical version of SRMR is not suitable for models that are interested in aspects beyond
the covariance structure. For instance, mean structure models are the norm in most current applications
because accommodating common missing data techniques requires a mean structure (e.g., Enders,
2006, p. 329), the fit of which may not be perfect even if the mean structure is saturated (Asparouhov &
Muthén, 2018, p. 6). The traditional SRMR definition is insensitive to potential mean structure misfits
and only incorporates covariance structure misfit (e.g., Leite & Stapleton, 2011; Wu & West, 2010).

Previous work has extended definitions of SRMR to include mean structures such that discrepancies
between the observed and model-implied means can be incorporated into the index (e.g., Asparouhov
& Muthén, 2018). However, other model features have not received much attention. In particular,
covariates are present in latent growth models, multiple indicator multiple cause models (MIMIC),
and some measurement invariance models but there is little formal study of the potential implications
of covariates on SRMR definitions. Furthermore, covariates pose unique challenges related to the
specification of covariates (i.e., fixed versus stochastic) and which model-implied moments are used
(i.e., marginal versus conditional on covariates; Vonesh et al., 1996). As will be discussed shortly,
these decisions impact which variables count as part of “the model” and can alter the numerator
and/or the denominator of the SRMR calculation. Practically, this is relevant because different covariate
specifications corresponding to the same conceptual model can have different SRMR values and
implications for data-model fit.

Despite limited formal examination of SRMR extensions for models that include covariates, latent
variable model software like Mplus and lavaan currently output SRMR for models with covariates. As
discussed in this paper, SRMR values in software output (a) do not agree across programs, (b) employ
different SRMR definitions depending on which options are selected, or (c) may attempt to correct out
covariate information with varying success.

The intention of this paper is therefore to (a) highlight the complexities of defining SRMR with
covariates, (b) consider different possible SRMR definitions when covariates are present, and (c) better
understand the advantages and disadvantages of different definitions. The ultimate goal is to help
researchers make more informed and more accurate decisions when using SRMR to evaluate the
approximate fit of their models. This issue is particularly timely because software programs are currently
providing users with SRMR values even though such values are not well understood or may not align
with the user’s expectations.

To outline the structure of the paper, Section 2 provides a brief example to motivate the nature of
the issue. Section 3 overviews SRMR for covariance structure models and discusses recent extensions
to mean structures. Section 4 reviews structural equation models with covariates and factors that
complicate extensions of SRMR to these models. Section 5 outlines different ways that SRMR can be
defined with covariates and how different model specifications impact what is included in different
SRMR definitions. Section 6 provides an empirical application of a latent growth model with covariates
to highlight how different versions of SRMR behave. A small simulation also demonstrates that the
patterns in the empirical example hold when the population model is known. Section 7 concludes with
limitations and future directions.

2. Motivation

To motivate the nature of the problem, consider data generated in Mplus Version 8.10 from the following
unconditional linear growth model with four repeated measures,

yit = (0.5+ ζ0i)+(1.0+ ζ1i)×Timet + eti

ei ∼N (04,diag [.25,.75,1.25,1.75])

ζi ∼N ([0
0], [

1.0 0.1
0.1 0.2]) (1)
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Figure 1. Average SRMR values across replications for a latent growth model with four repeated measures fit with default options

in lavaan and Mplus. The population model has no covariates, but null covariates were added. The SRMR value systematically

decreases as a function of covariates, even though the covariates explain no variance and have no effect.

where yit is the outcome from person i at time t, ζ0i is a person-specific latent intercept, ζ1i is a person-
specific latent slope, and eti is within-person error for person i at time t. Each of the 500 simulated
datasets, i = 1, . . ., 1000.

Five models are fit to each generated dataset using homoskedastic error variances to underparameter-
ize the model so that fit is not perfect. The first model correctly specifies no covariates. The remaining
four models add 1, 2, 3, or 4 time-invariant covariates as predictors of the latent intercept and slope,
but each covariate is known to have no effect on the population. Because the null covariates do not
explain any variance, the model with and without covariates is functionally the same and SRMR should
seemingly not improve.

Figure 1 shows SRMR averaged across replications with default settings in Mplus Version 8.10
(Muthén & Muthén, 1998–2017) and default settings in lavaan Version 0.6.17 (Rosseel, 2012).
Importantly, SRMR values do not agree, and fit appears to steadily improve as more null covariates
are added, counterintuitively suggesting better fit despite null covariates effects.

3. Overview of residual fit indices

3.1. Likelihood ratio test
Consider a population of random variables with mean μ and population covariance Σ. A random sample
of size N from this population has a data matrix Y with sample mean y and sample covariance S. A
structural equation model proposed to model relations between variables in Y has a model-implied
mean structure μ(ϑ) and a model-implied covariance structure Σ(ϑ) where ϑ is the fundamental
parameter vector containing the f freely estimated parameters featured in the model (Skrondal &
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Rabe-Hesketh, 2004). With maximum likelihood estimation, parameter estimates for ϑ are found by
minimizing the maximum likelihood discrepancy function,

FML (ϑ) = tr [SΣ−1 (ϑ)]+ ln ∣Σ(ϑ)∣− ln ∣S∣+ [y−μ(ϑ)]′Σ−1 (ϑ)[y−μ(ϑ)]−P. (2)

P corresponds to the number of variables in the model, dimensions of S and Σ(ϑ) are each P×P, and
the dimensions of y and μ(ϑ) are each P×1.

To test whether the model-implied moments exactly reproduce the sample moments, a likelihood
ratio test statistic can be defined by TML = N ×FML (ϑ̂) where N is the total sample size and FML (ϑ̂) is
the value of the discrepancy function evaluated at the maximum likelihood estimates of the parameters,
ϑ̂. Under the assumption of multivariate normality, TML is asymptotically distributed χ2

P∗−f where P∗ =
0.5P(P+3), the number of non-duplicated entries in the augmented covariance-mean matrix.

Though valued for its clear definition and inferential nature, researchers have noted that satisfying
an exact fit test like TML is not always a necessary condition for a model to be useful (Bentler & Bonett,
1980; Hu et al., 1992; MacCallum, 2003). That is, models are often intended to be approximations from
the onset, so tests of exact fit may be expected to be false a priori (e.g., Browne & Cudeck, 1993).
Consequently, approximate fit indices like RMSEA, CFI, and SRMR have become popular supplemental
metrics to summarize the practical magnitude of misspecifications throughout the model (Jöreskog &
Sörbom, 1982).

Whereas TML is interested in the presence of misfit between the model-implied and observed
moments, approximate fit indices are interested in quantifying the magnitude of the discrepancy
between the model-implied and observed moments (e.g., McNeish & Wolf, 2023) and operate more
like effect sizes for model misspecification (Kelly & Preacher, 2012). Commonly reported approximate
fit indices like RMSEA and CFI are transformations of TML, but SRMR is unique in that it is based
on the model residuals (Yuan, 2005) where a “model residual” is the difference between a model-
implied moment and an observed moment. SRMR can therefore have unique advantages relative to
other indices and can provide non-redundant information. The remainder of this paper focuses on
properties, clarifications, or extensions of SRMR.

