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ABSTRACT

We consider a risk generating claims for a period of N consecutive years (after
which it expires), N being an integer valued random variable. Let Xk denote the
total claims generated in the k'h year, k> 1. The Xks are assumed to be inde-
pendent and identically distributed random variables, and are paid at the end of
the year. The aggregate discounted claims generated by the risk until it expires is
defined as SN(v) = Ef=1 vkXk, where v is the discount factor. An integral equa-
tion similar to that given by PANJER (1981) is developed for the pdf of SN(v).
This is accomplished by assuming that N belongs to a new class of discrete
distributions called annuity distributions. The probabilities in annuity distribu-
tions satisfy the following recursion:

H , for n = 1,2,...,

where an is the present value of an «-year immediate annuity.
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1. INTRODUCTION

A major problem in mathematical risk theory is the evaluation of the distribu-
tion of the aggregate claims occuring in a fixed time period. This is because the
aggregate claims is usually the sum of a random number of claims. If Yk is the
size of the k'h claim and N is the number of claims in this time period, then the
aggregate claims S is given by

N

(l) " = 2* Ik •
k=l

The iys are usually assumed to be independent and identically distributed (iid)
with common cummulative distribution function (cdf) F(y). If the «-fold
convolution of F(y) with itself is given by
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Fn(y)= T Fn_l(y-z)dF(z), n= 1,2,...,
Jo

with F0(y) = 1, for y> 0, and the non-defective claim number distribution is

p n = P T [ N = n],

for n = 0, 1,..., then the cdf of S is
oo

(2) G(y)= 2 PnFn{y).

Unfortunately, explicit expressions for Fn{y) are usually not available, so the
equation (2) is generally not very useful. Approximations for G(y) are thus
needed.

In order to facilitate the easy evaluation of G(y) in equation (2), PAN-
JER (1981), and SUNDT and JEWELL (1981) provided a family of claim number
distributions which yielded an integral equation for the pdf of S when the Y^s
are absolutely continuous random variables. The random variable N must have
probabilities satisfying the recursion

where a and b are constants depending on the length of the time period. This
family includes the geometric, Poisson, binomial, negative binomial, logarithmic
series, and the so-called extended truncated negative binomial distribution. See
WILLMOT (1988) for details. PANJER (1981) proved that if pn satisfies equa-
tion (3), then g(y), the pdf of S, satisfies the following integral equation for
y>0:

(4) g(y) = Pif(y)+ [ [a + — ]f(z)g(y-z)dz.

This integral equation can be solved numerically; see STROTER (1985).
Recall that S is defined as the aggregate claims over a fixed time period. If this

time period T is large, i.e., extending over several years, then it many be prudent
to include an interest discount factor to obtain the present value of these claims.
Let Tk be the random time at which the claim Yk occurs, and N(T) be the
number of claims over T years, T a positive integer. The aggregate discounted
claims, denoted by Sf(v), will be given by

N(T)

(5) Sf(v)= 2 vTkYk
k=l

where v = 1/(1 + /) and / is the constant annual rate of interest. Comparing
equations (1) and (5), it is clear that Sf (v) is a more complicated random varia-
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ble than S, and hence will have a more complicated cdf. Sf(v) can be simplified
by making the traditional actuarial assumption that claims are paid at the end of
the year in which they occur. This means that equation (5) reduces to

T

(6) ST(v) = 2 vkXk

where Xk is the aggregate claims generated in year k. We assume that the num-
ber of claims occuring during each year is an iid sequence, implying that the Xks
are also iid.

The important observation to note here is that ST(v) is now the sum of T (a
fixed number) of random variables Xk. Thus we have seen that the traditional
model studied by PANJER and SUNDT and JEWELL can be adapted to include an
interest factor. However an expression for the pdfoiSf{v) will not be similar to
equation (4) when the probabilities of N(T) satisfy equation (3). We will see that
by making T random, it is possible that ST(v) can be extended to yield a pdf
which satisfies an integral equation similar to (4).

2. THE MAIN RESULTS

The inclusion of interest and/or inflation factors in risk theoretic models have
appeared in the literature mainly in the context of the calculation of ruin prob-
abilities; see, for example, WATERS (1983), BOOGAERTS and CRIJNS (1987), and
GARRIDO (1988) and references therein. The limiting distributions of discounted
processes have been studied by GERBER (1971), and BOOGAERT, HAEZENDONCK
and DELBAEN (1988). However, there has been no work in the literature on
integral equations similar to that of PANJER (1981) for aggregate discounted
claims.

