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A CLASS OF NULL SETS ASSOCIATED WITH
CONVEX FUNCTIONS ON BANACH SPACES

JOHN RAINWATER

A generalisation of the notion of "sets of measure zero" for arbitrary Banach spaces
is defined so that continuous convex functions are automatically Gateaux differen-
tiable "almost everywhere". It is then shown that this class of sets satisfies all the
properties that one expects of sets of measure zero. Moreover (in a certain large
class of Banach spaces, at least) nonempty open sets are not of "measure zero".

There are several different substitutes for sets of measure zero in infinite dimen-
sional spaces (where tr-finite translation invariant measures do not exist); see, for in-
stance, [1, 3, 5, 6]. These have all been defined in separable Banach spaces and have
generally been motivated by theorems which assert that locally Lipschitzian maps are
Gateaux differentiable "almost everywhere", where the latter means "outside of a null
set". In what follows we define a new class of null sets in arbitrary Banach spaces, with
the motivation being Gateaux differentiability of convex functions.

DEFINITIONS: Let / be a real-valued continuous convex function defined on a real
Banach space E. We denote by N(f) the set of all points x £ E where / fails to be
Gateaux differentiable. That is, for some y € E, the limit

(1) [f( + y ) f ( ) ]

fails to exist.
By a null set we mean any subset of M[f), for some / as above.
This definition changes the focus of attention from functions to sets: rather than

attempting to show that convex continuous (hence locally Lipschitzian) functions are
Gateaux differentiable almost everywhere (with respect to some given class of null
sets), this property is guaranteed by the very definition of "null set". Of course, it then
becomes important to show that this class of sets behaves the way that null sets should
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316 J. Rainwater [2]

behave and that they are sets of Lebesgue outer measure zero in finite dimensional
spaces. Some aspects of their behaviour are immediate from the definition:

(i) A subset of a null set is a null set, hence the intersection of any family of
null sets is a null set.

(ii) Any translate of a null set is a null set.

(iii) Null sets are preserved under linear isomorphisms of the space,
(iv) A singleton {xo} is a null set. [The function f(x) = \\x — xo\\ is not

Gateaux differentiate at Xo .]

(v) Closed hyperplanes are null sets. [Let f(x) = \(x*, x)\, x 6 E, where
z'eE*,xm^0.]

More generally,
(vi) The boundary of any closed convex set C with nonempty interior is a

null set. [If 0 G intC, let ft be the Minkowski functional for C (so
that bdryC = {x: /i(x) = 1}) and let f(x) = max{(i(x), 1}, so that

Null subsets of separable Banach spaces have been characterised by Zajicek [10]
(although he did not call them that); more about this later.

REMARK. Since adding a constant or a linear functional to a continuous convex function

does not affect the points where the latter is Gateaux differentiable, for any XQ G E

and x* G df(x0) (the subdifferential of / at xo), we have -A/"(/) = -Af(<7), where

g = f-x*- f(xo)-(x*,xo). By definition, (x*,y-x0) ^/(y)-/(*o) for all y€E,

so the function g is nonnegative; this means that in considering ff(f), we can always

assume that / ^ 0 on E and, if we wish, that /(x<j) = 0 for some predetermined point

xo-

The following basic property is less obvious.

PROPOSITION 1 . A countable union of null sets is a null set.

The proof requires the following lemmas.

LEMMA 1. Suppose that {fn} is a sequence of nonnegative continuous convex

functions on E such that, for some x0 and each n = 1, 2, 3, . . . , <iere exists Mn > 0

such that /n(*) ^ Mn - \\XQ — SB|( for all x G E. Then there exists a continuous convex

function f on E such that \jAf(fn) =

PROOF: Define / by

It is clear that, as the supremum of a sequence (the partial sums) of nonnegative contin-

uous convex functions, / is convex, nonnegative and lower semicontinuous. Moreover,
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it is dominated by ||xo — x||, hence is necessarily continuous. Furthermore, if for some
k > 1 the function /* fails to be Gateaux differentiable at a point y, then / also fails to
be differentiable at y. To see this, let git = Yl 2~nM^"1/n ; then gt is continuous and

