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ABSTRACT
Nonadjacent dependency learning is thought to be a fundamental skill for syntax acquisition and often
assessed via an offline grammaticality judgment measure. Asking judgments of children is
problematic, and an offline task is suboptimal as it reflects only the outcome of the learning process,
disregarding information on the learning trajectory. Therefore, and following up on recent
methodological advancements in the online measurement of nonadjacent dependency learning in
adults, the current study investigates if the recording of response times can be used to establish
nonadjacent dependency learning in children. Forty-six children (mean age: 7.3 years) participated in a
child-friendly adaptation of a nonadjacent dependency learning experiment (López-Barroso, Cucurell,
Rodríguez-Fornells, & de Diego-Balaguer, 2016). They were exposed to an artificial language
containing items with and without nonadjacent dependencies while their response times (online
measure) were measured. After exposure, grammaticality judgments (offline measure) were collected.
The results show that children are sensitive to nonadjacent dependencies, when using the online
measure (the results of our offline measure did not provide evidence of learning). We therefore
conclude that future studies can use online response time measures (perhaps in addition to the offline
grammaticality judgments) to further investigate nonadjacent dependency learning in children.

Keywords: grammaticality judgment; language development; nonadjacent dependency learning;
response time; statistical learning

Statistical learning, the ability to detect structure in the environment, plays a key
role in the development of language, perception, motor skills, and social behavior
(cf. Perruchet & Pacton, 2006). It is not surprising, then, that an increasing
number of studies investigate the relation between individual statistical learning
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performance and cognitive development. A particular type of statistical learning
is nonadjacent dependency learning (NAD-learning). Nonadjacent dependencies
are amply present in natural language. Consider, for example, the relation
between the functional elements is and ing across interleaved lexical elements in
Grandma is singing (example taken from Sandoval & Gómez, 2013). For this
reason, NAD-learning is thought to be fundamental for syntax acquisition (see
review by Erickson & Thiessen, 2015), and in adults, sensivity to nonadjacent
dependencies has shown to predict online processing of long-distance depen-
dencies in relative clauses (Misyak, Chirstiansen, & Tomblin, 2010).
However, the generally used measure of NAD-learning, an offline group-level

grammaticality judgment score (Gómez, 2002), is problematic when evaluating the
learning ability of individuals as this offline measure only quantifies the extent of
learning after a specific period of time (i.e., what is learned). It does not provide
insight in the speed of learning, nor can it disentangle statistical learning from other
processes potentially impacting the offline measure, such as encoding, memory
capacity, and decision-making biases (i.e., how learning occurs; Siegelman, Bogaerts,
Kronenfeld, & Frost, 2017). Therefore, a growing body of research stresses the
importance of using measures that provide information on the individual learning
trajectory and/or the various processes involved in NAD-learning (López-Barroso,
Cucurell, Rodríguez-Fornells, & de Diego-Balaguer, 2016; Misyak et al., 2010).
In the classical offline NAD-learning task, participants are exposed to strings of

an artificial language. The strings consist of three pseudowords that, unbe-
knownst to the participant, contain nonadjacent dependencies. The strings have
the form a X b, c X d, e X f with the initial and final elements forming a
dependency pair. The intervening X-elements vary and are usually taken from a
pool of different pseudowords (e.g., wadim, kasi; Gómez, 2002). After a certain
period of exposure to the artificial language, participants perform a grammati-
cality judgment task in which they are tested with strings that either conform to
the nonadjacent dependency rules or violate the nonadjacent dependency rules. If
participants’ proportion of correct answers on the grammaticality judgment task
exceeds chance level, it is concluded that they are sensitive to the nonadjacent
dependency rules. As we will argue later, this reliance on the offline measure only
is problematic as it might not fully reflect participants’ (unconscious) acquired
knowledge of the nonadjacent dependencies. It also disregards all information
regarding the learning dynamics during exposure to the novel language.
As an increasing number of researchers stresses the importance of measuring

statistical learning in a different way than by grammaticality judgments, several
different measures have been proposed (e.g., the statistically induced chunking
recall task; see Isbilen, McCauley, Kidd, & Christiansen, 2017). In the current
paper we focus on the collection of response times (RTs) as an online measure of
NAD-learning. The use of RTs as an online measure of learning has its roots in
the serial reaction time (SRT) literature (Nissen & Bullemer, 1987). In the SRT
task, RTs have been shown to successfully track participants’ (both adults and
primary school-age children; Thomas & Nelson, 2001) online learning of
visuomotor sequences. In the original version of the task, participants have to
respond to a visual stimulus appearing in one of four locations on a screen.
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Participants’ RTs in sequenced blocks (stimuli follow a fixed sequence) are
compared to their RTs in random nonsequenced blocks (stimuli appear in random
order). The typical result is that participants respond faster in sequenced blocks
than in random blocks, and this effect is taken as evidence for implicit learning of
the sequence. Following this pattern of results, two recent studies transformed the
SRT task into an online NAD-learning experiment. Both studies successfully
showed that RTs can be used to track NAD-learning in the auditory domain in
adults (López-Barroso et al., 2016; Misyak et al., 2010). Of these two studies, the
latter resembles the SRT paradigm most closely. Misyak et al. designed a cross-
modal paradigm in which participants were auditorily exposed to strings con-
sisting of three pseudowords and three dependency pairs (a X b, c X d, e X f;
Gómez, 2002). Participants were simultaneously presented with six printed
pseudowords on a screen and asked to click as fast as possible on the nonsense
word that matched the auditorily presented word. Thus, for example, participants
heard the string pel wadim rud, then the participant first clicked pel upon hearing
pel, then wadim upon hearing wadim, and finally rud upon hearing rud. Simi-
larly, as in the SRT paradigm, the sequenced blocks (i.e., blocks containing
nonadjacent dependencies) were temporarily disrupted by one nonsequenced
block in which the strings violated the nonadjacent dependency rules (e.g., *a X
d,*a X f). Misyak et al. showed that participants’ RTs were slower in the non-
sequenced block than in the surrounding sequenced blocks, confirming that adults
are sensitive to the nonadjacent dependency pairs. Whereas this cross-modal
design works well with adults, it is difficult to use with (young) children, as well
as with participants from language-impaired populations as the task requires good
reading skills. Another auditory online NAD-learning task, developed by López-
Barroso et al. (2016), remedies this shortcoming.