Consider a risk that can produce either no claim or it produces a sequence of
iid positive claims that are paid at the end of the year in which they occured.
Such risks are pertinent to health insurance, dental insurance, etc. The sequence
of claims will run for N years, starting from year 1 until year A', after which no
further claims are produced. N is an integer valued non-negative random varia-
ble. The total claims produced in the kth year is Xk > 0, k = 1, 2,. . . . If interest
is at rate i annually, the aggregate discounted claims will be given by SN(v)
where

N

(7) SN(v) = X vkXk

Notice the difference between equations (6) and (7), the constant T is now
replaced by the random variable N. These equations clearly have different
interpretations.

In order to develop an integral equation for the pdf of SN(v), we will
introduce a new family of claim number distributions for N, called annuity

https://doi.org/10.2143/AST.19.2.2014908 Published online by Cambridge University Press

https://doi.org/10.2143/AST.19.2.2014908


194 COLIN M. RAMSAY

distributions, with probabilities pn satisfying the following difference equa-
tion:

(8) Pn = Pn-i(a + —\ for « = 1 , 2 , . . . ,
V ci« i

where an is the present value of an rc-year immediate annuity at interest rate
/, i.e.,

(9) ,. = 1 ! = ^ .
i

As before, pn = Pr [Â  = n].
Let P(z) be the probability generating function of N, i.e.,

oo

P(z) = 2 Pnz", for - 1 < z < 1 .

It can easily be proven that

and
Var[5jv(i;)] = E[Var[SN(v) I N]] + Va.t[E[SN{v) I N]]

where \i = E\X£{ and a1 = Var[ZJ.
From equation (7) we condition on {N = n) and define Sn(v) as

n

Note that, because the Xk's are iid, Sn(v) has, for each non-negative integer m,
the same distribution as

Therefore, since

Sn (u) is seen to have the same distribution as vXx + vSn^ i (u). Thus if/« {x) is the
probability distribution function of Sn (v), then the following convolution rela-
tionships will exist:
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(10) fAx)

for n = 2, 3, . . . and/(x) is the pdfof the Ays.
Before deriving the integral equation for the pdf of SN(v), the following lemma

is needed:

LEMMA 1. If Xk, k = 1, 2, . . . , n are iid random variables with finite mean, and
the constants wk are positive weights, let

n n

Zn=X wkXk and Wn=^ wk,
k=\ k=\

t h e n for k e { 1 , 2 , . . . , « } a n d n = 1 , 2 , . . .

(11) E[Xk\ZH = x] = —.

PROOF : By the symmetry of iid random variables and the fact that the weights
are positive constants,

E[wkXk\Zn = x]ocwkx.

Let n be the constant of proportionality. Summing both sides of the above
expression yields

x = nWnx,

i.e.,

1
n =

So

E[wkXk\Zn = x] =
W.

and equation (11) follows.
Q.E.D.
Consider the case where wk = vk and Wn = an, then

E[Xl\Sn+i(v) = x] = —

(i2)
fn+l(x)Jo V V V

We are now able to establish the main result of this paper.
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THEOREM 1. Let Sn(v) be defined as in equation (7) with pdf g(x) for x > 0. If
N has its probabilities satisfying the recursion in equation (8) and I,™=opn = 1,
then for x> 0,

(13) g(x) = pj(x/v) [ (
Jo V vx

withPr[SN(v) = 0]=p0.

PROOF: Since the Xk's are positive, SN(v) = 0 if and only if N = 0. So
Pr[5yv(t;) = 0] = p0. For x> 0,

g(x) = X PnfnW
n=\

Pn+\fn+l(x)

h
= Pif(x/V) + 2 Pn\a + ]/„+! (X)

V Jn+\

= Pif(x/v)+
n=\ Jo \ V

T b

n=\

\ ag\ I
Jo V v )

= Pj(x/v) +\ ag\ y- \f(y/v)dy

n=\ Jo VX \ V

= Plf(x/v) + f' (a + ^-)g(?Zl\f{y/v)dy
Jo V vxj \ v J

Q.E.D.
A similar result can be established if we assume that claims are subject to

inflation at rate r and there is no interest. This can be accomplished by defining
wk = (l+r)k, and using a new family of discrete claim number distributions
with

(14) Pn = Pn-\[a + — \, for
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where
n

(15) sn= 2 (l + r)k.

