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ON A REFLECTED ORNSTEIN-UHLENBECK PROCESS
WITH AN APPLICATION

F.A. ATTIA

The resolvent operator and the moment generating function of a reflected Ornstein-
Uhlenbeck process are obtained. These results are then applied to determine the
long-run average cost and the total expected discounted cost of operating a finite
storage system with content-dependent release rate.

1. INTRODUCTION

Reflected diffusion processes have been used in physical, biological and engineer-
ing models. Specifically such models arise in population dynamics (Ricciardi [9]), in
diffusion approximation to queueing systems (Giorno, Nobile and Ricciardi [5]) and in
storage models. In storage models it is sometimes desirable to have the content pro-
cess take only non-negative values. This could be accomplished by setting a reflecting
boundary at the zero level (Attia and Brockwell [4]).

The purpose of this study is to investigate a reflected Ornstein-Uhlenbeck (OU)
process {Z(t), t > 0} which arises as a solution of a storage equation and to illustrate
how these results could be applied in a storage model.

In Section 2 we shall obtain the resolvent operator of Z, the moment generating
function (mgf) of the first hitting time Ty = inf{< ^ 0 : Z(t) — y} and the expected
total occupation time of [0, y], J/ € (0, oo). These results are then used via a limiting
procedure to obtain explicit expressions for the cost and reward functionals that arise
in Section 3. In that section we shall obtain the long-run average cost and the expected
total discounted cost of operating a finite dam with content dependent release rate.
These results modify and extend those obtained by Zuckerman [10], Lam Yeh [8] and
Attia [3].
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520 F.A. Attia [2]

2. A REFLECTED ORNSTEIN-UHLENBECK PROCESS

The stochastic differential equation

= dX(i)-r(Z(t))

is encountered in storage modelling where X(t) is the input in (0, t], Z(t) is the content
and r(Z(t)) is the content-dependent release rate at time t.

In this section we shall consider X[t), t ^ 0 to be a Wiener process with drift y.
and variance parameter <r2 reflected at 0. Also, we shall assume that r(-) is a linearly
increasing function. Thus the above storage equation is of the form

(2.1) dZ(t) = dX(t) - kZ(i),

where fc is a positive constant. If Z(0) = z, then an argument generalising the one
used by Karlin and Taylor [7, p.345] shows that the solution of the differential equation
(2.1), that is,

(2.2) Z(t) = ze~zt + X(i) -k [ e"*(t

Jo
is the Ornstein-Uhlenbeck (OU) process with drift —kz + /i and variance parameter a2

reflected at 0.

The transition semi-group of the process Z{t) is characterised by its generator

(2.3) \

where the domain A is

V(A) = {fEC2[0,oo):f(0)=,0}

and C2 is the class of twice continuously difFerentiable functions on [0, oo).

THE RESOLVENT OPERATOR OF Z.

The resolvent operator of a process Z is defined by

M') • = R°f(*)

= EZ l°° e-atf(Z(t))dt
Jo

where Ez is the expectation conditional on Z[Qi) = z. To determine Raf(z), we note
that <pa(z) G V(A) and thus satisfies the resolvent equation

(2.4)

where Va(0) = 0 ant^ 9a(z) ls bounded on [0, oo) .
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[3] Reflected Ornstein-Uhlenbeck process 521

Now, expressions (2.3) and (2.4) give the differential equation

(2.5) vl{z) - (2{kz - y.)l<r2)<p'a{z) - (2a/«r>-(*) = -(2/cr2)/(z).

The homogeneous differential equation in (2.5) has the two independent solutions
(Kamke [6, p.416])

and

where

(a + fe)(q + 3t) • • • (a + fe(2n - 1)) , 2 n + 1

*»(2» + l)! *

(2.6) i = i{z) = V2k(z -

We note that <pa,i{y) and <pa,2{y) have the following Taylor expansions in the
neighbourhood of a = 0:

(2-7) V-.i(0 f ;
n=l n=l

where for example

= 1 and 60(0 = ^ + ^ s + ^ +

The coefficient &o(O is related to Rummer's function (Abramowitz and Stegun [1,
p.504]) by

where M(u, v, z) =
n=i v •"*

(u)n = u(u + l)...(u + n-l) and w0 = 1.