3.2. SRMR for covariance structure models
Jöreskog and Sörbom (1982) first proposed the root mean residual (RMR) index based on the model
residuals, which summarizes the difference between S and Σ(ϑ̂) with a single value. RMR is unit
dependent and can be unintuitive to interpret, so Bentler (1995) proposed the traditional classic
definition of SRMR to standardize the RMR such that,

SRMR(S,Σ̂) =
√

δ1

0.5P(P+1) . (3)

and

δ1 =∑vech(D−1 (S− Σ̂)D−1)2 (3a)

=∑
j∈P

∑
k∈j

(
sjk − σ̂jk√sjjskk

)
2

(3b)

=∑
j∈P

∑
k∈j

(
sjk√sjjskk

−
σ̂jk√sjjskk

)
2

(3c)

=∑
j∈P

∑
k∈j−1

(
sjk√sjjskk

−
σ̂jk√sjjskk

)
2

+∑
j∈P

( sjj

sjj
− σ̂jj

sjj
)

2

(3d)
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=∑
j∈P

∑
k∈j−1

(rjk −
σ̂jk√sjjskk

)
2

+∑
j∈P

(1− σ̂jj

sjj
)

2

(3e)

For d = diag(S)1/2, D = IP ⊙d, Σ̂ = Σ(ϑ̂), and rjk is a correlation element sjk/djdk for j ≠ k.
Equations 3b and 3c illustrate that the residuals, sjk − σ̂jk, are scaled according to the product of the

sample variances (sjj and skk) such that the denominator always consists of elements of S, even when
the numerator is an element of Σ̂. Correspondingly, equation 3e shows that the minuend is a sample
standardized metric (standardized covariance, rjk, or standardized variance, 1) because the numerator
is divided by diagonal terms from the same matrix. However, subtrahend of equation 3e is the model-
implied parameter estimate scaled by the product of the jth and kth sample standard deviation or the jth
sample variance, respectively. Consequently, the model-implied elements are not necessarily completely
standardized whenever the variances are not saturated because sjj ≠ σ̂jj and skk ≠ σ̂kk, which may occur in
a growth model (e.g., if residual variances are constrained to equality across repeated measures).1 The
denominator in equation 3 is 0.5P(P+1), which is the number of unique diagonal and off-diagonal
elements of the covariance matrix.

The SRMR expressed in equation 3 only considers elements from the sample and model-implied
covariance matrix but includes no information about the mean structure. It is, therefore, suitable for
factor analysis where mean structures are absent or saturated, but not for models with overidentified
mean structures like latent growth models (Leite & Stapleton, 2011; Wu & West, 2010). Structural
equation model applications frequently feature an overidentified mean structure, so an extension of
SRMR that incorporates the model residuals between the model-implied means and sample means (i.e.,
y−μ(ϑ̂)) is desirable. Such an extension is described in the next section.

3.3. SRMR with a mean structure
Define yj as the jth element of y and μ̂j is the jth element μ(ϑ̂) ≡ μ̂. The SRMR for a model with an
overidentified mean structure therefore extends to

SRMR(y,S,μ̂,Σ̂) =
√

δ2

0.5P(P+3)/2
(4)

where

δ2 =∑vech(D−1 (S− Σ̂)D−1)2 +∑d−1(y− μ̂)2 (4a)

=∑
j∈P

∑
k∈j−1

(
sjk − σ̂jk√sjsk

)
2

+∑
j∈P

( sj −σj

sj
)

2

+∑
j∈P

(
yj −μj
√sj

)
2

(4b)

=∑
j∈P

∑
k∈j−1

(
sjk√sjsk

−
σ̂jk√sjsk

)
2

+∑
j∈P

( sj

sj
− σ̂j

sj
)

2

+∑
j∈P

(
yj√sj

− μ̂j√sj
)

2

(4c)

=∑
j∈P

∑
k∈j−1

(rjk −
σ̂jk√sjsk

)
2

+∑
j∈P

(1− σ̂j

sj
)

2

+∑
j∈P

(zj −
μ̂j√sj

)
2

(4d)

Importantly, equation 4a adds a new term ∑d−1(y− μ̂)2 to account for differences between the
observed and model-implied means. The denominator in equation 4 changes to 0.5P(P+3) to incorpo-
rate elements in the mean structure. Like equation 3e, each residual in the minuend of equation 4d is a

1Note that Mplus uses a slightly different definition of SRMR than defined by Bentler (1995); see Equation 129 in Muthen
(2004, p. 23). This is discussed in more detail in Section 3.4.
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sample standardized metric (rjk, 1, or zj) while the subtrahend is the model-implied parameter estimate
divided by the square-root of the product of the jth and kth sample variances, the jth sample variance, or
the jth standard deviation, depending on the residual being standardized. In other words, the elements
of Σ̂ and μ̂ are divided by diagonal elements of S.

Note that the third term in equation 4d corresponding to mean structure residuals is unbounded.
Conversely, the first term corresponding to the covariances is approximately standardized (depending
on the congruence of diagonal elements in S and Σ̂) and will be bounded by a value near 2 (e.g., its
maximum value occurs when the observed correlation is 1 and the model-implied correlation is –1).
When a discrepancy between the covariance and mean structure is summarized by a single value, a large
unbounded misfit in the mean structure may overpower the covariance structure misfit. Conversely, for
large models, there can be many more covariance elements than mean elements and the covariance
elements can wash out the contribution of the mean structure. It can therefore be prudent to separately
examine the contribution of the covariance structure misfit and mean structure misfit (e.g., Yuan et al.,
2019). The lavResiduals function in lavaan will provide separate SRMR values for all elements
combined, only the covariance elements, and only the mean elements.

3.4. Alternative standardization methods
Whereas equations 3 and 4 standardize with sample standard deviations (sometimes called Bentler
standardization), an alternative approach is to standardize model-implied moments by model-implied
standard deviations rather than observed standard deviations (sometimes referred to as Bollen stan-
dardization; Bollen, 1989). With this standardization, the numerator in equation 3 would instead be

∑
j∈P

∑
k∈j
(sjk(s1/2

jj s1/2
kk )

−1
− σ̂jk(σ̂1/2

jj σ̂1/2
kk )

−1
)

2
. This transforms the observed and implied covariance matrices

to correlation matrices prior to taking the difference, which removes potential contributions of the
diagonal terms because they will always be 1 in each matrix. Consequently, the index derived from this
standardization is typically referred to as a separate index (the correlation root mean square residual;
CRMR, Bollen, 1989) rather than SRMR.

