LIFTING DERIVATIONS AND *n*-WEAK AMENABILITY OF THE SECOND DUAL OF A BANACH ALGEBRA

S. BAROOTKOOB and H. R. EBRAHIMI VISHKI[™]

(Received 9 March 2010)

Abstract

We show that for $n \ge 2$, *n*-weak amenability of the second dual A^{**} of a Banach algebra A implies that of A. We also provide a positive answer for the case n = 1, which sharpens some older results. Our method of proof also provides a unified approach to give short proofs for some known results in the case where n = 1.

2000 *Mathematics subject classification*: primary 46H20; secondary 46H25. *Keywords and phrases*: weak amenability, *n*-weak amenability, derivation, second dual, Arens product.

The concept of *n*-weak amenability was initiated and intensively developed by Dales *et al.* [3]. A Banach algebra \mathcal{A} is said to be *n*-weakly amenable $(n \in \mathbb{N})$ if every (bounded) derivation from \mathcal{A} into $\mathcal{A}^{(n)}$ (the *n*th dual of \mathcal{A}) is inner. Trivially, 1-weak amenability is nothing more than weak amenability, which was first introduced and intensively studied by Bade *et al.* [2] for commutative Banach algebras and then by Johnson [9] for a general Banach algebra.

We equip the second dual A^{**} of A with its first Arens product and focus on the following question which is of special interest, especially for the case when n = 1.

Does *n*-weakly amenability of A^{**} force A to be *n*-weakly amenable?

In the present paper first we shall prove the following theorem.

THEOREM 1. *The answer to the above question is positive for any* $n \ge 2$ *.*

Then we consider the case n = 1, which is a long-standing open problem with a slightly different feature from that of $n \ge 2$. This case has been investigated and partially answered by many authors (see Theorem 6, in which we rearrange some known answers from [5–8]). As a consequence of our general method of proof (for the case n = 1), we present the next positive answer, in which π denotes the product of $\mathcal{A}, \pi^* : \mathcal{A}^* \times \mathcal{A} \to \mathcal{A}^*$ is defined by

$$\langle \pi^*(a^*, a), b \rangle = \langle a^*, \pi(a, b) \rangle, \quad (a^* \in \mathcal{A}^*, a, b \in \mathcal{A}),$$

and $Z_{\ell}(\pi^*)$ is the left topological centre of π^* , (see the next section).

This research was supported by a grant from Ferdowsi University of Mashhad (No. MP88107VIS). © 2010 Australian Mathematical Publishing Association Inc. 0004-9727/2010 \$16.00

THEOREM 2. Let \mathcal{A} be a Banach algebra such that every derivation $D : \mathcal{A} \to \mathcal{A}^*$ satisfies $D^{**}(\mathcal{A}^{**}) \subseteq \mathbb{Z}_{\ell}(\pi^*)$. Then weak amenability of \mathcal{A}^{**} implies that of \mathcal{A} .

As a rapid consequence we get the next result, part (ii) of which sharpens [4, Corollary 7.5] and also [5, Theorem 2.1] (note that $WAP(\mathcal{A}) \subseteq \mathcal{A}^* \subseteq Z_{\ell}(\pi^*)$); indeed, it shows that the hypothesis of Arens regularity of \mathcal{A} in [4, Corollary 7.5] is superfluous.

COROLLARY 3. For a Banach algebra A, in either of the following cases, the weak amenability of A^{**} implies that of A:

- (i) if π^* is Arens regular;
- (ii) if every derivation from A into A^* is weakly compact.

The influence of the impressive paper [7] of Ghahramani *et al.* on our work should be evident. It should finally be remarked that part (ii) of Corollary 3 actually demonstrates what Ghahramani *et al.* claimed in a remark following [7, Theorem 2.3]. Indeed, as we shall see in the proof of Theorem 2, $(J_0)^* \circ D^{**}$ is a derivation $(J_0 : \mathcal{A} \to \mathcal{A}^{**}$ denotes the canonical embedding); however, they claimed that D^{**} is a derivation and in their calculation of limits they used the Arens regularity of \mathcal{A} (see also a remark just after the proof of [4, Corollary 7.5]).

