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Abstract

Let R be a left coherent ring, S a right coherent ring and RU a generalized tilting module, with
S = End(RU ) satisfying the condition that each finitely presented left R-module X with ExtiR(X,U )= 0
for any i ≥ 1 is U -torsionless. If M is a finitely presented left R-module such that ExtiR(M,U )= 0
for any i ≥ 0 with i 6= n (where n is a nonnegative integer), then ExtnS(ExtnR(M,U ),U )∼= M and
ExtiS(ExtnR(M,U ),U )= 0 for any i ≥ 0 with i 6= n. A duality is thus induced between the category
of finitely presented holonomic left R-modules and the category of finitely presented holonomic right
S-modules.
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1. Introduction

For a ring R, we use Mod R (respectively Mod Rop) to denote the category of left
(respectively right) R-modules, and use mod R (respectively mod Rop) to denote the
category of finitely presented left (respectively right) R-modules.

We define gen∗(R R)= {X ∈mod R | there exists an exact sequence · · · → Pi
→ · · · → P1→ P0→ X→ 0 in mod R, with Pi projective for any i ≥ 0} (see [6]).
For a module RU in Mod R (respectively mod R), we use addRU to denote
the full subcategory of Mod R (respectively mod R) that consists of all modules
isomorphic to direct summands of finite sums of copies of RU ; we also let ⊥RU
denote the full subcategory of Mod R (respectively mod R) that consists of all RC
with ExtiR(RC, RU )= 0 for any i ≥ 1. The module RU is called self-orthogonal if

RU ∈ ⊥RU .

DEFINITION 1.1 [6]. A self-orthogonal module RU in gen∗(R R) is called a
generalized tilting module if there exists an exact sequence

0→ R R→U0→U1→ · · · →Ui → · · ·
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such that: (1) Ui ∈ addRU for any i ≥ 0; and (2) after applying the functor
HomR(−,U ), the sequence is still exact.

For a module RU in Mod R (respectively mod R) and a nonnegative integer n, we
define Hn(RU )= {X ∈Mod R (respectively mod R) | ExtiR(X,U )= 0 for any i ≥ 0
with i 6= n}. A module is called holonomic (with respect to RU ) if it is in Hn(RU )
(see [6]). In [6, Proposition 8.1], Wakamatsu proved the following result.

THEOREM 1.2. Let R be a left noetherian ring, S a right noetherian ring and RU
a generalized tilting module with S = End(RU ). If the injective dimensions of US
and RU are both finite, then for any nonnegative integer n, the functor Extn(−, RUS)

induces a dualityHn(RU )op
≈Hn(US).

Recall that a bimodule RUS is called a faithfully balanced bimodule if the natural
maps R→ End(US) and S→ End(RU )op are isomorphisms. By [6, Corollary 3.2],
we have that RUS is a faithfully balanced and self-orthogonal bimodule with RU ∈
gen∗(R R) and US ∈ gen∗(SS) if and only if RU is a generalized tilting module with
S = End(RU ), and if and only if US is a generalized tilting module with R = End(US).
With this observation in mind, we point out that Theorem 1.2 was, in fact, also obtained
by Miyashita in [4, Theorem 6.1]. The aim of this paper is to prove the above result in
a more general situation. The following theorem is the main result in this paper.

THEOREM 1.3. Let R be a left coherent ring, S a right coherent ring and RU
a generalized tilting module with S = End(RU ). If both ⊥RU and ⊥US have the
U-torsionless property, then for any nonnegative integer n, the functor Extn(−, RUS)

induces a dualityHn(RU )op
≈Hn(US).

Recall from [2] that ⊥RU (respectively ⊥US) is said to have the U -torsionless
property if each module in ⊥

RU (respectively ⊥US) is U -torsionless. By
[3, Theorem 2.2], it is easy to verify that under the assumptions of Theorem 1.3, if
the injective dimensions of US and RU are both finite, then both ⊥RU and ⊥US have
the U -torsionless property.

2. Preliminaries

In this section, we give some definitions and collect some elementary facts which
will be useful in the rest of the paper.

Let both U and A be in Mod R (respectively Mod Sop). We denote either one
of HomR(R A, RU ) and HomS(AS,US) by A∗. For a homomorphism f between R-
modules (respectively Sop-modules), we put f ∗ = Hom( f,U ).