convex and / = / * + < / * • It is easily verified that since df^y) contains more than one
element, the same is true of df(y). (More precisely, dft{y) + dgt(y) C df(y); in fact,
equality holds: see, for instance, [7, p.54].) Thus, we have shown that \}N(,fk) <^ M{f)-
The reverse inclusion (which won't be needed in what follows) uses straightforward ar-
guments to show that if x*n is the Gateaux derivative of / „ at x , n — 1, 2, 3, . . . , then
| |x; | | < Mn and x* = X)2" n M- l x* n is the Gateaux derivative of / at x. D

We also need the following elementary lemma, which sharpens the standard result

that a continuous convex function is locally Lipschitzian.

LEMMA 2 . Suppose that g is a nonnegaiive convex continuous function defined

on a. nonempty open convex set D. Then

where each set Dm> n is convex and open and the restriction of g to Dm< „ has Lipschitz

constant mn.

PROOF: First, for m = 1, 2, 3, . . . , let Dm - {x € D: g(x) < m} and let

Dm,n = {x£Dm: dist (x, E \ Dm) > 1/n}.

These sets are open and convex (some may be empty) and D = \J Dm. Since Dm =
m

[jDmin, we have D — \J Dm<n. Suppose, now, that x and y are distinct points in
n m, n

Dm,n- Let a = ||x — y\\ > 0 and consider

z = y + {y - x)/na.

We cannot have z € E \ Dm because \\z — j / | | = 1/n and y 6 Dm>n. It follows that

g(z) < m and, since

y — (naz + x)/(l + na),

we have g(y) ^ {nag(z) + g{x))/(l + na)

so that

na) ^ na[g(z) - g(x)} < mna = mn • \\y - x\\.

Repeating the foregoing argument with x and y interchanged shows that

\9{y) ~ g{*)\ ^ rnn • \\y - x\\,
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which was to be proved. D

(The nonnegativity hypothesis may be dropped; one ends up with 2mn in place of
mn.)

PROOF OF PROPOSITION 1: It suffices to prove that if A is a null set, then there
exists a sequence of nonnegative functions {/„} as in Lemma 1 such that A C \JAf(fn) •
[This will prove the proposition, of course, since a countable union of null sets will thus
be contained in a countable union U of sets, each of the form \jAf(fn), so U is again
a set of the same form. By Lemma 1, U is contained in M{f) for some / .] Now, by
definition, there exists a convex continuous function g (which we may assume to be
nonnegative) such that A C Af(g) - For later use, we assume that g is defined on some
nonempty open convex subset D, not necessarily on all of E, and that N(g) C D is
defined in the obvious way. Write D = \}Dm<n as in Lemma 2. Fix XQ 6 D and
assume, without loss of generality, that g{x$) = 0. For positive integers m and n, let
fm,n denote the inf-convolution of g and nm \\--\\; tha t is

/m,n(as) = inf{</(2/) + mn \\y -x\\:y€D}, x£ E.

As is well known (see, for instance, [7, p.33]), fm<n is a convex Lipschitzian function on
E, with Lipschitz constant mn, such that fmtn(x) — g{x) f°r * £ Dm<n. Moreover,
since g ^ 0 and <7(xo) = 0, the definition implies that 0 ^ fm,n(x) < rnn • \\x — xo||
for all x. If g fails to be differentiable at a point x G D, then x € Dm>n for some
m, n and hence / m , n fails to be differentiable at x. Thus, Af(g) C \JAf(fm,n)

 a n ( i
the proof is complete. D

REMARK. Our definition of "null set" is equivalent to saying that any convex continuous
function on all of E is Gateaux differentiable outside of a null set. We would like this
latter assertion to be true for any convex continuous function g defined on an arbitrary
nonempty open convex subset D of E. This follows from the last part of the proof of
Proposition 1, since Af(g) C \JAf(fm,n) where each fm<n is defined on all of E (and
U W m . n ) is a null set).