The proofs

To prepare for the proofs, let us first fix some notation and preliminary material. Following the seminal work [1] of Arens, every bounded bilinear map $f : \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$ (on normed spaces) has two natural but, in general, different extensions f^{***} and f^{r***r} from $\mathcal{X}^{**} \times \mathcal{Y}^{**}$ to \mathcal{Z}^{**} . Here the flip map f^r of f is defined by $f^r(y, x) = f(x, y)$, the adjoint $f^* : \mathcal{Z}^* \times \mathcal{X} \to \mathcal{Y}^*$ of f is defined by

$$\langle f^*(z^*, x), y \rangle = \langle z^*, f(x, y) \rangle$$
 $(x \in \mathcal{X}, y \in \mathcal{Y} \text{ and } z^* \in \mathcal{Z}^*),$

and also the second and third adjoints f^{**} and f^{***} of f are defined by $f^{**} = (f^*)^*$ and $f^{***} = (f^{**})^*$, respectively. Continuing this process, one can define the higher adjoints $f^{(n)}$, $(n \in \mathbb{N})$.

We also define the left topological centre $Z_{\ell}(f)$ of f by

$$Z_{\ell}(f) = \{x^{**} \in \mathcal{X}^{**} \mid y^{**} \longrightarrow f^{***}(x^{**}, y^{**}) : \mathcal{Y}^{**} \longrightarrow \mathcal{Z}^{**} \text{ is } w^*\text{-continuous}\}.$$

A bounded bilinear mapping f is said to be Arens regular if $f^{***} = f^{r***r}$, or equivalently $Z_{\ell}(f) = \mathcal{X}^{**}$.

It should be remarked that, in the case where π is the multiplication of a Banach algebra \mathcal{A} , π^{***} and π^{r***r} are actually the first and second Arens products on \mathcal{A}^{**} , respectively. From now on, we only deal with the first Arens product \Box and our results are based on (A^{**}, \Box) . Similar results can be derived if one uses the second Arens product instead of the first.

Consider \mathcal{A} as a Banach \mathcal{A} -module equipped with its own multiplication π . Then $(\pi^{r*r}, \mathcal{A}^*, \pi^*)$ is the natural dual Banach \mathcal{A} -module, in which π^{r*r} and π^* denote its left and right module actions, respectively. Similarly, the *n*th dual $\mathcal{A}^{(n)}$ of \mathcal{A} can be made into a Banach \mathcal{A} -module in a natural fashion. A direct verification reveals that $(\pi^{(3n)}, \mathcal{A}^{(2n)}, \pi^{(3n)})$ is a Banach \mathcal{A}^{**} -module. It induces the natural dual Banach \mathcal{A}^{**} -module $(\pi^{(3n)r*r}, \mathcal{A}^{(2n+1)}, \pi^{(3n+1)})$ which will be used in the following. Note that we also have $(\pi^{r*r(3n)}, \mathcal{A}^{(2n+1)}, \pi^{(3n+1)})$ as a Banach \mathcal{A}^{**} -module induced by $(\pi^{r*r}, \mathcal{A}^*, \pi^*)$. It should be mentioned that these two actions on $\mathcal{A}^{(2n+1)}$ do not coincide, in general. For more information on the equality of these actions in the case where n = 1, see [4, 10].

From now on, we identify (an element of) a normed space with its canonical image in its second dual; however, we also use $J_n : \mathcal{A}^{(n)} \to \mathcal{A}^{(n+2)}$ for the canonical embedding.

We require the following lemma.

LEMMA 4. Let \mathcal{A} be a Banach algebra, $n \in \mathbb{N}$ and let $D : \mathcal{A} \to \mathcal{A}^{(2n-1)}$ be a derivation.

(i) If $n \ge 2$ then $[(J_{2n-2})^* \circ D^{**}] : \mathcal{A}^{**} \to \mathcal{A}^{(2n+1)}$ is a derivation.