Finally, a solution of (2.5) which could be extended such that <fa{x) £ ~D(A) is

(2.8) Raf(z) = <pa,i(Z<
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where £(.) is given by (2.6) and

(2.9) *(*, y; fc(«.)). /(•)) = /"«p{-*2(u)/2}h(t(u))f(u)du.
Jx

THE MGF OF Ty.

Let g(.) be a measurable function on [0, co). Now, Dynkin's formula (see for
example [7, p.297]) applied to the Markov time Ty gives

(2.10) Et I e-atg(Z(t))dt = Rag{x) - Rag(y)Ex[exP{-aTy}], x^y,
Jo

where Ex is the expectation conditional on Z(0) = x. From expression (2.10) it follows
immediately that the moment generating function of Ty is given by

- aRaIy(x)
(2.11) Ex[exp{-aTy}} =

l-aRaIy(yy
where Iy(.) := I[o,y](-) is the indicator function of the set [0, y]. From (2.8), we note
that

(2.12) RaIy(x) = p«,i(«*))[l + *(0, y; ̂ a.a(«.)), 1(0)1

where 1(.) is the identity function.

To obtain the conditional expectation of Ty we proceed as follows. First we combine
(2.10) and (2.11), then we appeal to the monotone convergence theorem to obtain

(2.13) E. I V g{Z(t))dt = Mm[Rag(x) - Rag(y)].
Jo «i°

If we now substitute from (2.8) into (2.13), we have

Em I* 9{Z{t))dt = 6(0, x; 60tf (•)), <K0) " *o(«*))*(O, *; 1(0, ff(0)

- 8(0, y; 4o(«0), 5(0) + *oK(v))*(O, y\ 1(0, g(-))-

Finally, ExTy follows immediately from the above expression by replacing the function

5(0 by 1(.).

THE EXPECTED OCCUPATION TIME OF [0, y].

For I , I / 6 [0, oo), x ^ y, expressions (2.12) and (2.7) give

where ^

<*(*(*)) = 1 + *(0, y; »o(«0), 1(0) " bo(((x))6(0, y; 1(0, 1(0)

is the expected total occupation time of [0, y].
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3. APPLICATION TO A STORAGE MODEL WITH CONTENT-DEPENDENT RELEASE RATE

Consider a finite storage system, for example a dam with capacity a. We shall
assume that the dam is initially empty. The input to the dam in the time interval
[0, t], X(t) is a Wiener process with drift y. and variance parameter a2 with reflecting
boundaries at 0 and a. In this section we shall determine the long-run average cost
per unit time and the total expected discounted cost of operating the storage system.

We shall consider the following optimal output policy in the class of monotone
policies P$fT • The release rate is kept at 0 until the content level reaches A (0 < A < o)
at which instant the water is released at a content-dependent rate r(Z(t)) with cost
Kr(X), where K is a positive constant. As long as the content level is more than
T (0 < T < A), the output is kept at the rate r(Z(t)). When the content reaches T,
the output rate is then decreased to zero at no extra cost (we note here that adding
a constant shut-off cost per unit of water released is a trivial extension to our model).
Rewards are collected at an output-dependent rate w(r(Z(t))). We also consider a
penalty cost which accrues continuously at a rate g(Z(t)). Here the functions g and
w are bounded measurable functions with support [0, a]. In what follows we shall
consider the release rate r(.) to be a linearly increasing function of the content. Thus
r(z) = kz, z > 0 and r(0) = 0, where ife is a positive constant.

(A) THE LONG-RUN AVERAGE COST. If there is no release from the dam, the content
process Z(t) is the process X(t) killed at T\, that is, Z(t) is a Wiener process with drift
fi and variance parameter <r2 and reflecting boundary at 0. The transition probabilities
of Z{t) are defined in terms of the generator

Gf(z) = \o*r{*) + M/'(*), * 6 [0, a),

where the domain of Q is

When there is a content-dependent release rate r(.) from the dam, the content
process satisfies the storage equation (2.1). In the case when r(z) = kz and Z(0) — z,
the solution of the stochastic differential equation (2.1) is the OU process (2.2).