López-Barroso et al. designed a NAD-learning experiment in which the SRT task
is combined with a word-monitoring task (for a comparable design in another type
of auditory statistical learning task, see Franco, Eberlen, Destrebecqz, Cleeremans,
& Bertels, 2015). As in Misyak et al. (2010) and in the classical NAD-learning
studies (Gómez, 2002), adults were exposed to artificial language strings that were
generated according to nonadjacent dependency rules. Adults had to press a green or
red button upon hearing a specific target item, rendering the task completely
auditory. The targets were always the final elements of the nonadjacent dependency
pairs (a X b, c X d). After a certain amount of exposure to the rule items (sequenced
blocks), adults were presented with strings in which the NAD rules were disrupted.
For example, items contained the b-element as the final element, but this was not
preceded by the a-element as before, and so these items are analogous to the random
block in an SRT task. In analogy with the SRT task, adults’ RTs to target elements
were shorter in the nonadjacent dependency items compared to the random items,
reflecting anticipatory word monitoring, and the authors therefore conclude that RTs
can be used to track adults’ sensitivity to nonadjacent depedencies.

To the best of our knowledge, no published studies have tracked auditory NAD-
learning online in primary school-aged children, and only one published study
reports on offline NAD-learning in primary school-aged children (Iao, Ng, Wong,
& Lee, 2017). As the use of online measures of NAD-learning is relatively new,
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this lack of online measures in primary school-aged children is not surprising. The
low number of studies reporting on offline measures, however, is surprising as
there is ample evidence of offline auditory NAD-learning in infants (e.g., 4-month-
olds: Friederici, Mueller, & Oberecker, 2011; 18-month-olds: Gómez, 2002; 15-
and 18-month-olds: Gómez & Maye, 2005) and adults (e.g., Gómez, 2002;
Newport & Aslin, 2004, Onnis, Monaghan, Christiansen, & Chater, 2004). This
could be because the generally used offline measures of NAD-learning (gramma-
ticality judgments) are difficult to administer to children of this particular age.
NAD-learning in infants is assessed via the headturn-preference procedure, a
procedure unsuitable for older children (Cristia, Seidl, Singh, & Houston, 2016).
As for the offline grammaticality judgment score of NAD-learning in adults, some
shortcomings were already mentioned above, but compared to adults, the offline
grammaticality judgment measures of NAD-learning might be even more proble-
matic in children as such measures involve some form of metalinguistic awareness
that children acquire relatively late (Bialystok, 1986) and that requires more than
the language representation alone (e.g., attention and executive functioning). In yes/
no grammaticality judgment tasks, children often show a yes bias: they simply
accept close-enough descriptions or they reject strings for reasons unrelated to the
dependency rules (Ambridge & Lieven, 2011). The two-alternative forced-choice
design (choosing one option out of two possibilities) forces children to make a
selection when they might think that both (or neither) options are correct
(McKercher & Jaswal, 2012). For these reasons, the child’s offline judgment might
not always reflect sensitivity to the nonadjacent dependencies.

THE CURRENT STUDY

Prompted by the absence of online measures of NAD-learning in primary school-
aged children and by the low number of offline NAD-learning measures in this
age range, our aim was to investigate whether primary school-aged children are
sensitive to nonadjacent dependencies in an artificial language. In order to
investigate this, two research questions were formulated:

1. Can we measure primary school-aged children’s sensitivity to nonadjacent
dependencies online by means of recording RTs?

2. Can we measure primary school-aged children’s sensitivity to nonadjacent
dependencies offline by means of an offline grammaticality judgment task?

Similarly to conventional offline NAD-learning experiments and to the online
auditory NAD-learning experiment of López-Barroso et al. (2016), we exposed
children to strings of an artificial language that, unbeknownst to the children, were
generated according to a rule (i.e., the strings have an a X b structure in which the
a-element and the b-element always co-occur; see Gómez, 2002). Children per-
formed a word-monitoring task that allowed us to measure children’s RTs to the b-
elements. After a certain amount of exposure to the nonadjacent dependencies, we
presented items that were discordant with the nonadjacent dependencies (disruption
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block). In analogy with the SRT task, we predict that if children are sensitive to the
nonadjacent dependecies, their RTs to the b-element should increase in the dis-
ruption block relative to the preceding training block and decrease again, after the
disruption block, when rule-based items return in the recovery block. After the
online measurement of learning, the children took part in an offline measurement of
learning (a two-alternative grammaticality judgment task), and then their explicit
knowledge of the rules was evaluated by means of a short questionnaire.

Finally, we explored the relationship between the online measure and offline
measure of NAD-learning. We hypothesize that if both measures reflect sensi-
tivity to NADs, children’s RTs to the target items will increase in the disruption
block relative to the surrounding blocks and they will perform above chance level
on the grammaticality judgment task. However, as grammaticality judgments are
likely problematic for children, it is possible that we would observe a discrepancy
between the two measures.

METHOD

Participants

Fifty-four native Dutch-speaking primary school-aged children participated in the
experiment. Eight were excluded for a variety of reasons: equipment error
(N= 1), not finishing the experiment (N= 3), or because overall accuracy in the
online word monitoring task was lower than 60% (N= 4). As a result, 46 children
were included in the final analysis (female= 22, male= 24; mean age= 7.3 years;
range= 5.9–8.6 years). No hearing, vision, language, or behavioral problems
were reported by their teachers. Children were recruited via four different primary
schools across the Netherlands. Approval was obtained from the ethics review
committee of the University of Amsterdam, Faculty of Humanities.

Apparatus

The experiment was presented on a Microsoft Surface 3 tablet computer using
E-prime 2.0 (2012) software (Psychology Software Tools, Pittsburgh, PA). RTs
were recorded with an external button box attached to this computer. The audi-
tory stimuli were played to the children over headphones (Senheiser HD 201).