Proposition 1 has an immediate corollary (which can be proved directly by looking
at functions of the form f(x) = E 2 " " ( 1 + ll^nll)"1 • \\x - xn\\).

(vii) Countable sets are null sets. (In the real line, the converse is true: null
sets are at most countable. See, for instance, [7, p.10]).

Zajicek has very nicely characterised the null subsets of a separable real Banach
space E in the following terms: A subset M of E is called a (c — c)-hypersurface if
— roughly — it is the graph in E of a function which is the difference of two convex
Lipschitzian functions. More precisely, it is required that there exist a closed hyperplane
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H in E, a vector v in E such that E = H + Rv, and two convex Lipschitzian functions

/ , g denned on H such that

M = {x + [f(x) -g(z)]v: x 6 H}.

Theorem 2 of [10] asserts that a subset of £ is a null set if and only if it is contained in
the union of countably many (c — c)-hypersurfaces. [By using the method of proof of
Proposition 1, it can be shown that the graph of the difference of two convex continuous
functions is contained in a countable union of graphs of convex Lipschitzian functions,
so that Zajicek's theorem is equivalent to the formally weaker result in which the word
"Lipschitzian" is deleted.] Note that Zajicek's theorem immediately yields Proposition
1 for separable spaces.

An important property of any class of null sets is that nonempty open sets not be
null sets. This is not always the case; for instance, in the spaces ^1(T) (F uncountable)
and L°°[0, 1] the norms are nowhere Gateaux differentiable [7, pp.3, 70], so these spaces
are themselves null sets. The same is true of the space l°°, since it admits a nowhere
Gateaux differentiable seminorm [7, p.13]. It is not too difficult to show that the norm
in £°°(T)* (F infinite) is also nowhere Gateaux differentiable.

DEFINITION: A Banach space E is said to be a Gateaux differentiability space
(GDS) provided every convex continuous function / defined on an open convex subset
D of E is Gateaux differentiable at the points of a dense subset of D. We say that E
is a weak Asplund space if the set of points of differentiability of / contains a dense Gg
subset of D.

Separable Banach spaces, in fact, all weakly compactly generated Banach spaces,
are weak Asplund spaces. It is an open question whether every GDS is a weak Asplund
space. For further discussion and references, see, for instance, [4] and [7]. As noted
above, the spaces ^ ( r ) (T uncountable), L°°[0, 1], i°° and *°°(r)' (T infinite) are
not even Gateaux differentiability spaces.

The following important property is now immediate from the definitions.

(viii) In a Gateaux differentiability space E, nonempty open sets are not null
sets.

Stated in another form, in a GDS, the complement of a null set (called a "co-null
set") is necessarily dense. Proposition 1 implies that co-null subsets of a GDS have a
Baire-like property: A countable intersection of co-null sets is co-null, and is therefore
dense.

By putting together some known results, we see easily that the relation between
null sets and Gateaux differentiability spaces is quite close.
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PROPOSITION 2 . For a reai Banach space E the following assertions are equiv-
alent.

(1) E is not a GDS.

(2) There exists an equivalent norm on E which is nowhere Gateaux differ-

entiable.

(3) E is a null set.

PROOF: (1) implies (2). It is shown in [7, p.63] that being a GDS is equivalent to
being an MDS (that is, every Minkowski functional on E is Gateaux differentiate at
the points of a dense set) and it was proved in [4, Proposition 5] that if E is not an
MDS, then it admits an equivalent norm which is nowhere Gateaux differentiable. It is
obvious that (2) implies (3) and that (3) implies (1). D