Now, let us define the following stopping times for the content process Z(t):

To = inf {t > 0 : Z(t) = A}, T'o = inf {f > To : Z{i) = T } ,

Tn = inf{« > T ;_J : Z(t) = A}, n = 1, 2, . . .

and T ; = inf{t > Tn : Z{t) = r},n = 1,2, . . . .
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The successive returns of Z to the state T , that is, the Markov times T'0,T[, ... form
a sequence of delayed regeneration times for Z.

Clearly, when there is no release from the dam the cost due to the penalty function

s(-) ^
C0(r, \) = ET I g(Z(t))dt.

Jo

On the other hand, when r(z) = kz the cost and the income functional are given
respectively by

(3.1) CP(A, r) = Ea.x f °"T g{Z*(t))dt
Jo

(3.2) Rr(X, T) = Ea.x f "~T w(kZ*(t))dt,
Jo

where Z*[t) is the process (2.2) killed at Ta-T, that is, Z*(i) is an OU process with
drift — kz + fi, z € [0, a] and variance parameter a2 reflected at 0. It is obvious that
Cr(A, r ) — Rr(\, T) is the net cost when the release rate from the dam is non-zero.

Using a renewal argument we can show that the long-run average cost per unit
time of operating the dam under the P£ T policy is given by

- Rr{\, T) + CQ(T, A) + Cr(X, r)

It is clear that C(T, A) as given by (4.3) of [2] is a special case of (3.3) for r(.) = M, a
constant and w = 1. In [2] we obtained the following expressions for the cost functional
CO(T, A) and for the conditional expectation of the hitting time ETT\:

C0(r, A) = (1/M) / g(3)[exp{-0(r - *)+} - exp{-/3(A - s)+}]ds
Jo

and ETTX - ((A - r ) / M ) + ( l /^)[exp{-/8A} - exp{-/3r}],

where x+ is the positive part of x and f} = 2(i/<r2.

To evaluate Cr(X, T ) as given by (3.1), we apply Dynkin's formula to the Markov

time Ta-T to obtain

(3.4) Ea.x I ^ e-atg(Z*(t))dt
Jo

= R'ag(a - A) - R*ag(a - r)Ea-x exp{-aT o _ T }

where

(3.5) * . _ , - ' - - x.l-^Wa-A)

https://doi.org/10.1017/S0004972700029373 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700029373


[7] Reflected Ornstein-Uhlenbeck process 525

The operator ip*a = R^g now satisfies the differential equation (2.5) with the boundary
conditions

<pi = 0 and <pl(o - r ) = 0.

The general solution of the differential equation (2.5) with the above conditions is

(3.6) R'ag(z) = /3, ,(««), ((a - r))S(0, z; V a , i ( « . ) ) . »(•))

where

and 5 is defined by (2.9).

We note from (2.7) and (3.6) that R^g(z) has the following Taylor expansion in
the neighbourhood of a = 0:

(3-7) OC0 =
n=0

where for example

«!(«*)) - M « « - r)) - *o«(*))]«(O, *; 1(.), *(0)/*o(«« - r))

+«(*, o - r; 1(0, g{.)) - S(z, a-r; bo{t{.)), s(0)/*o(«« -

For x, y G [0, o] and x < y we have from (3.6)

y; ̂ , i («0) , 1(0)

+ ( « ) ) « ( / 9 ( « 0 « « - T)) , 1(0).

If we now combine (3.4)-(3.7) and (3.1) we obtain the cost functional

Cr(X, r) = lim[J£j(a - A) - O ( a - r)].

Appeahng to the monotone convergence theorem and utilising (3.7) and (3.8), we have

(3.10)
Cr(A, r) = [&„(£(a - r)) - 6o(e(a - A))]«(0, a - A; 1(0, ff(0)/*o(«« - r))

+ f(a - A, a - T; 1(0, g{.)) -6{a-X,a- r; bo(t{.)), ff(0)/*o(«a - r)).

