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Abstract. Next generation radio experiments such as LOFAR, HERA and SKA are expected
to probe the Epoch of Reionization and claim a first direct detection of the cosmic 21cm signal
within the next decade. One of the major challenges for these experiments will be dealing
with enormous incoming data volumes. Machine learning is key to increasing our data analysis
efficiency. We consider the use of an artificial neural network to emulate 21cmFAST simulations
and use it in a Bayesian parameter inference study. We then compare the network predictions
to a direct evaluation of the EoR simulations and analyse the dependence of the results on the
training set size. We find that the use of a training set of size 100 samples can recover the error
contours of a full scale MCMC analysis which evaluates the model at each step.
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1. Introduction
With the advent of the next generation of reionization experiments, such as LOFAR,

HERA and SKA, a detection of the cosmic 21cm signal is close at hand. More and more
stringent upper limits are becoming available from these experiments and their precur-
sors, constraining and shaping our understanding of the Epoch of Reionization (EoR).
As the systematic understanding of our experiments and foreground contaminations of
the signal increase, imaging the EoR is becoming available as a tool to measure the 21cm
power spectrum as a function of the observed frequency and to statistically characterize
the signal. An important question is how to use these observations to infer astrophysical
parameters and is most commonly approached as a Bayesian inference problem imple-
mented using MCMC techniques as in Greig & Mesinger (2015). An MCMC algorithm
walks through parameter space, evaluating the model in order to map out the poste-
rior distribution for a given data set. This requires a potentially large number of model
evaluations and can thus be prohibitively expensive depending on the execution time
of the model. In order to increase the efficiency with which the posterior of any given
observation may be analysed, instead of evaluating the model at each point in parameter
space, we propose to emulate the model using an artificial neural network (ANN) (eg.
Shimabukuro & Semelin 2017). Specifically, we use an ANN to emulate the output of
21cmFAST (Mesinger & Furlanetto 2007) simulations used in a Bayesian likelihood anal-
ysis and study the effect of training set size on the predictions of the network (Schmit
& Pritchard 2017). We compare our emulated parameter inference results to those of
21CMMC from Greig & Mesinger (2015).
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Figure 1. Flow chart describing our use of an ANN as an emulator. Neural Networks require a
set of training data to determine the weights used to predict the ANN outputs. We illustrate a
set of training data in A) consisting of input - output pairs of parameter values and 21cm power
spectra, which is passed to the network in B). Once the ANN is sufficiently trained, we use it
to predict the value of the power spectrum at any given parameter set, illustrated by C).

2. Methods
Let x be a set of input parameters for a simulation, and suppose the output is given

by y = f(x), where f is expensive to compute. Emulating the simulation is based on
an approximate calculation of ỹ = f̃(x), where f̃ is a fast approximation of the true
simulation. For our purposes, we seek to emulate the calculation of the 21cm power
spectrum in a number of specified k bins i.e. y = {P (ki |θ)}, where the subscript specifies
the bin, for a restricted set of astrophysics parameters, θ = (ζ, Tvir , Rmfp). We can then
use our emulation P̃ (ki |θ) to make rapid evaluations of the likelihood,

lnL =
∑

i

[Pobs(ki) − P (ki |θ)]2

2PN (ki)
, (2.1)

with P → P̃ , where Pobs is an observed or mock data set, and PN is the noise power
spectrum associated with a specified instrument.

Here, we use a neural network as our emulation technique (see Figure 1 B). Using a set
of training data, a neural network finds a mapping between input and output data, which
is sensitive to the key features of the training set via a supervised learning algorithm.
This mapping can then be used on unknown data where the neural network uses its
acquired knowledge of the system to infer an output. A neural network consists of three
types of layers each consisting of a set of nodes or neurons. The input layer takes Ni data
points into Ni input nodes from which we want to predict some output. Each node in
the input layer is connected to all of Nj nodes in the first of L hidden layers via some
weight w

(1)
ij . The input to the nodes in the hidden layer is a linear combination of the

input data and the weights,

s
(1)
j =

Ni∑
i=1

xiw
(1)
ij . (2.2)

A neuron is then activated by some activation function g : IR → IR. We use a sigmoid
activation function, g(s) = 1/(1 + e−s). This activation step can be interpreted as each
neuron having specialised on a certain feature in the system (Gal 2016) and when the data
reflects this feature the neuron will be activated. The output from the neuron activation
is then fed into the next hidden layer as input, such that the jth neuron in the lth hidden
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layer, for 1 < l � L, computes,

t
(l)
j = g

(
s

(l)
j

)
, where s

(l)
j =

Nj∑
i=1

t
(l−1)
i w

(l)
ij . (2.3)

Finally, the output layer combines the outputs from the final hidden layer into Nk desired
output values,

yk =
Nj∑
i=1

t
(L)
i w

(L+1)
ik . (2.4)

The weights between neurons w
(l)
ij are obtained during the training of the network,

where we apply the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algo-
rithm (Mcloone et al. 2002) to minimize the mean-square error between the true value
provided by the training data and the value predicted by the network.