In order to compare the class of null sets with the classes which have been studied
previously, we must look at separable Banach spaces and at those null sets which are
also Borel sets (since the "exceptional sets" of [1], the Gaussian null sets of [6] and the
Haar null sets of [3] are all Borel sets). In a separable Banach space, Mazur's theorem
(reformulated) asserts that each Af(f) is a first category set, but in more general spaces
little is known about their Borel type. Talagrand [8] has shown that in a certain ^(T)
(namely, for F the uncountable interval of ordinals [0, wc[, where uc is the first ordinal
having the power of the continuum), there exists a continuous convex function / such
that Af(f) is nowhere dense but is not even Borel-universally measurable. Since tx{T)

is not a GDS, the following question still remains: / / E is a GDS, are the sets M{f)

necessarily Borelian? This question can be sidestepped, of course, by defining "null set"
to be any Borel set which is contained in a set of the form //"(/) • All of the properites
(i) - (viii) listed above hold for this definition, but a new question arises. If we want to
say that every continuous convex function / is Gateaux differentiable outside of a "null
set", then given / we must produce a Borel set B and a continuous convex function g

such that -A/"(/) C B C N{g) • This does not appear obvious.

It is easy to produce an example of a null set which is not of the form Af(f): in
R2, the real axis is a null set, so any subset of the z-axis is a null set, but it cannot
be an N(f) unless it is an Fa. We know of no characterisation of those subsets of the
plane which have the form Af(f).

As shown in [6], the class of Aronszajn exceptional sets is contained in the class of
Gaussian null sets and the latter class is strictly contained in the class of Haar null sets.
[It is open whether the Gaussian null sets coincide with Aronszajn's exceptional sets,
although Bogachev [2] has shown that they are the same for the class of sets which are
measurable relative to every densely differentiable measure on the space. (See [2] for the
relevant definitions.)] It follows from Aronszajn's differentiability theorem for locally
Lipschitzian mappings that for a continuous convex function / on a separable Banach
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space, the Fa set N(f) is one of Aronszajn's exceptional sets. Since a Borel subset of
an exceptional set is an exceptional set, we conclude that in a separable Banach apace,
any null set which is also a Borel set is an Aronszajn exceptional set. This inclusion is
strict, since null sets in the real line are at most countable, while there exist Lipschitzian
functions on the line which have an uncountable set of points of nondifferentiability. (In
fact, any Gfa set of Lebesgue measure zero is such a set; see [0, Lemma 8].)

Using Rademacher's theorem, Aronszajn noted that in finite dimensional spaces,
his exceptional sets coincide with the Borel sets of Lebesgue measure zero, hence in this
case null sets all have Lebesgue outer measure zero. [This also follows from the much
more easily proved fact (see [7, p.11], for instance) that continuous convex functions on
finite dimensional spaces are differentiable almost everywhere.]

If null sets (or any of the other generalisations of sets of measure zero) were, in
fact, the sets of measure zero for some <r-finite measure, then it would follow that any
pairwise disjoint family of non-null sets would be at most countable. This fails, however,
for all of the families mentioned above. A simple example for the Gaussian null sets
(hence valid for null sets) is presented in [6]; it consists of an uncountable collection of
pairwise disjoint compact subsets of I2 , each of which is not Gaussian null (hence not
null).

A straightforward generalisation of the foregoing notion of null set is possible, using
the following types of derivatives.

DEFINITION: Let 0 be any nonempty family of bounded subsets 5 of the Banach
space E whose union is all of E. We say that a continuous convex function / on a
nonempty open convex subset D of E is f3-differentiable at x £ D provided that for
each 5 in /?, the limit in (1) exists uniformly for y € S. (This yields, among others,
the Gateaux derivative if /? consists of all finite sets, the weak Hadamard derivative
if /3 consists of all weakly compact sets and the Frechet derivative if /? consists of all
bounded sets.)

We denote by Np(f) the set of points in D where / fails to be /3-differentiable,
and call a subset of E /3-null provided it is contained in Afp{f) for some continuous
convex / . It is easily verified that all of the properties (i) - (vii) listed above, as well
as Proposition 1, go through for /?-null sets. (In verifying Proposition 1, one must
check that if the sum of two convex continuous functions is /3-differentiable, then so is
each summand.) The reason for not concentrating on the more general notion is that
the class of spaces for which nonempty open sets are not /3-null sets can be somewhat
restrictive. In the Frechet case, for instance, this forces E to be an Asplund space.
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