There are also proposed definitions that mix Bollen standardization for the covariance and mean
elements with Bentler standardization for the variance elements so they are not excluded (this definition
is employed by default in Mplus, Asparouhov & Muthén, 2018). Specifically,

SRMR∗ (y,S,μ̂,Σ̂) =
√

δ3

0.5P(P+3) (5)

where

δ3 =∑
j∈P

∑
k∈j−1

⎛
⎝

sjk√sjsk
−

σ̂jk√
σ̂jσ̂k

⎞
⎠

2

+∑
j∈P

( sj −σj

sj
)

2

+∑
j∈P

⎛
⎝

yj√sj
− μj√

σ̂j

⎞
⎠

2

(5a)

=∑
j∈P

∑
k∈j−1

⎛
⎝

sjk√sjsk
−

σ̂jk√
σ̂jσ̂k

⎞
⎠

2

+∑
j∈P

( sj

sj
− σ̂j

sj
)

2

+∑
j∈P

(
yj√sj

− μ̂j

σ̂j
)

2

(5b)

=∑
j∈P

∑
k∈j−1

(rjk − ρ̂jk)
2 +∑

j∈P
(1− σ̂j

sj
)

2

+∑
j∈P

(zj −z(μ̂j))2 (5c)

Notice that the first and third terms of equation 5a are divided by elements of Σ̂ rather than S as in
equations 3 and 4 but the middle term of equation 5a continues to divide by an element of S.
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3.5. SRMR for models with covariates
As shown in equations 3–5, SRMR definitions heavily rely on the definition of P, which is prominently
featured in the denominator of each definition. For models without covariates, P is unambiguous.
However, when covariates are present, the situation becomes more opaque because covariates may or
may not count as part of P. Additionally, models with covariates will have marginal and conditional
structures depending on how a researcher wishes to treat the variance explained by covariates, which
may complicate SRMR definitions.

Potential challenges of SRMR with covariates have been considered, but have yet to be more
rigorously embraced. Section 4 overviews details and properties of models with covariates needed to
discuss different possible SRMR definitions; definitions are then provided in Section 5.

4. Structural equation models with a mean structure and covariates

A general structural equation model with a mean structure and covariates can be written as,

yi = ν+Ληi +Kxi +εi. (6)

where yi is a P-dimensional vector of manifest outcome variables for person i (i = 1, . . . ,N), ν is a
P-dimensional vector of manifest outcome intercepts, Λ is a P ×M matrix of factor loadings for M
the number of latent variables, ηi is an M-dimensional vector of latent variables, K is a P×C matrix
of parameters associating the C-dimensional xi vector of manifest covariates for person i that directly
predict to the manifest outcome yi, and εi is a P-dimensional vector of residuals for person i such that
εi ∼NP (0,Θ).

The structural model for the latent variables can then be written as

ηi = α+Bηi +Γxi + ζi. (7)

where α is an M-dimensional vector of latent variable means, B is an M-dimensional square matrix
of structural paths between latent variables, Γ is an M × C matrix of parameters associating the
C-dimensional xi vector of manifest covariates for person i to the latent variables ηi, and ζi is an
M-dimensional vector of disturbances for the latent variable for person i such that ζi ∼NM (0,Ψ).

The fundamental parameters vector containing the unique parameters from equations 6 and 7 is
ϑ = [ν′,vec(Λ)′,vec(K)′,vech(Θ)′,α′,vec(β)′,vec(Γ)′,vech(Ψ)′]′, which is featured in the estimator
in equation 2 and is the basis for the model-implied means and covariances.

4.1. Model-implied means
From the estimated parameters in ϑ̂, the model-implied conditional expectation for the manifest
outcomes in y given the covariates x can be expressed as

μi (ϑ̂) = μ̂i = E(y∣x = xi; ϑ̂)

= ν̂+ Λ̂(I− β̂)−1 [α̂+ Γ̂xi]+ K̂xi (8)

The i subscript on μ̂i indicates the expectation changes as a function of covariate values.
When fitting a model conditional on the covariates, the resulting output is typically the expected

values given x = 0. This results in a different conditional expectation such that,

μ0 (ϑ̂) = μ̂0 = E(y∣x = 0; ϑ̂)

= ν̂+ Λ̂(I− β̂)−1 [α̂+ Γ̂0]+ K̂0

= ν̂+ Λ̂(I− β̂)−1α̂ (9)

The “0” subscript denotes that the expectation is conditional on the covariate being equal to 0.
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Setting the covariate values to their respective sample means, x = x marginalizes over the covariates
to arrive at a model-implied marginal expectation for the focal outcomes where

μ(ϑ̂) = μ̂ = E(y∣x = x̄; ϑ̂)

= ν̂+ Λ̂(I− β̂)−1 [α̂+ Γ̂x̄]+ K̂x̄ (10)

i subscripts are dropped in equation 10 to indicate a marginal expectation given that covariates are set
to their respective sample means.

4.2. Model-implied covariance
The P × P model-implied covariance for the manifest outcomes, conditional on covariates, can be
expressed as

Σi (ϑ̂) = Σ̂i = Cov(y∣x = xi; ϑ̂)

= Λ̂(I− B̂)−1Ψ̂(I− B̂)′−1Λ̂′+ Θ̂ (11)

Like the model-implied conditional expectation, an i subscript indicates that the covariance is
conditional. However, the conditional model-implied covariance does not vary as a function of covariate
values (i.e., x does not appear in equation 11), so Σ̂i = Σ̂0. Together, equations 8 and 11 define the
conditional model-implied probability distribution such that yi ∣ xi ∼N (μ̂i,Σ̂i) or yi ∣ x = 0∼N (μ̂0,Σ̂0).

Correspondingly, the model-implied marginal covariance matrix is

Σ(ϑ̂) = Σ̂

= Λ̂(I− B̂)−1Γ̂SxΓ̂′(I− B̂)′−1Λ̂′+ K̂SxK̂′+ Λ̂(I− B̂)−1Ψ̂(I− B̂)′−1Λ̂′+ Θ̂

= Λ̂(I− B̂)−1Γ̂SxΓ̂′(I− B̂)′−1Λ̂′+ K̂SxK̂′+ Σ̂i. (12)

where Sx is the sample covariance matrix for the covariates. Notably, the model-implied marginal
covariance is calculated from the conditional covariance matrix (Σ̂i) plus the proportion of variance in
the outcomes that are explained through covariates. Together, equations 10 and 12 define the marginal
model-implied probability distribution such that yi ∼N (μ̂,Σ̂).

4.3. Special case of continuous outcomes
When y is continuous and all covariates are exogenous, the model can be simplified based on LISREL
notation. Namely,

vi = νv +Λvηvi +εvi

ηvi = αv +Bvηvi + ζvi (13)

where vi = (y′i,x′i)
′ stacks all the variables into one vector and all variables are treated as outcomes.

This notation does not permit direct paths from manifest variables to latent variables (e.g., manifest
variables can only indicate latent variables, but they cannot predict them; Bollen 1989, pp. 395). Instead,
single-indicator latent variables are created for each manifest variable that predicts or is predicted by
another manifest variable where factor loadings are fixed to 1 and residual variances fixed to 0 for
identification.2

ηvi = (η′i,η
′
yi,η
′
xi)
′

is then composed of three parts, (a) focal latent variables (ηi), (b) dummy latent
variables for elements of y that are predicted from elements of x (ηyi), and (c) dummy latent variables

2If covariates have known imperfect reliability, residual variances could be fixed to a non-zero value that implies a particular
reliability (Bollen, 1989, p. 312; Cole & Preacher, 2014).
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for elements of x that predict elements of y or ηi. All regression paths are housed in the B matrix rather
than being split amongst Γ, K, and B as in equations 6 and 7 (Skrondal & Rabe-Hesketh, 2004, p. 78).