(ii) For n = 1, $[(J_0)^* \circ D^{**}]: \mathcal{A}^{**} \to \mathcal{A}^{***}$ is a derivation if and only if $\pi^{***r*}(D^{**}(\mathcal{A}^{**}), \mathcal{A}) \subseteq \mathcal{A}^*$.

PROOF. (i) It is enough to show that, for any a^{**} , $b^{**} \in A^{**}$,

$$[(J_{2n-2})^* \circ D^{**}](a^{**} \Box b^{**}) = \pi^{(3n+1)}([(J_{2n-2})^* \circ D^{**}](a^{**}), b^{**}) + \pi^{(3n)r*r}(a^{**}, [(J_{2n-2})^* \circ D^{**}](b^{**})).$$

To this end, let $\{a_{\alpha}\}$ and $\{b_{\beta}\}$ be bounded nets in \mathcal{A} , w^* -converging to a^{**} and b^{**} , respectively. Then

$$D^{**}(a^{**} \Box b^{**}) = w^* - \lim_{\alpha} w^* - \lim_{\beta} D(a_{\alpha}b_{\beta})$$

= $w^* - \lim_{\alpha} w^* - \lim_{\beta} [\pi^{(3n-2)}(D(a_{\alpha}), b_{\beta})$
+ $\pi^{(3n-3)r*r}(a_{\alpha}, D(b_{\beta}))]$
= $\pi^{(3n+1)}(D^{**}(a^{**}), b^{**}) + \pi^{(3n-3)r*r***}(a^{**}, D^{**}(b^{**})).$

For each $a^{(2n-2)} \in \mathcal{A}^{(2n-2)}$,

$$\langle (J_{2n-2})^* (\pi^{(3n-3)r*r***}(a^{**}, D^{**}(b^{**}))), a^{(2n-2)} \rangle$$

$$= \lim_{\alpha} \lim_{\beta} \langle D(b_{\beta}), \pi^{(3n-3)}(a^{(2n-2)}, a_{\alpha}) \rangle$$

$$= \lim_{\alpha} \langle D^{**}(b^{**}), \pi^{(3n-3)}(a^{(2n-2)}, a_{\alpha}) \rangle$$

$$= \lim_{\alpha} \langle [(J_{2n-2})^* \circ D^{**}](b^{**}), \pi^{(3n-3)}(a^{(2n-2)}, a_{\alpha}) \rangle$$

$$= \langle [(J_{2n-2})^* \circ D^{**}](b^{**}), \pi^{(3n)}(a^{(2n-2)}, a^{**}) \rangle$$

$$= \langle \pi^{(3n)r*r}(a^{**}, [(J_{2n-2})^* \circ D^{**}](b^{**})), a^{(2n-2)} \rangle.$$

Since for $n \ge 2$,

$$\pi^{(3n)}(\mathcal{A}^{**}, \mathcal{A}^{(2n-2)}) = \pi^{(3n-3)}(\mathcal{A}^{**}, \mathcal{A}^{(2n-2)})$$
$$\subseteq \pi^{(3n-3)}(\mathcal{A}^{(2n-2)}, \mathcal{A}^{(2n-2)}) \subseteq \mathcal{A}^{(2n-2)}$$

(note that the same inclusion may not be valid for the case n = 1; indeed, it holds if and only if $\pi^{***}(\mathcal{A}^{**}, \mathcal{A}) \subseteq \mathcal{A}$, or equivalently, \mathcal{A} is a left ideal in $\mathcal{A}^{**}!$), we get $\pi^{(3n)}(b^{**}, a^{(2n-2)}) \in \mathcal{A}^{(2n-2)}$ and so

$$\langle (J_{2n-2})^* (\pi^{(3n+1)}(D^{**}(a^{**}), b^{**})), a^{(2n-2)} \rangle = \langle D^{**}(a^{**}), \pi^{(3n)}(b^{**}, a^{(2n-2)}) \rangle = \langle [(J_{2n-2})^* \circ D^{**}](a^{**}), \pi^{(3n)}(b^{**}, a^{(2n-2)}) \rangle = \langle \pi^{(3n+1)}([(J_{2n-2})^* \circ D^{**}](a^{**}), b^{**}), a^{(2n-2)} \rangle.$$