Materials and procedure

The task. The structure of our NAD-learning experiment is similar to that of
conventional NAD-learning experiments. Children were exposed to an artificial
language that contained two nonadjacent dependency rules (tep X lut and sot X
mip). This exposure phase was followed by a grammaticality judgment task and a
short questionnaire that assessed awareness of the nonadjacent dependencies. In
contrast to conventional NAD-learning experiments, however, children per-
formed a word monitoring task, which allowed us to track children’s online
learning trajectory by means of a RT measure. To this end, we designed a child-
friendly adaptation of an online NAD-learning experiment that was administered
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to adults (López-Barroso et al., 2016). As in conventional NAD-learning tasks,
children were not informed about the presence of any regularities in the artificial
language, rendering the task an incidental learning task.

The word monitoring part of the experiment was framed as a game in which
children were instructed to help Appie (a monkey) on picking bananas. Appie
taught the children that they would hear utterances consisting of three nonexisting
words (pseudowords) and that they had to press the green button, as quickly as
possible, when they heard the specific target word and the red button when none
of the three words was the specific target word. In addition, Appie told the
children that it was important to pay attention to all three words in the utterances,
because questions about the utterances would follow at the end (i.e., the
grammaticality judgment task). Children were told only that questions would
follow, but they were not informed on the nature of the questions. Two versions
of the experiment were created, with either lut (Version 1) or mip (Version 2) as
the target word. The target word remained the same across the whole experiment.
All children thus heard the exact same stimuli, the only difference between the
two experiment versions being the button color assigned to lut (Version 1: green;
Version 2: red) or mip (Version 1: red; Version 2: green).

Trial types. Children were exposed to three trial types. Two types were non-
adjacent dependency utterances: target items ending in the target word (Version 1:
lut; Version 2: mip), and therefore requiring a green button press; and nontarget
items ending in the nontarget word (Version 1: mip; Version 2: lut), requiring a red
button press. The third type were filler items, which did not contain a nonadjacent
dependency as specified by the rule and required, similarly to the nontarget trials, a
red button press because the last word was not the target (variable “f-element”; see
below). Each trial (target, nontarget, or filler) consisted of three pseudowords with a
250-ms interstimulus interval between the three pseudowords. The average trial
length was 2415ms (min= 2067ms; max= 2908ms). Children had to press the
button within 750ms after the end of each utterance. If they did not do so, a null
response was recorded and the next trial was delivered.

Eighty percent (216 trials) of the total 270 trials were target or nontarget trials.
The structure of these trials was dependent on block type, as explained in the next
section. The remaining 20% (54 trials) of all trials were fillers. The structure of
these fillers was constant across the whole experiment and thus independent of
block type. Fillers were built according to a f X f structure: 24 f-elements and 24
X-elements (Table 1) were combined under the constraint that the same f-element
could not appear twice in the same utterance and that each X-element had the
same probability to appear before or after a specific f-element. These fillers were
added in anticipation of the disruption block, as explained in the next section.

Block types. There were three block types: training (3 blocks), disruption (1
block), and recovery (1 block). Each training block and recovery block consisted
of 24 targets following one of the two nonadjacent dependencies (e.g., tep X lut),
24 nontargets following the other nonadjacent dependency (e.g., sot X mip), and
12 fillers. Each of the 24 unique target or nontarget trial combinations was

Applied Psycholinguistics 40:2
Lammertink et al.: Auditory statistical learning in children

284

https://doi.org/10.1017/S0142716418000577 Published online by Cambridge University Press

https://doi.org/10.1017/S0142716418000577


presented once per block, and repeated four times over the course of the whole
experiment (three times in the training blocks and once in the recovery block).
Unique filler item combinations were never repeated. This led to a total of 96 tep
X lut trials, 96 sot X mip trials, and 48 f X f trials in the four sequenced blocks.
The X-elements in the target or nontarget trials were selected from the same pool
of 24 X-elements that was used for the filler items (Table 1).

The three training blocks were followed by one disruption block (30 trials). In
this block, the (non)target did not comprise the nonadjacent dependencies
presented in the training blocks. Instead their structure was f X lut and f X mip.
F-elements and X-elements for these (non)targets were again selected from the
elements presented in Table 1. Half of the X-elements were selected for
the utterances with lut and the other half of the X-elements were selected for the
utterances with mip. As a result, the disruption block had 12 f X lut, 12 f X mip,
and 6 f X f trials. The disruption block was followed by the recovery block, which
contained items structured similarly as the items in the three training blocks
described above.

We predicted that if children are sensitive to the nonadjacent dependencies
between each initial and final element in the target trials and nontarget trials, they
should respond faster to target and nontarget items in the third training block and
the recovery block compared to the disruption block (we will refer to this RT
pattern as the disruption peak). Faster responses are expected in the third training
block and recovery block as in these blocks, the initial word predicts the third
word (and thus color of the button), whereas this is not the case in the disruption
block in which all trials (target, nontarget, and filler) start with variable f-
elements. By having filler items throughout the whole experiment, children are
used to hearing utterances that start differently from tep or sot, ensuring that
slower RTs in the disruption block are not simply a result of hearing utterances
starting with novel pseudowords.

Offline measure of learning: Grammaticality judgments. After the recovery block,
children received new instructions in which they were told that they would hear
pairs of utterances and that they had to decide for each pair which of the two
utterances was most familiar to the utterances in the previously heard language
(e.g., tep wadim lut or tep wadim mip; two-alternative forced choice). In each
utterance pair, one member followed the nonadjacent dependency rule (correct;

Table 1. Overview of the 24 X-elements and 24 f-elements that were used to build the
target, nontarget, and filler items

X-elements f-elements

banip, biespa, dapni, densim, domo,
fidang, filka, hiftam, kasi, kengel,
kubog, loga, movig, mulon, naspu,
nilbo, palti, pitok, plizet, rasek, seetat,
tifli, valdo, wadim

Bap, bif, bug, dos, dul, fas, fef, gak, gom,
hog, huf, jal, jik, keg, ket, kof, naf, nit,
nup, pem, ves, wop, zim, zuk
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tep wadim lut in the example above) and the other member violated the non-
adjacent dependency rule (incorrect; tep wadim *mip in the example above).
Children were presented with 16 utterance pairs. In 8 of these utterance pairs,
both members contained a novel X-element to test for generalization (dufo, dieta,
gopem, noeba, nukse, rolgo, sulep, or wiffel). In addition, in each experiment
version, half of the items assessed children’s knowledge of their target NAD-rule
(Version 1: tep X lut; Version 2: sot X mip) whereas the other half of the items
assessed their knowledge of the nontarget NAD-rule (Version 1: sot X mip;
Version 2: tep X lut). If needed, each single member of a pair could be repeated.
Children had to respond verbally with “first” or “second.” Their responses were
recorded in E-prime by the experimenter.