Mplus and lavaan rely on this notation for efficient computation with continuous variables
(Muthen, 2004, p. 13; von Oertzen & Brick, 2014). Other notation systems like reticular action model
notation (RAM, McArdle & McDonald, 1984) or Bentler–Weeks notation (Bentler & Weeks, 1979) can
directly accommodate paths from manifest covariates to latent variables. Correspondingly, different
specifications emerge for models with covariates. Section 4.4 reviews these different specifications and
Section 5 discusses implications for how different specifications can have different SRMR definitions.

4.4. Specifications for models with covariates
There are two main dimensions along which model specifications with covariates can differ. The first is
joint versus conditional, the second is fixed versus stochastic. The result is four possible combinations,
though one combination (conditional and stochastic) is theoretically possible but seldom serviceable, so
it is not considered here. Figure 2 illustrates the differences between model path diagrams for different
specifications for a hypothetical conditional linear growth model with four repeated measures and two
time-invariant covariates predicting the growth factors. Figure 2a shows the joint and fixed specification,
Figure 2b shows the joint and stochastic specification, and Figure 2c shows the conditional and fixed
specification. More details on each specification appear in dedicated subsections below.

4.4.1. Joint and fixed
In the joint specification, a joint likelihood for the outcome variables and all covariates is built such that
vi ∼NV (μ,Σ). In Figure 2a, this is represented by the manifest covariates x1 and x2 being replaced with
single-indicator latent variable models with factor loadings fixed to 1 and their residual variances fixed
to 0. These single-indicator latent variables then predict the latent growth factors. This specification is
used by default in lavaan and Mplus by default.

With a joint specification, all covariates become dependent variables in the model, which has
ramifications for how P is defined within SRMR calculations. Because covariates technically become
outcomes (i.e., a latent variable points into them), they are pulled into ‘the model’ such that P equals
the sum of the T focal outcome variables in y and the C covariates in x predicting the latent variables or
manifest outcomes. This sum is defined as V where V =T +C. The model-implied moments correspond
to equations 10 and 12.

With a fixed specification, the mean, variances, and covariances of the covariates are constrained to
their sample values rather than being estimated. Because there are no free parameters in the covariate
portion of the model, full information maximum likelihood is not applicable with this specification and
missing covariates must be imputed or listwise deleted.

The full model equations for the joint and conditional specification in Figure 2a are,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1i
y2i
y3i
y4i
x1i
x2i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0
1 1 0 0
1 2 0 0
1 3 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

η1i
η2i
η3i
η4i

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ε1i
ε2i
ε3i
ε4i
ε5i
ε6i

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

η1i
η2i
η3i
η4i

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

α1
α2
x̄1
x̄2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 β13 β14
0 0 β23 β24
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

η1i
η2i
η3i
η4i

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ζ1i
ζ2i
ζ3i
ζ4i

⎤⎥⎥⎥⎥⎥⎥⎥⎦
εi ∼N (06,diag[θ,θ,θ,θ,0,0])
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Figure 2. Hypothetical path diagram of conditional latent growth model with two time-invariant covariates and four repeated

measures. Panel (a) shows a joint and fixed covariate specification where the covariates are converted to latent variables whose

moments are constrained to sample statistics. Panel (b) shows a joint and stochastic specification where the covariates are converted

to latent variables whose moments are free parameters. Panel (c) shows a conditional and fixed specification where the manifest

covariates directly predict the latent growth factors. The difference between panels (a) and (b) is subtle and is related to whether the

means, variances, and covariances of η3 and η4 are fixed or estimated.

ζi ∼N
⎛
⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ψ11 ψ12 0 0
ψ21 ψ11 0 0
0 0 var(x1) cov(x1,x2)
0 0 cov(x2,x1) var(x2)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟
⎠

(14)

4.4.2. Joint and stochastic
A joint and stochastic specification maintains the joint likelihood approach in Section Section 4.4.1
but differs in how covariates parameters are treated. Namely, rather than fixing the covariate means,
variances, and covariances to their sample values, these parameters are directly estimated. That is, the
vector of latent variables means in equation 14 would change to [α1 α2 α3 α4]′ and the lower right
triangle of the disturbance covariance matrix in equation 14 would change to ψ33 ψ34

ψ43 ψ44 . This can be seen in
Figure 2b where sample statistics x1, x2, var(x1), var(x2), and cov(x2,x1) from Figure 2a are replaced
with freely estimated parameters. The model-implied moments are again the marginal moments from
Equations 10 and 12.
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A main benefit of the stochastic approach is that missing data on the covariates can be handled
directly with maximum likelihood assuming a missing at random mechanism because there are free
parameters and distributional assumptions related to the covariates (Baraldi & Enders, 2010). In
lavaan and Mplus, this is specification is used whenever the mean or variance of a covariate is included
in the code (or by using the fixed.x = FALSE option in lavaan). Similar to Section 4.4.1, the
number of variables in the model is equal to V because all outcomes and covariates are considered part
of the model.

4.4.3. Conditional and fixed
A conditional specification aligns more closely with models from the regression or mixed effect
tradition and the likelihood is conditioned on the covariates such that vi ∼NV (μ,Σ). In the conditional
likelihood, the effects of covariates are removed from the model-implied moments correspond to the
conditional moments in equations 9 and 11. The mean, variance, and covariance of covariates are fixed
to sample statistics as in Section 4.4.1. Consequently, P is defined only as the number of focal outcome
variables T rather than V. The corresponding model equations are,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1i ∣ (x1i,x2i)
y2i ∣ (x1i,x2i)
y3i ∣ (x1i,x2i)
y4i ∣ (x1i,x2i)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0
1 1
1 2
1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎦

[ η1i
η2i

]+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ε1i
ε2i
ε3i
ε4i

⎤⎥⎥⎥⎥⎥⎥⎥⎦

[ η1i
η2i

] = [ α1
α2

]+[ γ11 γ21
γ21 γ22

][ x1i
x2i

]+[ ζ1i
ζ2i

]

εi ∼N (0T,IT ⊙θ)

ζi ∼N ([ 0
0 ], [

ψ11 ψ12
ψ21 ψ11

]) (15)

The path diagram corresponding to this specification is shown in Figure 2c. With a conditional
and fixed specification, there are no distributional assumptions placed on the covariates, so missing
covariates must be dealt with imputation or deletion (Sterba, 2014). The conditional and fixed specifi-
cation is conceptually similar to the joint and fixed specification and the parameter estimates will closely
correspond (and may be identical) even though there are different ramifications for defining SRMR.

Slope structures are not present in joint specifications but become relevant in conditional specifica-
tions (Muthén, 1984, pp. 49–50). The slope structure refers to possible pathways from the covariates in x
to the outcomes y (possibly through latent variables in η) and corresponds to the covariance attributable
to covariates (which is conditioned out). If the slope structure is saturated such that every covariate
predicts every outcome (i.e., there are T×C covariate paths in the model), then the observed covariance
attributable to covariates will equal the model-implied covariance attributable to covariates. However,
in the more common case where the slope structure is overidentified (i.e., there are fewer than T ×C
covariate paths), then there may be slope structure residuals in addition to the mean and covariance
residuals for conditional specifications.