3. Analysis
We train our network on a variety of training sets obtained from evaluating 21cmFAST

on a latin hypercube sample, as this guarantees homogeneous sampling of parameter
space and allows for sensible scaling to higher dimensions. Using a mock observation,
assuming a HERA331 design, we combine the predictions at redshifts 8, 9, and 10, to
sample the likelihood and determine the error contours using both our ANN emulator
and the brute force method of Greig & Mesinger (2015).

Similar to Kern et al. (2017), we find a significant speed-up for the parameter estima-
tion. For our fiducial chain size, we observe a speed up by 3 orders of magnitude for the
sampling of the likelihood by emulation compared to the brute-force method. In addition
to the sampling, the Neural Network training requires on the order of ∼ 1 minute for 100
training samples to ∼ 1 hour for 104 training samples, using a commercial CPU, which
is not needed when evaluating the model at each point. However, compared to the total
runtime of 21CMMC the training time presents a minor factor.

Figure 2 shows the contraints obtained when combining observations in three redshift
bins at z = 8, 9 and 10 for training sets of 100 and 1000 samples per redshift in panels
A and B respectively. We find that our fiducial parameter values are well recovered by
the 1σ confidence intervals. Although the contours for 100 training samples present a
visibly worse fit, they too recover the fiducial values. As our recovered confidence regions
are not gaussian, we compute the median and 68% confidence intervals around them,
and compare them to those obtained from 21CMMC in table 1. We observe that errors
retrieved by our network can be smaller than those obtained by 21CMMC, this is due to
systematics. During the training period, our ANN constructs a model which approximates
21cmFAST and we proceed to sample the likelihood of the approximation. Therefore, any
difference between the recovered 68% confidence intervals is most likely due to systematic
difference between the two models that are sampled. We estimate that we are subject to
these systematic effects on the 1% - 10% level for large to small training sets.

4. Conclusions
With a speed-up of ∼ 3 orders of magnitude, 21cm power spectrum emulation can

be used for a variety of new or existing analyses. By varying the experimental layout
or survey strategy, we effectively vary the noise power spectrum PN (k) in Equation 2.1,
and can thus fit the optimal layout or survey strategy, making 21cm power spectrum
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Table 1. Median values and 68% confidence interval found in the parameter search via the
brute-force method (21CMMC) and our ANN emulation. The fiducial parameter values are
given by (ζ, Rm fp , log Tvir ) = (30, 15, 4.48).

Code - Training Set z ζ Rm fp log Tvir

21CMMC 8,9,10 31.08+8 .70
−6 .04 15.15+2 .86

−3 .21 4.51+0 .17
−0 .17

ANN - 100 LHS 8,9,10 31.51+8 .57
−6 .32 15.86+2 .47

−3 .62 4.49+0 .16
−0 .19

ANN - 1000 LHS 8,9,10 31.18+8 .47
−6 .08 14.97+2 .91

−3 .78 4.51+0 .16
−0 .17

Figure 2. Comparisons between the recovered 1σ and 2σ confidence regions of 21CMMC (red
dashed lines) and our ANN emulator (blue solid lines) combining redshifts z = 8, z = 9, and
z = 10. Panel A shows the recovered contours for an ANN trained on 100 training sets sampled
from a latin hypercube. Panel B shows the results when training the emulator on 1000 latin
hypercube samples. The dashed vertical and horizontal lines indicate the true parameter values
of the mock observation, (ζ, Rm fp , log Tvir ) = (30, 15, 4.48).

emulators useful for experimental design studies. Further, finding accurate results for
as few as 100 training samples may open up the possibility to move away from semi-
numerical models such as 21cmFAST and for the first time use radiative transfer codes
in EoR parameter searches (eg. Iliev et al. 2006). Semelin et al. (2017) have produced
a data base of 45 evaluations of their fully numerical model which could be used as a
training set for an emulator analysis. Finally, Bayesian model comparison analyses could
benefit greatly from fast model evaluations via ANN emulation.
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