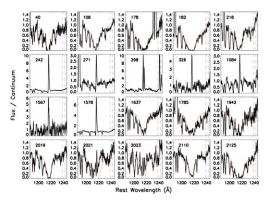
Ly α vs. fundamental properties of galaxies

Aida Wofford¹, Claus Leitherer¹, John Salzer², & COS Science Team³


¹Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD, 21218, USA email: wofford@stsci.edu, leitherer@stsci.edu

²Astronomy Dept. Indiana University, Swain West 408, 727 East Third Street, Bloomington, IN 47405, USA email: slaz@astro.indiana.edu

³Center for Astrophysics and Space Astronomy, University of Colorado, 593 UCB Boulder, CO 80309-0593

Abstract. We obtained HST COS Ly α spectroscopy for 20 galaxies that were H α -selected from the Kitt Peak International Spectroscopic Survey data release. We cover redshifts of z=0.020.06 and a broad range in metallicity, reddening, and luminosity. We investigate correlations between the properties of the Ly α -lines and fundamental properties of the galaxies. Our seven emitters have: equivalent widths in the range $EW(Ly\alpha) = 1 - 12$ Å, i.e., below the completeness limits of higher redshift studies; extinction corrected Ly α /H α ratios of at most 12-15% of the case B recombination theory value; and O I λ 1302 ISM absorptions blueshifted to $\langle v(O I) \rangle = -117 \pm 40$ km/s, which are consistent with H I gas outflows. Six emitters have P-Cygni-like Ly α profiles with peaks redshifted to $\langle v \rangle = 172 \pm 25$ km/s, and one of our face-on spiral galaxies has two $Ly\alpha$ peaks separated by 370 km/s. The latter peaks are such that the blueshifted peak is twice as strong as the redshifted peak. The rest of the galaxies show $Ly\alpha$ absorption troughs centered at $\langle v \rangle = 19$ km/s and O I $\lambda 1302$ absorptions centered at $\langle v(\text{O I}) \rangle = -34 \pm 25$ km/s, which is consistent with static or low velocity H I gas. Our two most metal poor and least reddened galaxies, which have large H α equivalent widths are absorbers. The spiral galaxies in our sample have Ly α in single emission, double emission, or absorption. There appears to be a correlation between the H α derived SFR and the strength of the Ly α emission but our sample is small. Our observations cover regions of at most 3 kpc in diameter and may miss a significant fraction of the resonantly scattered Ly α emission. This work is supported by NASA grant N1317.

 $\textbf{Keywords.} \ \text{galaxies: starburst} \ -- \ \text{galaxies: stellar content} \ -- \ \text{ultraviolet: galaxies} \ -- \ \text{ultraviolet: ISM}$

Figure 1. Ly α -line profiles with Voigt profiles overlaid on the absorbers. The vertical lines mark the position of the stellar-wind N V λ 1240 doublet (from Wofford *et al.*, *submitted* to ApJ).

Reference

Wofford, A., Leitherer, C., & Salzer, J., COS Science Team 2013, submitted to ApJ