Let RUS be an (R–S)-bimodule. For A in Mod R (respectively Mod Sop), let σA :

A→ A∗∗, defined by σA(x)( f )= f (x) for any x ∈ A and f ∈ A∗, be the canonical
evaluation homomorphism; A is called U -torsionless if σA is a monomorphism,
and U -reflexive if σA is an isomorphism. Under the assumption that R = End(US)

(respectively S = End(RU )), it is easy to see that any projective module in mod R
(respectively mod Sop) is U -reflexive.
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DEFINITION 2.1 [2]. Let R and S be rings, and let RUS be an (R–S)-bimodule. A full
subcategory X of Mod R is said to have the U -torsionless property (respectively the
U -reflexive property) if each module in X is U -torsionless (respectively U -reflexive).
The notion of a full subcategory X of Mod Sop having the U -torsionless property
(respectively U -reflexive property) can be defined analogously.

A ring R is called a left coherent ring if every finitely generated submodule of a
finitely presented left R-module is finitely presented. The notion of a right coherent
ring can be defined analogously (see [5]).

Let RUS be an (R–S)-bimodule. Recall from [1] that a module M in Mod R
(respectively mod R) is said to have generalized Gorenstein dimension zero (with
respect to RUS), denoted by G-dimU (M)= 0, if the following conditions are satisfied:
(1) M ∈ ⊥RU and ExtiS(M

∗,US)= 0 for any i ≥ 1; and (2) M is U -reflexive. We use
GU to denote the full subcategory of Mod R (respectively mod R) consisting of the
modules with generalized Gorenstein dimension zero. The following result gives some
characterizations of ⊥RU having the U -torsionless property.

PROPOSITION 2.2. Let R be a left coherent ring, S a right coherent ring and RU
a generalized tilting module with S = End(RU ). Then the following statements are
equivalent.

(1) ⊥

RU has the U-torsionless property.
(2) ⊥

RU has the U-reflexive property.
(3) ⊥

RU = GU .

PROOF. This conclusion was proved in [2, Proposition 2.3] in the case where R is a
left noetherian ring and S is a right noetherian ring. The argument remains valid in the
setting here, so we omit it. 2

Let US be a module in Mod Sop. For a positive integer n, an exact sequence
X0→ X1→ · · · → Xn in Mod Sop is called dual exact (with respect to US) if the
induced sequence X∗n→ · · · → X∗1→ X∗0 is also exact.

PROPOSITION 2.3. Let both U and N be in Mod Sop, and let n be a positive integer.
Then the following statements are equivalent.

(1) ExtiS(N ,U )= 0 for any 1≤ i ≤ n.
(2) Any exact sequence 0→ K → Qn−1→ · · · → Q1→ Q0→ N → 0 in

Mod Sop, with Qi in ⊥US for any 0≤ i ≤ n − 1, is dual exact (with respect
to US).

(3) Any exact sequence Qn+1→ Qn→ · · · → Q1→ Q0→ N → 0 in Mod Sop,
with Qi in ⊥US for any 0≤ i ≤ n + 1, is dual exact (with respect to US).

PROOF. (1)⇒ (2). The case n = 1 is clear. Now suppose n ≥ 2 and that

0→ K → Qn−1
dn−1
−→ · · ·

d2
−→ Q1

d1
−→ Q0→ N → 0
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is an exact sequence in Mod Sop, with Qi in ⊥US for any 0≤ i ≤ n − 1. Then
Ext1S(Im di ,U )∼= Exti+1

S (N ,U )= 0 for any 1≤ i ≤ n − 1. It follows that the induced
sequence

0→ N∗→ Q∗0
d∗1
−→ Q∗1

d∗2
−→ · · ·

d∗n−1
−→ Q∗n−1→ K ∗→ 0

is exact.
(2)⇒ (3) is trivial.
(3)⇒ (1). Suppose n = 1 and that there exists an exact sequence

Q2
d2
−→ Q1

d1
−→ Q0→ N → 0,

with Qi in ⊥US for any 0≤ i ≤ 2, which is dual exact (with respect to US). Put
K = Im d1 and assume that d1 = µπ , where π : Q1→ K is an epimorphism and
µ : K → Q0 is a monomorphism.