Short debriefing: Awareness questionnaire. Once the children had completed all
tasks, they were asked several questions regarding their awareness of the struc-
tures in the artificial language. Information concerning awareness of the non-
adjacent dependencies is available for only half of the participants. The other half
of the children received questions regarding their awareness of structure in a
visual statistical learning task (see Procedure section and van Witteloostuijn,
Lammertink, Boersma, Wijnen, & Rispens, 2017). Some of the questions
included in this exit questionnaire aimed at gaining insight into participants’
strategies during the exposure and grammaticality judgment phase (e.g., What did
you focus on? Did you know when to press the green or red button or were you
guessing?), while other questions directly asked whether participants had any
explicit knowledge of the structure (e.g., complete the missing word in an
utterance, did you notice a pattern and, if yes, explain what the pattern was).

Stimuli recording. All auditory stimuli were recorded in a sound-attenuated room
by a female native speaker of standard Dutch. The stimuli were created following
Gómez (2002), but slightly adapted to meet Dutch phonotactic constraints as in
Kerkhoff, De Bree, and De Klerk (2013). The three-pseudoword-utterances
featured a strong–weak metrical stress pattern, which is the dominant pattern in
Dutch, and featured the following syllable structure: a monosyllabic word (tep,
sot, or f-element) was followed by a bisyllabic word (X element), followed by a
monosyllabic word (lut, mip, or f-element). The pseudowords were recorded in
sample phrases and cross-spliced into the final utterances.

The auditory instruction given by Appie the monkey was recorded by a
different female native speaker of standard Dutch. The speaker was instructed to
use a lively and friendly voice as if she was voicing a monkey.

Procedure. All children performed three different tasks: the NAD-learning task
(approx. 30min), a self-paced visual statistical learning task (approx. 10min), and
a pilot version of a spelling task (approx. 5min). In the current paper, we only
report on the results of the NAD-learning task.

After every 30 utterances, children received feedback on the number of
bananas they had picked (the monkey was awarded a banana whenever the child
pressed the correct button). After the exposure phase, which lasted approximately
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20min, the children automatically received instructions on the grammaticality
judgment task. This grammaticality judgment task was followed by an informal
debriefing. For a visual representation of the word monitoring and grammaticality
judgment tasks, see Figure 1.

Data preprocessing

Before analysing children’s RT data and accuracy scores, the raw data set was
preprocessed to remove unreliable measurements as described below.

Preprocessing RT data (online measurement). For the analysis of the RT data,
all responses to filler items (20% of total trials) and all incorrect responses (17%
of total trials1) were removed. RTs were measured from the onset of the third
element and were considered an outlier whenever (a) children pressed a button
before the onset of the third element or (b) when the RT for a particular trial type
(target or nontarget) was 2 SD slower or faster than the mean RT for that parti-
cular trial type of the same child in the same block. A total of 256 (3.1%) outliers
were removed. We used raw RT (instead of log-transformed RT data) as these are
easier to interpret and both the quantile plot of the raw RT and the quantile plot of
the log-transformed RT did not raise any concerns with respect to the normality
of the residuals (see the Rmarkdown Main analyses script on our Open Science
Framework project page: https://osf.io/bt8ug/). Finally, we selected children’s
RTs of the third training block, disruption block, and recovery block (4,464
observations) and used this data set to answer our research question.

Figure 1. Visual representation of the online and offline test phases of the nonadjacent
dependency (NAD)-learning task.
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Preprocessing accuracy data (offline measurement). None of the responses in
the grammaticality judgment task were removed. Responses were coded such that
if the child picked the utterance with the trained nonadjacent dependency, the
answer was judged correct (1), whereas the answer was judged incorrect if the
child picked the utterance that violated the nonadjacent dependency rule (0).

Data analysis

RT data (online measure) were analysed using linear mixed-effects models
(package lme4, Version 1.1-12; Bates, Maechler, Bolker, & Walker, 2015) in the
statistical programming language R (R Core Team, 2017). For each relevant
predictor, we computed its 95% confidence interval by the profile method; the
corresponding p value was determined from the same profile iteratively (e.g.,
p was less than .05 if and only if the confidence interval did not contain zero).
The dependent variable was RT as measured from the onset of the third element
of the utterance. RT was fitted as a function of the ternary predictor Block (third
training, disruption, or recovery), the binary predictors Targetness (nontarget or
target) and ExpVersion (Version 1 or Version 2; see “Online Measures” in the
Results section for more details), and the continuous predictor Age (in days). The
predictors Block, Targetness, and ExpVersion were coded with sum-to-zero
orthogonal contrasts (as detailed below) and the predictor age was centered and
scaled. The RT model contained by-subject and by-item (X-element; N= 24)
random intercepts, by-subject random slopes for the main effects of Targetness
and Block as well as for the interaction between Targetness and Block, and a by-
item random slope for ExpVersion.
Accuracy data of the grammaticality judgment task (offline measure) were

analysed using a generalized linear mixed-effects model with accuracy (cor-
rect= 1; incorrect= 0) as the dependent variable. Accuracy was fitted as a
function of the binary predictors Generalization (novel vs. familiar) and
ExpVersion (Version 1 or Version 2) and the continuous predictor Age (in days).
The binary predictors were coded with sum-to-zero orthogonal contrasts and the
continuous predictor Age was centered and scaled. The accuracy model had by-
subject and by-item (X-element; N= 16) random intercepts, by-subject random
slopes for the main effects of Generalization, and a by-item random slope for
ExpVersion.
Finally, we explored the relationship between children’s online measure of

learning (i.e., disruption) and their offline measure of learning. For each child, we
computed an online disruption score by subtracting their average RT in the
disruption block from their average combined RT in the third training block and
recovery block combined. The proportion of correct answers on the grammati-
cality judgment task was taken as the offline measure of learning. The relation-
ship between the online learning score and the offline learning score was explored
with a Pearson’s correlation coefficient.
In addition, we made our data, data preprocessing script (section 2.4), and

analysis script available on our Open Science Framework project page: https://
osf.io/bt8ug/. In the scripts on our Open Science Framework page, the reader can
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also find the functions that we used to calculate p values and confidence intervals.
Furthermore, on this page we provide the interested reader with some supple-
mentary, exploratory descriptives and analyses that were requested by reviewers.