If we replace the function g(.) by 1(0 and by to(r(0), we obtain explicit expressions for
E\TT and for iZr(A, T) respectively. This completes the determination of the long-run
average cost per unit time of operating the storage system under a Pjf*r policy. The
cost C(T, A) can then be minimised with respect to r and A.
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(B) THE EXPECTED TOTAL DISCOUNTED COST. Following Attia [2] and Zuckerman
[10], the expected discounted cost incurred when the dam is operated under the Pf
policy is given by

oo

(3.11) C«(r, \) = EOY, C»,a(r, A), 0 < a < 1,
n = 0

where Cnia[r,A) is the cost incurred during the time interval [TU-ij Tn), n = 1,2, ...
and CO(T, A) is the cost incurred in the interval [0, To)- A simple renewal argument
together with the strong Markov property applied to expression (3.11) gives

(3 12) C (T \) = E C (T X) + Eoe*P(-aT*)E*CiAr, A)
° ' l-Exexp(-aTT)Erexp(-aTx)'

Clearly £0C0,O(T, \) = Eo f * e-
atg(Z(i))dt.

Jo

Now, using the strong Markov property, the expected discounted cost over the first
cycle could be written in the form

ExC1<a(r, A) = k\K + Ea-X f ' ' e-
atg(Z(*(t)))dt

Jo

-aT*ET I X e-atg(Z(t))dt - Ea.x I "" e-atw(kZ*(t))dt.
Jo Jo

In a recent paper [2] we have shown that, for the reflected Wiener process Z(t)
and for any bounded measurable function / with support [0, y],

(3.13) Et £
V exp (-at)f(Z(t))dt =Raf(x) - } " ^ j * ]

where the resolvent operator of the process Z(t) could be expressed in the form

(3.14) R.fix) = Ex I" e-atf(Z(t))dt
Jo

[
o

the associated kernel Ka(x, y) is given by (see Attia [3])

(3.15)

Ka{x, y) = - exp{(i(y - x)/a2}

1 2 ^ exp{-7(y + x)/<T2} + exp{-7 \y - x\ /a2}] , x, y € [0, o]
L7 + M J
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It is straightforward to show that (3.14) and (3.15) give

(3.16)

Raf(x) = I exp{-x(/x + 7)/<r2} [ ^ £ exp{-(7 - /z)y/<r2}/(y)<fy

+ J exp{(7 + jt)y/o-2}f(y)dy\

1 fa

+ - exp{-x(Ai - 7)/<T-2} / e x p { - ( 7 - f*)y/a2}f{y)dy.

Now, if we substitute / = 1 in (3.13), carry out the integration and then use (3.16), we

get

(3.17)

(7 + /x)exp{(7 - /i)x/a2} + ( 7 - fi) exp{-(7 + n)x/a2}
(7 + /x) exp{(7 - fi)y/cr2} + ( 7 - M) exp{-(7 + y)yl<r2} '

Expressions for EQ[exp{—aTx}] and Er[exp{—aTx}] immediately follow from

(3.13). Substituting from (3.16) and (3.17) with the proper values for x and y gives

explicit expressions for EoCoia(X, T ) and for Er Jo
 A exp{—at}g(Z(t))dt.

Expressions similar to (3.13) and (3.14) hold also for the reflected OU process
Z*(t). An expression corresponding to (3.17) for Ex[exp{—aTT}] is obtained by com-
bining (3.5) and (2.12) with the proper modifications. If we now substitute from (2.8)
and (2.12) in (3.13) with the obvious modifications, we obtain an explicit expression for

Ea_x I " " exp(-at)g{Z*(t))dt.
Jo

An explicit expression for the discounted reward functional

fTa-T

Ea-x I exp(-at)w(kZ*(t))dt
Jo

n

could be obtained when w{.) is the polynomial function w(z) — J3 ettjZ*. In this case

fTa-r
Ea-x I exp(-at)w(kZ*(t))dt

Jo

fTa-T -«« . .
a~X Jo

»=o

»=0
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Dynkin's lemma applied to the Markov time To_r give

Ea-x I "~T e-at(Z*(t))ndt = R*aI
n(a - A) - R*aI

n{a - r ) J5 o _ A {exp ( - a r o _ r ) } ,
Jo

where / " ( . ) is the n t h power function. This completes the determination of the ex-

pected total discounted cost as given by (3.12).

Finally, we note that

lim aCa(r, A) = [1/(EXTT + ETTX)} \k\K - Ea.x [ w(kZ*(t))di

+Er g(Z(t))dt + Ea-X g{Z*(i))dt\
Jo Jo J

which is precisely the long-run average cost per unit time of operating the storage
system when policy P£T is employed.
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