4.5. Covariate specification affects fit
Despite the conceptual similarity among specifications (especially without missing data where speci-
fications yield identical parameter estimates), the choice of specification—whether made explicitly or
implicitly by software—has implications for calculating SRMR because definitions of P are different.
For the model in Figure 2, joint specifications are 6-dimensional, but the corresponding conditional
specification is only 4-dimensional. Additionally, the conditional specification has different residuals
because the variance attributable to covariates is removed whereas a joint specification yields marginal
moments.
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Section 5 provides different possible SRMR definitions that emerge from different covariate spec-
ifications and standardization methods. An empirical example and simulation follow in Section 6 to
demonstrate complexities of defining model fit in complex models.

5. Defining SRMR with covariates

Sections 5.1 and 5.2 describe different SRMR definitions depending on the model specification. Key
properties are summarized in Table 1. Section 5.3 discusses relevant properties to consider when
choosing among different SRMR definitions for a model with covariates.

5.1. Conditional specification
The likelihood for a model with conditionally specified covariates is y∣x = 0 ∼ NT (μ0,Σ0) where
μ0 (ϑ̂cond) is the model-implied conditional means and Σ0 (ϑ̂cond) is the model-implied conditional
covariance. The observed conditional means are then E(y∣x = 0) = y0 = y + SyxS−1

x (0−x) and the
observed conditional covariance is Cov(y∣x) = Sy∣x = Sy −SyxS−1

x S′yx.
These conditional sample and model-implied moments can produce a residualized SRMR:

SRMRR = SRMR(y0,Sy∣x,μ0 (ϑ̂cond),Σ0 (ϑ̂cond)) (16)

SRMRR provides an index of the standardized discrepancy between the sample and model-implied
conditional means and conditional covariances of the T focal outcomes given all covariates are set to 0.
This is most meaningful when covariates are centered or have natural zero points and when the interest
is evaluating the discrepancy after removing variance explained by covariates.

Importantly, because SRMRR is conditional, changing the scaling of the covariates will change the
value of SRMRR (e.g., centered versus uncentered covariates will have different values of SRMRR). This
can be useful if the fit at specific values of the covariates is desired because the scaling of the covariates
can be adjusted so that the specific values of interest are set to 0.

SRMRR in equation 16 uses Bentler standardization from equation 4, but it could use a mix of Bentler
and Bollen standardization as in equation 5 such that SRMR∗R = SRMR∗ (y0,Sy∣x,μ0 (ϑ̂cond),Σ0 (ϑ̂cond)).

Regarding the slope structure, the observed covariance attributable to covariates is S●x = SyxS−1
x S′yx

and the model-implied covariance attributable to covariates is Σ̂●x = Λ̂(I− B̂)−1Γ̂SxΓ̂′(I− B̂)′−1Λ̂′ +
K̂SxK̂′. The slope structure residuals are then equal to S●x − Σ̂●x. The slope structure residuals are
implicitly present in equation 16 because they are one source of misfit such that Sy∣x is based on removing
all covariance attributable to covariates whereas Σ̂0 only removes covariance based on the specified,
possibly overidentified slope structure. Separating the contribution of the slope structure residuals can
help identify if misfit is potentially due to covariate-related covariance not being fully conditioned out.

5.2. Joint specification
Let v = [y′,x′]′ and SV be the sample mean vector and covariance matrix for all V variables in a jointly
specified model whose model-implied mean and covariance are μ(ϑ̂joint) and Σ(ϑ̂joint). These quantities
could be used directly such that

SRMRV = SRMR(v,SV,μ(ϑ̂joint),Σ(ϑ̂joint)) (17)

SRMRV uses the marginal model-implied and sample moments for all V variables in the model (i.e., the
variance explained by covariates is not factored out). Essentially, SRMRV captures how well the model
reproduces the means, variances, and covariances of focal outcomes and covariates simultaneously.
SRMRV is applicable when covariates are treated as fixed or stochastic. Equation 17 uses Bentler
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Table 1. Comparison of primary features of different possible SRMR definitions for models with covariates

Label Moments Covariate specification Numerator Denominator lavaan Mplus

SRMRV Marginal Joint Fixed or stochastic δ2 V(V+3)/2 Default (srmr fit measure) Covariate mean or variance in

MODEL and INFORMATION
= EXPECTED

SRMR∗V Marginal Joint Stochastic δ3 V(V+3)/2 srmr_mplus fit measure Covariate mean or variance in

MODEL

SRMRVC Marginal Joint Fixed δ2 V(V+3)/2 – C(C+3)/2 NA INFORMATION = EXPECTED

SRMR∗VC Marginal Joint Fixed δ3 V(V+3)/2 – C(C+3)/2 NA Default

SRMRR Conditional Conditional Fixed δ2 T(T+3)/2 conditional.x=T,srmr
fit measure

NA

SRMR∗R Conditional Conditional Fixed δ3 T(T+3)/2 conditional.x=T,

srmr_mplus fit

measure

NA

SRMRM Marginal Joint Fixed or Stochastic δ2 T(T+3)/2 NA NA

SRMR∗M Marginal Joint Fixed or Stochastic δ3 T(T+3)/3 NA NA

Note: V = number of total variables in the model including covariates, T = number of focal outcome variables, C = number of covariates in the model. V = T + C. SRMR labels without a “*” are based on
Bentler standardization that divides by sample standard deviations; SRMR labels with a “*” standardize using model-implied standard deviations for covariance and mean elements and sample standard
deviation for the variance elements. Mplus column refers to Version 8.10, lavaan column refers to version 0.6.17.

https://doi.org/10.1017/psy.2024.10 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/psy.2024.10


Psychometrika 37

standardization, but a corresponding SRMR∗V could also be defined by using the hybrid Bollen–Bentler
standardization from equation 5.

Asparouhov and Muthén (2018) note that SRMRV may be problematic with a fixed covariate
specification because elements related to the covariates are included in the SRMR calculation, but they
are constrained to sample values rather than being estimated. Therefore, these elements will not have
misfit and cannot contribute to the SRMR numerator, but they will contribute to the denominator.
Therefore, Asparouhov and Muthén (2018) describe a covariate adjustment for SRMR∗V where

SRMR∗VC (v,SV,μ̂(ϑ̂joint),Σ̂(ϑ̂joint)) =
√

δ3

0.5V (V +3)−0.5C(C+3) (18)

The denominator removes the 0.5C(C+3) elements associated with the covariates whose model-
implied values are constrained to sample values (which will necessarily have no misfit). Elements
corresponding to covariates are factored out of the denominator to avoid artificially reducing the index
by inflating the denominator. If C = 0, SRMR∗VC reduces to SRMR∗V because none of the model-implied
elements will be constrained to sample values. There is also a corresponding SRMRVC that corrects the
denominator of SRMRV when Bentler standardization is used.

In Mplus Version 8.10, specifying a model with stochastic covariates (e.g., by including the mean
or variance of the covariate in the model) will result in SRMR∗V being reported in the output; the
Mplus default specifies fixed covariates and results in SRMR∗VC being reported in the output. The
INFORMATION = EXPECTED option in Mplus can yield SRMRV and SRMRVC in the output but
has ramifications beyond the calculation of SRMR. Specifically, it can affect the consistency of standard
errors if missing data are present and not missing completely at random (Kenward & Molenberghs,
1998) and it can impact the effectiveness of robust estimators (Savalei, 2010). This may be particularly
problematic for SRMRV with a stochastic specification because a common motivation for this specifi-
cation is accommodating covariates with missing values.