Consider the following commutative diagram with exact rows:

0 // N∗ // Q∗0
µ∗ // K ∗ //

π∗

��

Ext1S(N ,U ) // 0

0 // N∗ // Q∗0
d∗1 // Q∗1

d∗2 // Q∗2

Since 0→ K ∗
π∗

−→ Q∗1
d∗2
−→ Q∗2 is exact, Im µ∗ ∼= Im(π∗µ∗)∼= Im d∗1

∼= Ker d∗2
∼= Im π∗ ∼= K ∗. So µ∗ is an epimorphism and hence Ext1S(N ,U )= 0. Then, by using
induction on n, we obtain our conclusion. 2

3. Main results

In this section, R and S are any rings and RUS is an (R–S)-bimodule satisfying the
conditions that End(US)= R and US is self-orthogonal. Later in this section we shall
prove Theorem 1.3, but in order to do this, we first need some lemmas.

For a module M in Mod R, we use l.pdR(M) to denote the projective dimension
of M .

LEMMA 3.1. Let n be a positive integer and let M ∈ gen∗(R R) ∩Hn(RU ). If
l.pdR(M)≤ n, then ExtnS(ExtnR(M,U ),U )∼= M and ExtnR(M,U ) ∈Hn(US).

PROOF. Let M ∈ gen∗(R R) ∩Hn(RU ) with l.pdR(M)≤ n. Suppose that

0→ Pn
dn
−→ Pn−1

dn−1
−→ · · ·

d2
−→ P1

d1
−→ P0→ M→ 0

is an exact sequence in mod R such that Pi is projective for any 0≤ i ≤ n. Then we
have an exact sequence

0→ P∗0
d∗1
−→ P∗1

d∗2
−→ · · ·

d∗n−1
−→ P∗n−1

d∗n
−→ P∗n → ExtnR(M,U )→ 0 (1)
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with P∗i ∈ add US for any 0≤ i ≤ n. Since End(US)= R, Pi is U -reflexive for any
0≤ i ≤ n. We then get the following commutative diagram with exact rows:

0 // Pn
dn //

∼=
σPn

��

Pn−1
dn−1 //

∼=
σPn−1

��

· · · // P1
d1 //

∼=
σP1

��

P0 //

∼=
σP0

��

M //

f

���
�
� 0

0 // [ExtnR (M,U )]∗ // P∗∗n
d∗∗n // P∗∗n−1

d∗∗n−1 // · · · // P∗∗1

d∗∗1 // P∗∗0
// ExtnS (ExtnR (M,U ),U ) // 0

So [ExtnR(M,U )]∗ = 0 and f is an isomorphism; hence M ∼= ExtnS(ExtnR(M,U ),U ).
From the exactness of the bottom row in the above diagram, we know that the exact

sequence

P∗0
d∗1
−→ P∗1

d∗2
−→ · · ·

d∗n−1
−→ P∗n−1

d∗n
−→ P∗n → ExtnR(M,U )→ 0

(which is part of the exact sequence (1)) is dual exact (with respect to US). Since US
is self-orthogonal, P∗i ∈

⊥US for any 0≤ i ≤ n. It follows from Proposition 2.3 that
ExtiS(ExtnR(M,U ),U )= 0 for any 1≤ i ≤ n − 1. On the other hand, from the exact
sequence (1) we get that Extn+i

S (ExtnR(M,U ),U )∼= ExtiS(P
∗

0 ,U )= 0 for any i ≥ 1,
and that ExtnR(M,U ) ∈mod Sop provided US ∈mod Sop. Consequently, we conclude
that ExtnR(M,U ) ∈Hn(US). 2

LEMMA 3.2. Assume that each module in gen∗(R R) ∩ ⊥RU is U-reflexive, and let n
be a positive integer. If M is a module in gen∗(R R) satisfying the condition that
Extn+i

R (M,U )= 0 for any i ≥ 1, then [ExtnR(M,U )]∗ = 0.

PROOF. Suppose that M ∈ gen∗(R R) with Extn+i
R (M,U )= 0 for any i ≥ 1, and that

Pn
dn
−→ Pn−1

dn−1
−→ · · ·

d2
−→ P1

d1
−→ P0→ M→ 0

is an exact sequence in mod R such that Pi is projective for any i ≥ 0. Then
Ext1R(Coker dn,U )∼= ExtnR(M,U ) and ExtiR(Im dn,U )∼= Extn+i

R (M,U )= 0 for any
i ≥ 1 (that is, Im dn ∈

⊥

RU ). It is clear that Im dn ∈ gen∗(R R); so Im dn ∈ gen∗(R R)
∩
⊥

RU and hence Im dn is U -reflexive by assumption.
Consider the following commutative diagram with exact rows:

0 // Im dn //

∼= σIm dn

��

Pn−1 //

∼=
σPn−1

��

Coker dn // 0

0 // [Ext1R(Coker dn,U )]∗ // (Im dn)
∗∗ // P∗∗n−1

Therefore [Ext1R(Coker dn,U )]∗ = 0 and [ExtnR(M,U )]∗ = 0. 2
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LEMMA 3.3. Assume that ⊥RU = GU , and let n be a positive integer. If M ∈ gen∗

(R R) ∩Hn(RU ), then ExtnS(ExtnR(M,U ),U )∼= M and ExtiS(ExtnR(M,U ),U )= 0
for any i ≥ 0 with i 6= n.