Predictions for the RT model (online measurement). As stated in our Materials
and Procedure section, we predict that if children are sensitive to the nonadjacent
dependencies they will show a disruption peak, meaning that RTs increase when
the nonadjacent dependencies are temporarily removed (in the disruption block)
compared to when the nonadjacent dependencies are present (in the third training
block and the recovery block), for the target and nontarget items. Furthermore, we
were interested in seeing whether this disruption peak is different for target items
(requiring a positive response) versus nontarget items (requiring a negative
response). Children’s sensitivity to the nonadjacent dependency in target items
might be different from their sensitivity to the nonadjacent dependency in the
nontarget items for two reasons. First, the disruption peak in nontargets can be
seen as a more indirect measure of sensitivity as nontarget items are less salient
than the target items. Second, people are generally faster in giving a positive
response (target items: green button) than a negative response (nontarget items;
cf. López-Barroso et al., 2016). However, as exploring this difference was not
part of our initial research question, it can be seen as a sanity check and therefore
this analysis is exploratory (for more details see the Results section). We also
check whether the disruption peak is different in experiment Version 1 (target:
lut; nontarget: mip) from experiment Version 2 (target: mip; nontarget: lut), to
check if counterbalancing yielded the desired results (viz. no evidence for a
difference between experiment versions). Finally, we explored whether age
modulates the size of the disruption peak.

Predictions for the accuracy model (offline measurement). For the accuracy
measurement in the grammaticality judgment task, if children learn the non-
adjacent dependency rules, their true mean accuracy scores on the two-alternative
grammaticality judgment task (16 items) will exceed chance level. If children do
not learn the nonadjacent dependencies, but rather recognize familiar items, their
true mean scores for familiar items will be higher than those for novel items.

Prediction for the relationship between the online measurement and offline
measurement. If we find a disruption peak, the relationship between children’s
online measure of learning and their offline measure of learning will be explored.
In other words, it will be explored whether children that have a relatively large
disruption peak also have a relatively high accuracy score on the offline gram-
maticality judgment task. As this comparison does not directly answer our
research question, this analysis will be reported in the exploratory part of the
results section.

Prediction for the awareness of nonadjacent dependencies. We predict that if
children learn the nonadjacent dependencies explicitly (i.e., they can verbalize the
nonadjacent dependency rule), they will be able to perform the sentence
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completion task accurately in our short debriefing after the experiment and we
hypothesize that they can verbalize the tep X lut and sot X mip dependency rules.
For a summary of all confirmatory and exploratory hypotheses, see Table 2.

RESULTS

In this section, we distinguish between (a) descriptive results that are displayed
for ease of exposition, (b) confirmatory results of our hypothesis testing, and
(c) exploratory results that describe data checks and unexpected but interesting
findings (cf. Wagenmakers, Wetzels, Borsboom, Maas, & Kievit, 2012). Note
that in general one cannot draw any firm conclusions from exploratory results, so

Table 2. Summary and operationalization of our confirmatory and exploratory research
questions (RQs)

Predictor Operationalization Type of RQ

Online RT measures

Disruption peak Do children’s RTs increase when NAD-rules
disappear?

Confirmatory

Targetness Are children’s RTs to target items (positive
response) faster than their RTs to nontargets
(negative responses)

Sanity check

Disruption peak ×
Targetness

Is the disruption peak different for target versus
nontarget items?

Exploratory

Disruption peak ×
Age (days)

Does age modulate the size of the disruption peak? Exploratory

Disruption peak ×
ExpVersion

Is there a difference in disruption peak between
eperiment Version 1 and experiment Version 2?

Counter-
balancing

Offline accuracy scores

Intercept Is children’s accuracy score different from chance
performance?

Confirmatory

Generalization Is there a difference in accuracy between familiar
and novel items?

Exploratory

Age (days) Does age modulate children’s accuracy score? Exploratory
ExpVersion Is there a difference in accuracy between experiment

Version 1 and experiment Version 2?
Counter-
balancing

Online disruption score and offline accuracy score

Pearson’s
correlation

Are children’s online disruption scores and their
offline accuracy scores correlated?

Exploratory

Awareness questionnaire

NA Have children explicit knowledge of the nonadjacent
dependency rules?

Exploratory
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that only our confirmatory results can be used as evidence for the usability of RTs
as an online measure of learning.

Online measure (RTs)

Online measure: Descriptives. Mean RTs to the target and nontarget items
across the training blocks, disruption block, and recovery block are visualized in
Figure 2. As we are interested in the learning trajectories across the third training
block, disruption block, and recovery block, Table 3 lists the mean RTs with their
residual standard deviation for these blocks only.

Online measure: Confirmatory results. To test our hypothesis of a disruption
peak, we fitted a linear mixed-effects model restricted to the RTs of the third
training block, the disruption block, and the recovery block (hereafter called the
disruption model; Table 4). In order that our estimate of the effect of the first
contrast (“Disruption Peak”) of our ternary predictor Block represents the
numerical height of the disruption peak in milliseconds, the coding of our sum-to-
zero contrast for the ternary predictor has to contain a difference of 1: therefore
the ternary contrast in the predictor Block (“Disruption Peak”) estimated how
much the true mean RT in the disruption block (which is coded as +2/3) exceeds
the average of the true mean RT in the third training block (coded as –1/3) and the
true mean RT in the recovery block (also coded as –1/3). This first contrast of the

Figure 2. Mean response times to the target (black solid) and nontarget (gray dotted) items
across the five blocks of exposure.
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predictor Block (Disruption Peak) intends to answer our specific research ques-
tion (i.e., whether RTs are disrupted by removal of the nonadjacent dependency).2

When we fitted the model, it showed a significantly positive effect of disruption
peak. The disruption peak is 36 ms (t= + 3.8; p= .00038; 95% CI [17, 56]). We
thus conclude that children become 36ms slower when we remove the non-
adjacent dependency structure in target and nontargets items.