To extend the idea of SRMRVC, the scope of SRMR can be refined further by subsetting the mean
vector and covariance matrix to only include elements related to the T focal outcomes. This way, all
means, variances, and covariances related to covariates are not counted in either the numerator or the
denominator. Namely,

SRMRM = SRMR(yT,ST,μT (ϑ̂joint),ΣT (ϑ̂joint)) (19)

where μT (ϑ̂joint) and ΣT (ϑ̂joint) are the marginal mean vector and marginal covariance that only contain
elements involving the T focal variables. After subsetting, SRMRM uses the same information regardless
of whether covariates are fixed or stochastic. Because it uses marginal moments, SRMRM corresponds
to the fit of unconditional growth model. SRMRM and SRMRR will be equivalent for mean-centered
covariates that explain no variance because they will have the same dimension and the same moments.
SRMR∗M can be defined similarly but uses the hybrid Bollen-Bentler standardization (equivalence
between SRMR∗M and SRMR∗R exists under the same conditions as equivalence of SRMRM and SRMRR).

5.3. Choosing among different definitions
Among the definitions in Sections 5.1 and 5.2, SRMRV and SRMR∗V are the most susceptible to overly
optimistic assessments of model fit when covariates are present, especially when a fixed specification is
used for covariates. Both definitions use all variables—focal outcomes and covariates—in the numerator
and denominator. The means and variances of covariates as well as covariances among covariates will
fit exceedingly well because they are either explicitly fixed to sample statistics with a fixed specification
(and will fit perfectly) or are the full information maximum likelihood estimates of sample statistics
with a stochastic specification (Little & Rubin, 2020).

SRMRV and SRMR∗V therefore capitalize on the perfect or near-perfect fit of the 0.5C(C+3)
elements involving covariates and are susceptible to deflation because elements involving covariates
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contribute to the denominator but do not contribute or contribute very little to the numerator. Good fit
can be achieved by simply adding many covariates into the model, which will increase the proportion
of elements with 0 or near-zero residuals, which will attenuate SRMRV and SRMR∗V .

This mechanism motivates SRMRVC and SRMR∗VC, which explicitly reduce the denominator by
0.5C(C+3) to account for elements that do not contribute to the numerator. This reduces—but may
not entirely eliminate—SRMRVC and SRMR∗VC capitalizing on the presence of covariates and producing
optimistic assessments of fit. In addition to the 0.5C(C+3) elements that will have perfect fit, there are
C×T model-implied covariances that are partially informed by covariates. For instance, in Figure 2a,
σ̂y1,x1 is implied (in part) by sx1β̂13 and sx1,x2 β̂14. The sample statistics will not have misfit and will
limit the potential magnitude of misfit in σ̂y1,x1 . Partial embedding of sample statistics throughout the
model makes the effectiveness of a denominator correction for covariates uncertain because it is unclear
how or whether to account for elements that have partial covariate information. As a result, SRMRVC
and SRMR∗VC remain susceptible to some deflation when more covariates are added to the model.
Nonetheless, the situation is somewhat ambiguous because the model’s ability to reproduce covariances
between covariates and outcomes may be relevant because—even if these residuals are tempered—they
are not guaranteed to be exactly zero.

SRMRR, SRMR∗R , SRMRM , and SRMR∗M appear least susceptible to capitalizing on covariate infor-
mation because they restrict focus solely to the T outcome measures. SRMRM and SRMR∗M rely on
the marginal mean and covariance, which preserves the interpretation as the fit of the unconditional
model regardless of the number of covariates. This provides the most consistency by insulating the
interpretation from the effect of covariates. However, as expanded upon in Sections 6.2 and 7, this
may not necessarily be a positive characteristic. SRMRR and SRMR∗R use the conditional mean and
covariance, which is helpful to factor out explained variance. However, they are dependent on the
scaling of the covariates and require a meaningful zero point for the covariates to have a meaningful
interpretation. Essentially, SRMRM and SRMR∗M do not engage with the covariate information, which
provides a constant interpretation. Conversely, SRMRR and SRMR∗R fully engage with covariate infor-
mation, which results in a focused interpretation that is sensitive to changes in covariate scaling. The
next section provides an empirical example to empirically demonstrate the differences between SRMR
definitions.

6. Empirical example

6.1. Model description
To demonstrate how SRMR can be affected even for modest and routine models, this section uses a
subset of the 1979 National Longitudinal Survey on Youth (NLSY). These data are publicly available
and were retrieved from the companion site to the popular multilevel modeling textbook by Hox et al.
(2018). The data feature Peabody Individual Assessment test reading scores (PIAT; Dunn & Markwardt,
1970) for 221 children. These data are wave-based such that each child’s PIAT score is measured four
times in two-year intervals. This subsample has no missing values and each child completed all four
waves.

For this example, a taxonomy of models were fit. Model 0 is an unconditional latent growth model.
Model 1 includes mother’s age when the child was born (mom_age; M = 25.59, SD = 1.87, range =
21–29) as a time-invariant covariate of the initial status and linear change growth factors. Model 2 adds
a second time-invariant covariate, cognitive support provided at home (cog_home; M = 9.10, SD =
2.45, range = 3–14). Both covariates were grand-mean centered to preserve the interpretation of the
growth factor means. The models were fit with maximum likelihood estimation in lavaan Version
0.6.17 (Rosseel, 2012) or in Mplus Version 8.10 (Muthén & Muthén, 1998–2024). Because there was no
missing data, parameter estimates are identical across specifications and programs.

The model χ2 and degrees of freedom are reported in Table 2 along with the estimated parameters for
each model and SRMR values from each definition in Section 5. Parameter estimates are identical across
all specifications. The data and code for this example are provided on an Open Science Framework page
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Table 2. Parameter estimates from three latent growth models fit to the empirical reading assessment data

Parameter Model 0 Model 1 Model 2

Joint Conditional Est SE Est SE Est SE

Mean structure

Initial status α1 2.83 0.06 2.83 0.06 2.83 0.06

Linear change α2 1.05 0.02 1.05 0.02 1.05 0.02

Initial status on mom_age β13 γ11 0.09 0.03 0.08 0.03

Linear change on mom_age β14 γ12 0.03 0.01 0.03 0.01

Initial status on cog_home β23 γ21 0.03 0.02

Linear change on cog_home β24 γ22 0.01 0.01

Covariance structure

Var(initial status) ψ11 0.48 0.08 0.45 0.08 0.44 0.08

Var(linear change) ψ22 0.04 0.01 0.04 0.01 0.04 0.01

Cov(initial, linear) ψ21 0.07 0.03 0.06 0.03 0.06 0.02

Wave 1 Res. Var θ11 0.55 0.07 0.55 0.07 0.54 0.07

Wave 2 Res. Var θ22 0.26 0.03 0.26 0.03 0.26 0.03

Wave 3 Res. Var θ33 0.21 0.03 0.21 0.03 0.21 0.03

Wave 4 Res. Var θ44 0.36 0.06 0.36 0.06 0.35 0.06

Model fit

χ2 124.11 124.38 125.32

Df 5 7 9

Bentler standardized

SRMRV .163 .136 .118

SRMRVC .163 .144 .130

SRMRR .163 .165 .163

SRMRM .163 .163 .163

Bollen–Bentler standardized

SRMR∗V .112 .093 .080

SRMR∗VC .112 .098 .089

SRMR∗R .112 .113 .112

SRMR∗M .112 .112 .112

Note: Est = parameter estimate, SE = standard error, df = degrees of freedom, Res. Var. = residual variance, Cov = covariance,
Var = variance

associated with this paper, (https://osf.io/sxp4g). Software options yielding different SRMR definitions
are provided in Table 1. SRMRM and SRMR∗M are not currently available in either software and were
computed manually.