Therefore

$$[(J_{2n-2})^* \circ D^{**}](a^{**} \Box b^{**}) = (J_{2n-2})^* (\pi^{(3n+1)}(D^{**}(a^{**}), b^{**})) + (J_{2n-2})^* (\pi^{(3n-3)r*r***}(a^{**}, D^{**}(b^{**}))) = \pi^{(3n+1)}([(J_{2n-2})^* \circ D^{**}](a^{**}), b^{**}) + \pi^{(3n)r*r}(a^{**}, [(J_{2n-2})^* \circ D^{**}](b^{**})),$$

as required.

For (ii), examining the above proof for the case n = 1 shows that $(J_0)^* \circ D^{**}$: $\mathcal{A}^{**} \to \mathcal{A}^{***}$ is a derivation if and only if

$$(J_0)^*(\pi^{****}(D^{**}(a^{**}), b^{**})) = \pi^{****}([(J_0)^* \circ D^{**}](a^{**}), b^{**}) \quad (a^{**}, b^{**} \in \mathcal{A}^{**}),$$

which holds if and only if

$$\langle \pi^{****}(D^{**}(a^{**}), b^{**}), a \rangle = \langle \pi^{****}([(J_0)^* \circ D^{**}](a^{**}), b^{**}), a \rangle \quad (a \in \mathcal{A});$$

or equivalently,

$$\langle \pi^{***r*}(D^{**}(a^{**}), a), b^{**} \rangle = \langle \pi^{***r*}([(J_0)^* \circ D^{**}](a^{**}), a), b^{**} \rangle.$$

As

$$\pi^{***r*}([(J_0)^* \circ D^{**}](a^{**}), a) = \pi^{**r}([(J_0)^* \circ D^{**}](a^{**}), a) \in \mathcal{A}^*$$

and also

$$\pi^{***r*}(D^{**}(a^{**}), a)|_{\mathcal{A}} = \pi^{**r}([(J_0)^* \circ D^{**}](a^{**}), a),$$

the map $[(J_0)^* \circ D^{**}] : \mathcal{A}^{**} \to \mathcal{A}^{***}$ is a derivation if and only if $\pi^{***r*}(D^{**}(a^{**}), a) \in \mathcal{A}^*$, as claimed.

We are now ready to present the proofs of the main results.

PROOF OF THEOREM 1. Let $n \in \mathbb{N}$, let $D : \mathcal{A} \to \mathcal{A}^{(2n)}$ be a derivation and let $a^{**}, b^{**} \in A^{**}$. As $(\pi^{(3n+3)}, \mathcal{A}^{(2n+2)}, \pi^{(3n+3)})$ is a Banach \mathcal{A}^{**} -module, a standard

double limit process argument—similar to what has been used at the beginning of the proof of the preceding lemma—shows that $D^{**} : \mathcal{A}^{**} \to \mathcal{A}^{(2n+2)}$ satisfies

$$D^{**}(a^{**} \Box b^{**}) = \pi^{(3n+3)}(D^{**}(a^{**}), b^{**}) + \pi^{(3n+3)}(a^{**}, D^{**}(b^{**})).$$

Therefore D^{**} is a derivation and so (2*n*)-weak amenability of \mathcal{A}^{**} implies that $D^{**} = \delta_{a^{(2n+2)}}$ for some $a^{(2n+2)} \in \mathcal{A}^{(2n+2)}$. We obtain $D = \delta_{(J_{2n-1})^*(a^{(2n+2)})}$. Thus *D* is inner and so \mathcal{A} is (2*n*)-weakly amenable.