Online measure: Exploratory results. First, we checked that children, similarly to
adults (López-Barroso, 2016), are faster in giving a positive than a negative
response (Targetness). The model estimated that children’s positive responses
(average RT target items; +1/2) were 52ms faster than their negative responses
(average RT nontarget items; –1/2; t= –4.6; p= .00003; 95% CI [–75, –30]), so
we can conclude that children are generally faster in giving a positive than a
negative response.

Second, we explored whether the disruption peak differed between target items
and nontarget items (interaction between Disruption Peak and Targetness). The
disruption peak was 9ms larger for target items than nontarget items, but not
statistically significantly different from zero (t= + 0.55; p= .58; 95% CI [–23,
+ 41]). This means that we have no evidence that the height of the disruption peak
differs between target items and nontargets items. To further explore this null
result, we fitted two additional models in which we rereferenced the contrast
coding. To obtain a t value for the disruption peak in target items, the contrasts
were set as target 0 (previously –1/2) and nontarget +1 (previously +1/2). To
obtain a t value for the disruption peak in nontarget items, the contrasts were set
as target +1 and nontarget 0. For targets, the model estimated a disruption peak of
41ms (t= 2.9; p= .0042; 95% CI [+ 13, + 68]). For nontargets, the model
estimated a disruption peak of 32ms (t= 2.7; p= .0068; 95% CI [+ 9, + 55]).
Thus, both items types show a significant t value, suggesting that the disruption
peak is present in both target items and nontarget items.

Table 3. Response times in milliseconds to the target and nontarget items across the
third training block, disruption block, and recovery block, separated by experiment
version. Residual standard deviations (ms) as estimated by the linear mixed-effects
model in parentheses

Version 1 (target= lut)

Trial type Third training block Disruption block Recovery block

Target 749 (191) 777 (191) 761 (191)
Nontarget 842 (191) 869 (191) 836 (191)

Version 2 (target=mip)

Target 875 (191) 921 (191) 875 (191)
Nontarget 900 (191) 921 (191) 891 (191)
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Table 4. Outcomes of the disruption model (4,464 observations; N= 46); the last
column (Relevance) explains how a certain comparison relates to our research
questions, and if empty, the comparison is not of interest

Random effects of subjects SD (ms)

Intercept 80
Disruption peak 39
PrePostDisruption 25
Targetness 65
Disruption Peak ×Targetness 53
PrePostDisruption × Targetness 27

Random effects of items (X-element) SD (ms)

Intercept 92
ExpVersion 10

Fixed effect
B

(ms)
CIlow
(ms)

CIhigh
(ms) t p Relevance

Intercept +864 819 908 +39 7.4 × 10− 9

Disruption peak +36 +17 +56 +3.8 .00038 Confirmatory
PrePostDisruption +1 –14 +15 +0.069 .94
Targetness –52 –75 –30 –4.6 3.0 × 10− 5 Sanity check
Age (days) –13 –37 +11 –1.1 .29
ExpVersion +94 +45 +143 +3.8 .00034
Disruption Peak ×
Targetness

+9 –23 +41 +0.55 .58 Exploratory

PrePostDisruption ×
Targetness

+13 –14 +40 +0.97 .33

Disruption Peak ×
Age (days)

–5 –24 +14 –0.51 .61 Exploratory

PrePostDisruption ×
Age (days)

–5 –21 +10 –0.70 .48

Targetness ×Age (days) +7 –16 +30 +0.60 .55
Disruption Peak ×
ExpVersion

+6 –31 +43 +0.33 .75 Counterbalancing

PrePostDisruption ×
ExpVersion

–4 –34 +26 –0.25 .80

Targetness × ExpVersion +68 +22 +113 +3.0 .0043
Age (days) × ExpVersion –34 –83 +15 –1.4 .17
Disruption Peak ×
Targetness ×Age (days)

+21 –13 +55 +1.2 .22

PrePostDisruption ×
Targetness ×Age (days)

+8 –20 +35 +0.54 .59

Disruption Peak ×
Targetness × ExpVersion

+37 –28 +102 +1.2 .25
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Third, we checked whether the disruption peak differs between the two
versions of the experiment (interaction between Disruption Peak and
ExpVersion). The model estimate of the interaction between DisruptionPeak
and ExpVersion was not significantly different from zero (6 ms; t= + 0.33;
p= .75; 95% CI [–31, + 43]). This null result for the counterbalancing
interaction is good, as it means that we have no evidence that the size of the
disruption peak differs between the two experiment versions and is thus
dependent on the target dependency pair in focus. To further explore this null
result, we again rereferenced the model contrasts to obtain a t value for the
disruption peak in experiment Version 1 (ExpVersion 1: 0; ExpVersion 2: +1)
and experiment Version 2 (ExpVersion 1: +1; ExpVersion2: 0). For
experiment Version 1, the model estimated a disruption peak of 33 ms
(t= + 2.5; p= .012; 95% CI [+ 8, + 59]). For experiment Version 2, the model
estimated a disruption peak of 39ms (t= + 2.9; p= .0054; 95% CI [+ 12,
+ 67]). In both experiment versions, the t value is significant, suggesting that
the presence of a disruption peak is not dependent on the target dependency
pair in focus.

Fourth and finally, we explored whether the size of the disruption peak is
modulated by age (interaction between Age and Disruption peak). The model
estimated that the disruption peak gets 5ms smaller as children grow older, but
this difference is not statistically significantly different from zero (t= –0.51;
p= .61; 95% CI [–24, + 14]). Thus, we have no evidence that the size of the
disruption peak differs between younger and older children.