6.2. Model results
All three models have identical model χ2 statistics for all specifications. The model χ2 values are larger
than the critical value for any conventional significance level given the model degrees of freedom,
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indicating that the models do not recreate the sample moments exactly. Because the model χ2 test can
be seen as a severe test for data-model fit (Mayo, 2018), SRMR can help quantify the magnitude of
the model residuals to help contextualize the practical amount of data-model misfit. Because there are
no covariates in Model 0, the Bentler-standardized indices SRMRV , SRMRVC, SRMRR, and SRMRM
are identical. Similarly, the hybrid Bollen–Bentler standardized indices SRMR∗V , SRMR∗VCSRMR∗R , and
SRMR∗M are also equal to each other, but they are not equal to the Bentler-standardized SRMRs because
the variance structure is not saturated and diag(S) ≠ diag(Σ̂).

As covariates are added, SRMRV , SRMRVC, SRMR∗V , and SRMR∗VC systematically decrease regardless
of whether the covariates improve the model. That is, despite home_cog having no effect on initial
status (Z = 1.32,p = .19) or linear change (Z = 1.42,p = .16), all four of these SRMR definitions suggest
improvement between Model 1 and Model 2. This behavior stems from relying on V-dimensional
moments, which rewards reproduction of covariate elements.

To demonstrate, the Model 2 Bentler-standardized residual mean vector and residual covariance
matrix for a joint covariate specification are

d−1 (v−μ(ϑ̂joint)) = [ Read1 Read2 Read3 Read4 HomeCog MomAge
− .351 .164 .083 −.147 .000 .000 ]

′

D−1 (S−Σ(ϑ̂joint))D−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Read1 Read2 Read3 Read4 HomeCog MomAge
Read1 −.327
Read2 −.006 .076
Read3 −.111 .097 .051
Read4 −.193 .012 −.010 −.128

HomeCog −.023 .009 .007 −.011 .000
MomeAge −.048 .031 −.001 −.010 .000 .000

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Notably, there are 0.5V (V +3) = 27 unique elements across the mean vector and covariance matrix.
The sum of squared standardized residuals is 0.374 (the numerator of SRMRV ) but notice that two
rightmost elements in the mean residual vector and three elements in the rightmost lower triangle of
the covariance residual matrix are necessarily zero because they only involve covariate information.
Because there are no missing data, the model-implied elements are identical to the sample statistics
regardless of whether a fixed or stochastic specification is used. This produces zero residuals for these
elements, so they do not contribute to the numerator but they do add to the denominator, resulting in
SRMRV =

√
.374/27 =.118 for Model 2.

SRMRVC subtracts 0.5C(C+3) from the denominator to address deterministic zeroes. In Model 2,
C = 2 so the denominator is lowered by 5 to account for values that are necessarily 0 (i.e., SRMRVC =√
.374/22 =.130). SRMRVC continues to count the C × T = 8 elements that are partially based on

the covariates (the 8 non-zero values in the last two rows of the residual covariance matrix above).
These elements represent the discrepancy of the model-implied and observed covariances between the
repeated measures and the covariates.

One perspective of these elements is that these elements should count towards SRMR because repro-
ducing the covariance between the outcome and covariates is relevant information to consider. From
this perspective, reproduction is the main interest and the decrease in SRMRVC is warranted because
it indicates that the model is adequately reproducing the covariances between repeated measures and
covariates.

An alternative perspective is that the model should not be rewarded for small residuals that are
partially composed of sample statistics. Although these elements are not deterministically zero, their
magnitude is moderated—for instance, these elements represent 8 of the 11 smallest non-zero residuals
in the model. From this perspective, counting elements that are partially dependent on covariate sample
statistics artificially deflates SRMRVC because there is not a substantive interest in reproducing these
covariance elements and counting them drives down the SRMRVC without providing substantively
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useful information. From this perspective, determining whether the covariates improve the model is
the main interest and the decrease in SRMRVC is less warranted because it does not speak to whether
the covariates are useful or whether the model-implied covariances of the repeated measures more
closely reproduce the observed covariances after covariates are included. This is particularly prudent for
researchers intending to use SRMRVC for model comparisons or fit index difference evaluation because
there is a distinction between a model reproducing the covariances between outcomes and covariates
and the covariates explaining variance in the outcome.

Regarding other definitions, SRMRM and SRMR∗M do not change across the three models. This
stability is due to these definitions marginalizing over the covariates, so SRMRM and SRMR∗M will be
constant whether covariates are present or not. For these data, the Bentler-standardized residual mean
vector and residual covariance matrix used for SRMRM and SRMR∗M only include the T-dimensional
elements related to the four repeated measures:

dT
−1 (y−μ(ϑ̂joint)) = [ Read1 Read2 Read3 Read4

− .351 .164 .083 −.147 ]
′

DT
−1 (ST −ΣT (ϑ̂joint))DT

−1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Read1 Read2 Read3 Read4
Read1 −.327
Read2 −.006 .076
Read3 −.111 .097 .051
Read4 −.193 .012 −.010 −.128

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where dT = diag(ST)1/2 and DT = IT⊙dT. There are only, 0.5T (T+3) = 14 unique elements, resulting in
a sum of squared residuals of .369 and SRMRM =

√
.369/14 =.162. The calculation involves no covariate

information and focuses purely on fit of repeated measure elements.
SRMRR and SRMR∗R happen to mirror SRMRM and SRMR∗M , respectively, in this example but this

will not be the case generally. Covariates in the example are grand-mean centered and explain little
variance, so the marginal and conditional definitions converge. But if Model 2 is refit using uncentered
covariates, SRMRR = .116 and SRMR∗R = .105 and conditional moments no longer correspond to the
marginal moments because SRMR is now conditional on the covariates equaling 0 on their original
scales. Similarly, if the interest was fit of Model 2 for people simultaneously at the maximum values of
the two covariates, the model could be refit centering the covariates around their maximum values. This
yields SRMRR = .191 and SRMR∗R = .113 suggesting that the model fits less well for people at the upper
extreme of the covariates. Other SRMR definitions are based on marginal moments and are unaffected
by covariate centering.

This reinforces the point made earlier: although SRMRM and SRMRR are both resistant to artificial
deflation when adding covariates and can converge in some cases. However, resistance is gained through
two opposing mechanisms. SRMRM is not deflated by covariates because its interpretation is insensitive
and oblivious to the presence of covariates. Conversely, SRMRR is not deflated by covariates because its
interpretation is entirely dependent on the covariate information and its value changes within the same
model as a function of covariate scaling.