For the odd case, suppose that \mathcal{A}^{**} is (2n - 1)-weakly amenable and let $D : \mathcal{A} \to \mathcal{A}^{(2n-1)}$ be a derivation. Then, as we have seen in Lemma 4, when $n \ge 2$ the mapping

$$[(J_{2n-2})^* \circ D^{**}] : \mathcal{A}^{**} \to \mathcal{A}^{(2n+1)}$$

is a derivation. But then, by the assumption, $[(J_{2n-2})^* \circ D^{**}] = \delta_{a^{(2n+1)}}$ for some $a^{(2n+1)} \in \mathcal{A}^{(2n+1)}$. It follows that $D = \delta_{(J_{2n-2})^*(a^{(2n+1)})}$, so that D is inner, as claimed.

PROOF OF THEOREM 2. Let a^{**} , $b^{**} \in \mathcal{A}^{**}$, $a \in \mathcal{A}$ and let $\{a_{\alpha}^{**}\}$ be a net in $\mathcal{A}^{**} w^*$ -converging to a^{**} . As $D^{**}(b^{**}) \in Z_{\ell}(\pi^*)$,

$$\begin{split} \lim_{\alpha} \langle \pi^{***r*}(D^{**}(b^{**}), a), a_{\alpha}^{**} \rangle &= \lim_{\alpha} \langle D^{**}(b^{**}), \pi^{***}(a_{\alpha}^{**}, a) \rangle \\ &= \lim_{\alpha} \langle \pi^{****}(D^{**}(b^{**}), a_{\alpha}^{**}), a \rangle \\ &= \langle \pi^{****}(D^{**}(b^{**}), a^{**}), a \rangle \\ &= \langle D^{**}(b^{**}), \pi^{***}(a^{**}, a) \rangle \\ &= \langle \pi^{**r*}(D^{**}(b^{**}), a), a^{**} \rangle. \end{split}$$

This means that $\pi^{***r*}(D^{**}(b^{**}), a) \in \mathcal{A}^*$, so that $(J_0)^* \circ D^{**}$ is derivation by Lemma 4. Now by the assumption $(J_0)^* \circ D^{**} = \delta_{a^{***}}$, for some $a^{***} \in \mathcal{A}^{***}$, and it follows that $D = \delta_{(J_0)^*(a^{***})}$, so that \mathcal{A} is weakly amenable.

Further consequences

Recall that for a derivation $D: \mathcal{A} \to \mathcal{A}^*$ the second adjoint D^{**} is a derivation if and only if

$$\pi^{r*r***}(a^{**},\,D^{**}(b^{**}))=\pi^{***r*r}(a^{**},\,D^{**}(b^{**})),$$

for every $a^{**}, b^{**} \in \mathcal{A}^{**}$, or equivalently $\pi^{****}(D^{**}(\mathcal{A}^{**}), \mathcal{A}^{**}) \subseteq \mathcal{A}^{*}$; see [4, Theorem 7.1] and also [10, Theorem 4.2] for a more general case. As Lemma 4 demonstrates, $(J_0)^* \circ D^{**}$ is a derivation if and only if $\pi^{****}(D^{**}(\mathcal{A}^{**}), \mathcal{A}) \subseteq \mathcal{A}^{*}$. In the next result we investigate the interrelation between D^{**} and $(J_0)^* \circ D^{**}$.

PROPOSITION 5. Let $D : A \to A^*$ be a derivation.

- (i) If D^{**} is a derivation and $A^{**} \Box A = A^{**}$ then $(J_0)^* \circ D^{**}$ is a derivation.
- (ii) If $(J_0)^* \circ D^{**}$ is a derivation and \mathcal{A} is Arens regular then D^{**} is a derivation.

PROOF. (i) As $\mathcal{A}^{**} \Box \mathcal{A} = \mathcal{A}^{**}$, for each $b^{**} \in \mathcal{A}^{**}$ there exist $a^{**} \in \mathcal{A}^{**}$ and $a \in \mathcal{A}$ such that $a^{**} \Box a = b^{**}$. Then

$$\begin{aligned} \pi^{***r*}(D^{**}(b^{**}), b) &= \pi^{***r*}(D^{**}(a^{**} \Box a), b) \\ &= \pi^{**r*}(\pi^{****}(D^{**}(a^{**}), a) + \pi^{**r*r}(a^{**}, D(a)), b) \\ &= \pi^{r*}(\pi^{****}(D^{**}(a^{**}), a) + \pi^{**}(a^{**}, D(a)), b) \in \mathcal{A}^*. \end{aligned}$$

It follows from Lemma 4 that $(J_0)^* \circ D^{**}$ is a derivation.