Table 4. Continued

Fixed effect
B

(ms)
CIlow
(ms)

CIhigh
(ms) t p Relevance

PrePostDisruption ×
Targetness ×
ExpVersion

–6 –60 +47 –0.23 .82

Disruption Peak ×Age
(days) × ExpVersion

+20 –18 +58 +1.1 .29

PrePostDisruption ×Age
(days) × ExpVersion

+8 –23 +39 +0.52 .60

Targetness ×Age (days) ×
ExpVersion

+41 –5 +87 +1.8 .080

Disruption Peak ×
Targetness ×Age
(days) × ExpVersion

–12 –81 +55 –0.36 .72

PrePostDisruption ×
Targetness ×Age
(days) × ExpVersion

+10 –46 +65 +0.35 .73
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Offline measure (Accuracy grammaticality judgment)

Offline measure: Descriptives. Children’s individual accuracy scores along with
the overall mean accuracy score for the two-alternative grammaticality judgment
task are visualized in Figure 3a. As a group, children selected the correct utter-
ance with an accuracy of 51%, with individual accuracy scores ranging from 25%
to 75%. As we also explore whether children scored better on familiar than novel
items (Generalization), children’s mean accuracy scores to these different item
types are visualized in Figure 3b.

Offline measure: Confirmatory results. A generalized linear mixed-effects model
was fit on the accuracy data of the offline two-alternative grammaticality judg-
ment task to test whether children’s accuracy scores on the task (16 items)
exceeds chance level (736 observations; Figure 3a; Table 5). The predictor
Generalization estimated by what ratio the children scored better on items with a
familiar X-element (+1/2) than on items with a novel X-element (–1/2).

The model estimated that the children scored 1.6% above chance level
(intercept: log odds +0.064, odds 1.07, probability 51.6%), but this was not
statistically significant from chance (z= + 0.81; p= .42; 95% CI [47.5, 55.7]).
Therefore, we cannot conclude that learning of the nonadjacent dependencies can
be evaluated via a two-alternative grammaticality judgment task. Furthermore, the
model estimated that the children scored 0.90 times better (i.e., lower
performance, as this odds ratio is less than 1) on novel (Generalization) than

Figure 3. Violin plot that represents the distribution of (a) the overall mean accuracy scores on
the two-alternative grammaticality judgment task and (b) the mean accuracy scores by
generalization. The dots represent the individual scores, and the cross indicates the overall
group mean.
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familiar items (z= –0.66; p= .51, 95% CI [0.65, 1.26]), but this ratio was not
significantly different from 1 and therefore we cannot conclude that children treat
novel items differently from familiar items.

Offline measure: Exploratory results. We checked whether children’s accuracy
scores were modulated by ExpVersion (counterbalancing; Version 1: –1/2;
Version 2: +1/2) and Age. The model estimates of both predictors were not
significantly different from 1 (Table 5), and therefore the results do not generalize
to the population.

Relationship between online measure and offline measure of NAD-learning

Relationship between online measure and offline measure: Descriptives. For
each child, we calculated an online disruption score and an offline learning score
(Figure 4). Online disruption scores were computed by subtracting a child’s
average RT in the disruption block from his/her average combined RT in the third
training block and recovery block (this is analogous to how the Disruption Peak
contrast was calculated for the online measure). Hence, a positive outcome
indicates that a child’s RT in the disruption block was longer and thus slower than
his/her combined average RT of the third training block and recovery block.
Offline accuracy scores were obtained by calculating a child’s proportion of
correct answers on the offline grammaticality judgment task.

Relationship online measure and offline measure: Exploratory results. Pearson’s
correlation coefficient3 between children’s online measure of disruption and their

Table 5. Outcomes of the accuracy model (736 observations, N= 46); the last column
(Relevance) explains how a certain comparison relates to our research questions

Random effects of subjects SD (log-odds)

Intercept 0.011

Generalization 0.063

Contrast

Bmodel

(log-
odds)

Btransformed

(odds
ratio)

CIlow
(odds
ratio)

CIhigh
(odds
ratio) z p Relevance

Intercept +0.064 1.07 0.90 1.26 +81 .42 Confirmatory
Generalization –0.10 0.90 0.65 1.25 –66 .51 Confirmatory
Age (days) –0.011 0.99 0.84 1.15 –0.14 .89 Exploratory
ExpVersion –0.047 0.95 0.66 1.36 –0.27 .78 Counter-balancing
Generalization ×Age (days) +0.078 1.08 0.79 1.46 +0.51 .61
Generalization ×ExpVersion –0.039 0.96 0.47 1.97 –0.11 .91 Counter-balancing
Age (days) × ExpVersion –0.26 0.77 0.56 1.05 –1.68 .10
Generalization ×Age

(days) × ExpVersion
0.15 1.16 0.63 2.16 +0.50 .62
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offline measure of learning was not statistically significantly different from zero
(r= –.17; p= .27; Figure 4). Therefore, we have no evidence that children’s
online disruption score correlates with their offline accuracy score.

Awareness questionnaire

None of the 24 children who were debriefed were able to verbalize either one or
both of the nonadjacent dependency rules. In the sentence completion task, they
were most likely to complete the utterance with the target word of the experiment
version they were in. For example, a child who had to press the green button for
lut (Version 1) replied lut to all the missing words in the sentence completion
task, regardless of the missing words’ positions and preceding or following
words. We thus cannot conclude that children acquired any explicit (or at least
verbalizable) knowledge of the nonadjacent dependency rules.