In this case

(16) E[Xk\

The resulting integral equation is

(17) g(x)
(l + r)xj U l

Note that in equation (13), for 0 < v < 1, the argument of g(.) in the integrand
will exceed x, so g(x) will depend on values of its argument between x and x/v.
This will pose problems for obtaining numerical solutions. This problem does
not arise in equation (17).

3. ANNUITY DISTRIBUTIONS

Equations (8) and (14) represent two new types of claim number distributions.
However, they can be viewed as belonging to the same family of discrete annuity
distributions because both equations can be written in the form:

(18) Pn = Pn-i\a + , for n=l,2,...,
V a(n,S)J

where
n

a(n,S)= 2 e1^, —oo<8<oo.
k— 1

Here 8 < 0 can be viewed as the force of interest while 8 > 0 can be viewed as
the force of inflation. This implies that from equation (9) and (15)

if 8 < 0,
(19) a(n,8) = \ n if 8 = 0,

if 8 > 0.

Thus the family of discrete distributions as described in equation (3) is a special
case of the annuity distribution with 8=0.

For a non-defective annuity distribution to exist, its probabilties must sum to
one, implying that

oo n s h \

(20) R ( a , b , 8 ) = 1 + £ U\a +
n=\ k=\ V fl(^ &))
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must coverge. There are several tests that can be used to check the convergence
of R(a, b, S), see MALIK (1984) or WILLMOT (1988). For example, the ratio-test
ensures convergence if

lim \a + 1 = L< 1 .
»-» ^ a{njS))

Once R {a, b, S) exists, the pn's will be given by

1 if « = 0;
R(a,b,S)

(21) pn =

A f b \
if n = 1,2,3,...

a(k,S)J

For given a and b that ensures the convergence of R (a, b, S), one can easily
evaluate the pn's and the moments of the distribution. Unfortunately, closed
form expressions are not easily obtainable these distributions, except of course
when 3 = 0.

Further research is needed in the distributional properties of annuity distribu-
tions, the tail thickness, and the estimation of the parameters a and b. It will
also be instructive to compare the various members of the family when 5 = 0 to
those with the same parameters a and b but with 6^0. One would expect that
the tails of these comparable distributions to become thicker as S decreases.

REFERENCES

BOOGAERTS, P. and CRIJNS, V. (1987) Upper bounds on ruin probabilities in case of negative
loadings and positive interest rates. Insurance: Mathematics and Economics 6, 221-232.
BOOGAERT. P., HAEZENDONCK, J. and DELBAEN, F. (1988). Limit theorems for the present value of
the surplus of an insurance portfolio. Insurance: Mathematics and Economics 7, 131-138.
GARRIDO, J. (1988) Diffusion premiums for claim severities subject to inflation. Insurance:
Mathematics and Economics 7, 123-129.
GERBER, H. (1971) The discounted central limit theorem and its Berry-Esseen analogue. Annals of
Mathematical Statistics, Vol. 42, 1, 389-392.
MALIK, S. (1984) Introduction to convergence. Halstead Press, New York.
PANJER, H. (1981) Recursive evaluation of a family of compound distributions. ASTIN-Bulletin 12,
22-26.
STROTER, B. (1985) The numerical evaluation of the aggregate claim density function via integral
equations. Blatter der Deutschen Gesellschaft fur Versicherungsmathematik 17, 1-14.
SUNDT, B. and JEWELL, W. (1981) Further results on recursive evaluation of compound distribu-
tions. ASTIN Bulletin 12, 27-39.
WATERS, H. (1983) Probability of ruin for a risk process with claim cost inflation. Scandinavian
Actuarial Journal 66, 148-164.
WILLMOT, G. (1988) Sundt and Jewell's family of discrete distributions. ASTIN Bulletin 18,
17-29.

https://doi.org/10.2143/AST.19.2.2014908 Published online by Cambridge University Press

https://doi.org/10.2143/AST.19.2.2014908