6.3. Expanding Figure 1
Data in Section 6.2 were empirical and the truth is not concretely known. All SRMR definitions from
Section 5 were therefore applied to the same simulated data from Section 2 that were used to create
Figure 1. The results are shown in Figure 3 where Panel A shows Bentler standardized definitions and
Panel B shows Bollen-Bentler standardized definitions.

Results in Figure 3 mirror those in the empirical example. Namely, when truly null covariates are
added to the model, SRMRM maintains a consistent value, SRMRR is mostly consistent with small
variation due to variance explained by random chance, SRMRV sharply decreases as more null covariates
are added because a larger proportion of elements are deterministic zeroes, and SRMRVC decreases but
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Figure 3. Simulation results showing average SRMR value across replications as the number of null covariates increases. Panel (a)

shows the Bentler-standardized SRMR definitions and panel (b) shows the Bollen-Bentler standardized SRMR definitions. Patterns in

simulated data match those in the empirical example where SRMRR and SRMRM are stable and unaffected when null covariates are

added whereas SRMRV decreases sharply and SRMRVC decreases but more moderately.
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less sharply because it filters out the deterministic zeroes but still includes elements that are partially
based on sample statistics. Patterns are the same for either standardization method.

7. Discussion

The traditional definition of SRMR is appropriate for covariance structure models, but many structural
equation model applications include additional features, which can alter the appropriate definition of
SRMR. The current paper focused on the context of models with covariates. Despite mainstream soft-
ware reporting SRMR values for models featuring covariates, there has been little formal methodological
work exploring how to suitably extend SRMR when covariates are present.

The primary finding in this paper was that some SRMR definitions were susceptible to being
systematically deflated if covariates are present (SRMRV , SRMR∗V , SRMRVC, and SRMR∗VC). Other
definition were less susceptible (SRMRR, SRMR∗R , SRMRM , and SRMR∗M), but had properties and
interpretational caveats that may be undesirable. This is primarily due to joint covariate specifications,
which can complicate counting which variables are “in the model” and which model residuals should
contribute to the numerator and denominator of SRMR.

Consequently, this paper does not definitively solve the issue of properly defining SRMR with
covariates and it may raise more questions than answers. It also only considered the situation with
continuous outcomes and did not explore contexts where outcomes are discrete (see Section 2.7 of
Asparouhov & Muthén, 2018 for SRMR considerations with discrete outcomes). Nonetheless, the hope
is that this paper at least raises awareness of these potential issues and encourages more thoughtful
consideration of how to interpret SRMR when models feature covariates.

Regarding specific limitations of definitions that did not systematically decrease when covariates
were included, SRMRM and SRMR∗M mirror evaluating fit with no covariates because covariates are
marginalized out, which does not differentiate between explained and unexplained variance. SRMRM
and SRMR∗M are essentially oblivious to covariates because the variance is pushed around to different
sources, but the marginal amount of variance is unchanged. Essentially, SRMRM is not deflated with
covariates because it simply is not sensitive to covariates. SRMRR and SRMR∗R are conditional, which
seems more useful because the variance explained by covariates is removed. However, its interpretation
depends on how covariates are scaled.

In essence, a meaningful SRMR with covariates may require a better developed sense of what the
model-implied moments should reproduce. This is closely related to the ambiguity when interpreting
SRMRVC and SRMR∗VC where it is unclear whether elements corresponding to covariances between
outcomes and covariates are part of the model and whether reducing them meaningfully corresponds
to what fit should be capturing.

Moreover, it is unclear which values of any SRMR definitions for covariates indicate acceptable
approximate fit. The traditional guideline from Hu and Bentler (1999) is that SRMR < .08 indicates
acceptable fit. However, this guideline is known not to generalize well beyond the confirmatory factor
models from which it was derived (e.g., Fan & Sivo, 2007; Hancock & Mueller, 2011; McNeish & Wolf,
2024). Models with covariates differ in meaningful ways from Hu and Bentler’s simulation, so it is
unclear which SRMR values indicate substantively important misfit when covariates are present. This
is especially true for models with an overidentified mean structure because the mean and covariance
structure may be weighed differently.

This also raises questions about whether combining mean structure residuals and covariance struc-
ture residuals into a single index is meaningful. As noted earlier, mean residuals and covariance residuals
can be split with separate SRMR values for each submodel to make the index more interpretable and to
better identify the location of misfit. Nonetheless, the same issues discussed in this paper are relevant
even if using separate SRMRs for the mean and covariance structure because there are still ambiguities
about which elements should and should not be counted in each (though the mean structure is less
opaque than the covariance structure).
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Of course, SRMR may simply have too many interpretational challenges to productively assess
approximate fit for models with covariates. Whereas lack of dependence on TML can be a helpful
property of SRMR in covariance structure models, SRMR’s reliance on model residuals may convolute
calculation of SRMR in situations where there is ambiguity regarding which variables and corresponding
residual elements should be counted as part of “the model”. If a concise summary of residuals with SRMR
may be too difficult, local fit may offer another option for those looking to evaluate fit of models with
covariates.

Broadly, local fit refers to evaluating some smaller portion of the overall model (Thoemmes et al.,
2018). This can include structural versus measurement portions (Anderson & Gerbing, 1988; Zhang &
Hao, 2024) or can be as narrow as elementwise inspection of each individual residual element to identify
elements that were not closely reproduced by the model (McDonald & Ho, 2002; West et al., 2023).
Elementwise local fit is essentially the most extreme version of splitting SRMR into subcomponents and
can help locate areas of local strain and to ensure that misfit is not attributable to a few outlying elements
that are poorly reproduced (Appelbaum et al., 2018; Kline, 2023).

Elementwise local fit is commonly recommended as a supplement to global fit metrics like SRMR.
However, reviews of empirical studies suggest that few studies report or examine model residuals and
elementwise local fit and instead rely on global summary measures like SRMR (Ropovik, 2015; Zhang
et al., 2021). As models become more complex, it may be more straightforward to simply look at
each residual in isolation rather than debate merits of different possible aggregated summaries of the
residuals.

Similar to global fit, elementwise local fit can be exact or approximate. In exact approaches, inferential
tests are built to assess whether the individual residual element is equal to 0 (Maydeu-Olivares, 2017;
Ogasawara, 2001). With approximate local fit, the intent is to identify whether the amount of misfit for
an individual element is acceptably small. Typical recommendations for elementwise local approximate
fit are that standardized residuals are between [–0.10, 0.10] (Hu & Bentler, 1995; Goodboy & Kline,
2017; Schreiber, 2008). However, this recommendation is motivated by factor analysis and may not
apply to models with overidentified mean structures where residuals are not bounded. Additional work
that refines understanding of elementwise local fit in models that extend beyond factor analysis would
be beneficial.

In sum, hopefully this paper has illuminated potential issues and open problems when extending
approximate fit indices like SRMR that were originally developed for the narrower context of covariance
structure models. Even though there are few definitive conclusions, hopefully researchers will have
greater appreciation for nuance required when using any SRMR definition to understand the data-model
fit when covariates are present.
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