(ii) Since $(J_0)^* \circ D^{**}$ is a derivation,

$$(J_0)^*(\pi^{****}(D^{**}(a^{**}), b^{**})) = \pi^{****}([(J_0)^* \circ D^{**}](a^{**}), b^{**}) \quad (a^{**}, b^{**} \in \mathcal{A}^{**}).$$

Let $\{a_{\alpha}\}\$ be a bounded net in \mathcal{A} , w^* -converging to a^{**} . Then as \mathcal{A} is Arens regular,

$$\langle \pi^{r*r***}(a^{**}, D^{**}(b^{**})), c^{**} \rangle = \lim_{\alpha} \langle \pi^{r*r**}(D^{**}(b^{**}), c^{**}), a_{\alpha} \rangle$$

$$= \lim_{\alpha} \langle (J_0)^*(\pi^{****}(D^{**}(b^{**}), c^{**})), a_{\alpha} \rangle$$

$$= \lim_{\alpha} \langle \pi^{****}([(J_0)^* \circ D^{**}](b^{**}), c^{**}), a_{\alpha} \rangle$$

$$= \lim_{\alpha} \langle [(J_0)^* \circ D^{**}](b^{**}), \pi^{***}(c^{**}, a_{\alpha}) \rangle$$

$$= \langle [(J_0)^* \circ D^{**}](b^{**}), \pi^{***}(c^{**}, a^{**}) \rangle$$

$$= \langle \pi^{***r*r}(a^{**}, D^{**}(b^{**})), c^{**} \rangle,$$

for all $c^{**} \in \mathcal{A}^{**}$. Therefore D^{**} is a derivation.

As a by-product of our method of proof we provide a unified approach to new proofs for some known results for the case where n = 1.

THEOREM 6. In the following three cases, weak amenability of A^{**} implies that of A:

- (i) A is a left ideal in A^{**} [7, Theorem 2.3];
- (ii) A is a dual Banach algebra [6, Theorem 2.2];
- (iii) \mathcal{A} is a right ideal in \mathcal{A}^{**} and $\mathcal{A}^{**} \Box \mathcal{A} = \mathcal{A}^{**}$; [5, Theorem 2.4].

PROOF. In each case it suffices to show that for a derivation $D: \mathcal{A} \to \mathcal{A}^*$ the map $(J_0)^* \circ D^{**}: \mathcal{A}^{**} \to \mathcal{A}^{***}$ is also a derivation, or equivalently, $\pi^{***r*}(D^{**}(\mathcal{A}^{**}), \mathcal{A}) \subseteq \mathcal{A}^*$.

(i) If \mathcal{A} is a left ideal in \mathcal{A}^{**} , i.e. $\mathcal{A}^{**} \Box \mathcal{A} \subseteq \mathcal{A}$, then for each $a^{**}, b^{**} \in A^{**}$, $a \in \mathcal{A}$,

$$\begin{aligned} \langle \pi^{***r*}(D^{**}(a^{**}), a), b^{**} \rangle &= \langle D^{**}(a^{**}), b^{**} \Box a \rangle \\ &= \langle \pi^{**rr*}([(J_0)^* \circ D^{**}](a^{**}), a), b^{**} \rangle \\ &= \langle \pi^{**r}([(J_0)^* \circ D^{**}](a^{**}), a), b^{**} \rangle. \end{aligned}$$

Therefore

$$\pi^{***r*}(D^{**}(a^{**}), a) = \pi^{**r}([(J_0)^* \circ D^{**}](a^{**}), a) \in \mathcal{A}^*,$$

as required.