DISCUSSION

The current study was designed to investigate whether primary school-aged
children are sensitive to nonadjacent dependencies in an artificial language and
whether this sensitivity to nonadjacent dependencies could be measured (a)
online by means of recording RTs and (b) offline by means of a two-alternative
grammaticality judgment task, and (c) whether the online measure of sensitivity
and offline measure of sensitivity were related to each other. Our results show
that primary school-aged children are sensitive to nonadjacent dependencies in an

Figure 4. Scatter plot and regression line that represents the association between children’s
individual online disruption score (x-axis) and children’s individual accuracy score on the
grammaticality judgment task (y-axis).
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artificial language, at least in our online measure. As predicted, we found that
when nonadjacent dependency rules were removed, the RTs increased relative to
the RTs in the blocks that contained the dependency rules, indicating that children
are sensitive to the nonadjacent dependencies.
The online measure can thus be seen as a promising advancement in measuring

NAD-learning. On the basis of the offline measure alone, we would not have been
able to conclude that children were sensitive to the nonadjacent dependencies (for
similar findings in the SRT literature see Meulemans, Van der Linden, & Per-
ruchet, 1998). It is important to note here, however, that we cannot directly
compare our online measure and offline measure, and therefore, we would like to
stress that we cannot conclude that online measures are better than offline
measures (false p value comparison).
We like to speculate, however, that online and offline measures of non-

adjacent dependency learning tap into different representations of acquired
knowledge. This hypothesis has been proposed in previous studies on statistical
learning in the auditory domain that also failed to find evidence of a relationship
between the online and offline measures of learning (e.g., Franco et al., 2015;
Isbilin et al., 2017; Misyak et al. 2010). In these studies, it is proposed that
online measures are more sensitive to the transitional probabilities or co-
occurrences present in the language whereas good performance on the gram-
maticality judgment tasks requires a comparison of two strings that can only be
made from a more meta-linguistic or explicit decision (Franco et al., 2015). This
meta-linguistic or explicit decision might be especially difficult for children as
they acquire these skills relatively late. In addition, grammaticality judgment
tasks similar to the one used in the current study have been argued to be
psychometrically weak for measuring individual statistical learning perfor-
mance (Siegelman et al., 2017). The latter raises the question as to how
meaningful our exploration of the relationship between the online measure and
offline measure of learning is. As we do believe that the online measure is an
advancement, but not necessarily a substitute for the offline measure of non-
adjacent dependency learning, we recommend that future studies try to improve
the psychometric properties of the offline measures (for suggestions, see Sie-
gelman et al., 2017) such that the online and offline measure of nonadjacent
dependency learning are both informative as to whether children are sensitive to
the nonadjacent dependency structure.
Furthermore, our exploratory finding that there is a disruption peak for both

target and nontarget items suggests that the online measure of NAD-learning is
not modulated by focus or saliency. One could argue that target items are more
salient as they require a green button press. Therefore, a child may focus on
hearing this target word while ignoring all other words. In addition, the target
items (Version 1: lut; Version 2: mip) are explicitly mentioned during the
instruction phase. Nontargets, by contrast, are not explicitly mentioned and
therefore less salient than the targets items. Furthermore, as nontargets require a
red button press, children might consider them as being less important. We have
no evidence, however, that these differences in saliency do affect the size of the
disruption peak. López-Barroso et al. (2016) report similar findings in their adult
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version of the NAD-learning experiment. It is important to note that the word-
monitoring task used in the current design does require a minimal level of
attention to the stimuli, and therefore we cannot draw any conclusions on the
specific incidental/implicit nature of NAD-learning with our task.

As discussed, the online measure of NAD-learning provides a promising
advancement in measuring NAD-learning in typically developing primary school-
aged children. Future studies could use the individual online disruption scores to
further explore the relationship between children’s sensitivity to nonadjacent
dependencies and their sensitivity to (grammatical) structures in natural language.
In adults, the online measure of sensitivity to nonadjacent dependencies is
associated with adults’ online processing (self-paced reading) of relative clauses
such that better nonadjacent dependency learning is associated with faster proces-
sing of both subject relative clauses and object relative clauses (Misyak et al., 2010).
We would be interested in seeing whether the same associations hold for typically
developing children and whether we can take it one step further by investigating
online nonadjacent dependency learning in children with language related impair-
ments (developmental language disorder [DLD] and developmental dyslexia). The
latter is of interest as statistical learning deficits have been proposed to explain parts
of the language problems seen in people with a DLD (for meta-analytic reviews, see
Lammertink, Boersma, Wijnen, & Rispens, 2017; Obeid, Brooks, Powers, Gille-
spie-Lynch, Lum, 2016). In these studies, we see that when people with DLD are
compared to people without DLD, their offline grammaticality judgments are
relatively poor. Similarly as for typically developing children, it could well be the
case that people with a language disorder have difficulties explicitly judging
grammaticality, resulting in lower offline judgment scores, not because they are
worse learners, but simply because the task is too difficult or taps into a different
type of acquired knowledge. Insight into the learning trajectories of both groups of
learners could be beneficial and provide additional information on the statistical
learning deficit in people with language impairments.

Finally, we believe that future (longitudinal) studies that aim to investigate the
developmental trajectory of NAD-learning will benefit from the inclusion of our
online measure of NAD-learning. Sensitivity to NADs can now be measured
across all developmental stages (using different methods, as the current task is not
feasible with infants; but see Cristia et al., 2016, for alternative measures of
NAD-learning in infants). Capturing NAD-learning at different developmental
stages is important as there is a vivid debate on the developmental trajectory of
statistical learning (for reviews on this topic, see Arciuli, 2017; Krogh, Vlach, &
Johnson, 2013; Zwart, Vissers, Kessels, & Maes, 2017).

Conclusion

In conclusion, this study was developed to obtain an online measure of statistical
learning in children. RTs had already been shown to measure nonadjacent
dependency learning in adults, and the applicability of this measure has now been
extended to children.
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NOTES
1. Seventeen percent of target trials and 16% of nontarget trials, also the total percentage

of errors, was approximately equally distributed across the five blocks.
2. The second contrast of Block (“PrePostDisruption”) estimated how much the true

mean RT in the recovery block (+1/2) exceeds the true mean RT in the third training
block (–1/2). As this contrast does not directly answer our research question, we
disregard the model outcome of this comparison.

3. Note that this correlation does not take into account the between-subject variable
ExpVersion. In an alternative analysis, we added children’s offline learning scores to
the linear mixed effects disruption model (OfflinePlus model) and compared this
OfflinePlus model to the disruption model (Table 4) by means of the analysis of
variance function in R. When comparing both models, the OfflinePlus model did
not significantly improve the disruption model (χ2= 1.74; p= .19). Therefore, also
when taking a slightly different approach that takes the between-subject variable
ExpVersion and the random effects structure into account when comparing children’s
online disruption score and their offline accuracy score, we have no evidence that
children’s offline learning scores explain the variance in their online disruption scores.
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