127

- (ii) Let \mathcal{A} be a dual Banach algebra with a predual \mathcal{A}_* . It is easy to verify that $(J_0)^* \circ D^{**} = D \circ (J_{\mathcal{A}_*})^*$, where $J_{\mathcal{A}_*} : \mathcal{A}_* \to \mathcal{A}^*$ denotes the canonical embedding. Now using the fact that $(J_{\mathcal{A}_*})^* : \mathcal{A}^{**} \to \mathcal{A}$ is a homomorphism, a direct verification shows that $D \circ (J_{\mathcal{A}_*})^*$ is a derivation.
- (iii) To show that (J₀)* D**: A** → A*** is a derivation, by Proposition 5 we only need to show that D** is a derivation. This was done in the proof of [5, Theorem 2.4], but we also give the following somewhat shorter proof for it. Let a**, b**, c**, d** ∈ A** and a ∈ A such that d** □ a = b**. As a □ c** ∈ A,

$$\begin{aligned} \langle \pi^{****}(D^{**}(a^{**}), b^{**}), c^{**} \rangle &= \langle \pi^{****}(D^{**}(a^{**}), d^{**} \Box a), c^{**} \rangle \\ &= \langle \pi^{****}(D^{**}(a^{**}), d^{**}), a \Box c^{**} \rangle \\ &= \langle \pi^{*}((J_0)^{*}(\pi^{****}(D^{**}(a^{**}), d^{**})), a), c^{**} \rangle. \end{aligned}$$

We thus have

$$\pi^{****}(D^{**}(a^{**}), b^{**}) = \pi^*((J_0)^*(\pi^{****}(D^{**}(a^{**}), d^{**})), a) \in \mathcal{A}^*,$$

and this says that $\pi^{****}(D^{**}(\mathcal{A}^{**}), \mathcal{A}^{**}) \subseteq \mathcal{A}^*$, as required.

Acknowledgement

The useful comments of the anonymous referee are gratefully acknowledged.

References

- [1] A. Arens, 'The adjoint of a bilinear operation', Proc. Amer. Math. Soc. 2 (1951), 839–848.
- [2] W. G. Bade, P. C. Curtis and H. G. Dales, 'Amenability and weak amenability for Beurling and Lipschitz algebras', *Proc. London Math. Soc.* 55 (1987), 359–377.
- [3] H. G. Dales, F. Ghahramani and N. Grønbæk, 'Derivations into iterated duals of Banach algebras', *Studia Math.* 128(1) (1998), 19–54.
- [4] H. G. Dales, A. Rodrigues-Palacios and M. V. Velasco, 'The second transpose of a derivation', J. London Math. Soc. 64(2) (2001), 707–721.
- [5] M. Eshaghi Gordji and M. Filali, 'Weak amenability of the second dual of a Banach algebra', *Studia Math.* 182(3) (2007), 205–213.
- [6] F. Ghahramani and J. Laali, 'Amenability and topological centres of the second duals of Banach algebras', Bull. Aust. Math. Soc. 65 (2002), 191–197.
- [7] F. Ghahramani, R. J. Loy and G. A. Willis, 'Amenability and weak amenability of the second conjugate Banach algebras', *Proc. Amer. Math. Soc.* **124** (1996), 1489–1497.
- [8] A. Jabbari, M. S. Moslehian and H. R. E. Vishki, 'Constructions preserving *n*-weak amenability of Banach algebras', *Math. Bohem.* 134(4) (2009), 349–357.
- [9] B. E. Johnson, 'Weak amenability of group algebras', *Bull. London Math. Soc.* 23 (1991), 281–284.
- [10] S. Mohammadzadeh and H. R. E. Vishki, 'Arens regularity of module actions and the second adjoint of a derivation', *Bull. Aust. Math. Soc.* 77 (2008), 465–476.

128

129

S. BAROOTKOOB, Department of Pure Mathematics, Ferdowsi University of Mashhad, PO Box 1159, Mashhad 91775, Iran e-mail: sbk_923@yahoo.com

H. R. EBRAHIMI VISHKI, Department of Pure Mathematics and Centre of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, PO Box 1159, Mashhad 91775, Iran e-mail: vishki@um.ac.ir