PROOF. If l.pdR(M)≤ n, then the conclusion follows from Lemma 3.1. Now suppose
that l.pdR(M)≥ n + 1 and that

· · ·
dn+1
−→ Pn

dn
−→ Pn−1

dn−1
−→ · · ·

d2
−→ P1

d1
−→ P0→ M→ 0

is an exact sequence in mod R, with Pi projective for any 0≤ i ≤ n. Since M ∈
Hn(RU ), we get a complex which is exact except at the index n:

0→ P∗0
d∗1
−→ P∗1

d∗2
−→ · · ·

d∗n−1
−→ P∗n−1

d∗n
−→ P∗n

d∗n+1
−→ · · ·

with P∗i ∈ add US for any i ≥ 0. Thus, ExtnR(M,U )∼= Ker d∗n+1/Im d∗n . Put
B = P∗n /Im d∗n and Y = Im d∗n+1(

∼= P∗n /Ker d∗n+1). Then we get an exact sequence

0→ ExtnR(M,U )→ B→ Y → 0. (2)

Because M ∈ gen∗(R R) ∩Hn(RU ), both Im dn and Im dn+1 are in ⊥RU . It follows
easily that (Im dn+1)

∗ ∼= Im d∗n+1(= Y ). By assumption, ⊥RU = GU , so Im dn+1 ∈ GU

and ExtiS(Y,U )= 0 for any i ≥ 1. From the exact sequence (2), we obtain the
isomorphism

ExtiS(B,U )∼= ExtiS(ExtnR(M,U ),U )

for any i ≥ 1.
On the other hand, we have an exact sequence

0→ P∗0
d∗1
−→ P∗1

d∗2
−→ · · ·

d∗n−1
−→ P∗n−1

d∗n
−→ P∗n → B→ 0.

Using an argument similar to that in the proof of Lemma 3.1, we deduce that
M ∼= ExtnS(B,U ) and ExtiS(B,U )= 0 for any i ≥ 1 with i 6= n. Thus M ∼= ExtnS
(ExtnR(M,U ),U ) and ExtiS(ExtnR(M,U ),U )= 0 for any i ≥ 1 with i 6= n. In
addition, [ExtnR(M,U )]∗ = 0 by Lemma 3.2. The proof is therefore complete. 2

LEMMA 3.4. Assume that ⊥RU = GU , and let n be a nonnegative integer. If M ∈ gen∗

(R R) ∩Hn(RU ), then ExtnS(ExtnR(M,U ),U )∼= M and ExtiS(ExtnR(M,U ),U )= 0
for any i ≥ 0 with i 6= n.

PROOF. Since ⊥RU = GU by assumption, the case for n = 0 is trivial. The conclusion
for n ≥ 1 follows from Lemma 3.3. 2

The following theorem is the main result of this section.
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THEOREM 3.5. Let R be a left coherent ring, S a right coherent ring and RU
a generalized tilting module with S = End(RU ). If ⊥RU has the U-torsionless
property and M ∈Hn(RU ) for some n ≥ 0, then ExtnS(ExtnR(M,U ),U )∼= M and
ExtnR(M,U ) ∈Hn(US).

PROOF. Let R be a left coherent ring, S a right coherent ring and RU a generalized
tilting module with S = End(RU ). Then gen∗(R R)=mod R and gen∗(SS)

=mod Sop. By [6, Corollary 3.2], RUS is faithfully balanced and self-orthogonal,
with RU ∈mod R and US ∈mod Sop. If ⊥RU has the U -torsionless property, then
⊥

RU = GU by Proposition 2.2. Therefore, our result follows from Lemma 3.4. 2

Theorem 1.3 now follows immediately from Theorem 3.5 and its dual result.
Let A be a left R-module; A is called FP-injective if Ext1R(X, A)= 0 for any

finitely presented left R-module X . The left FP-injective dimension of A, denoted
by l.FP-idR(A), is defined as inf{n ≥ 0 | Extn+1

R (X, A)= 0 for any finitely presented
left R-module X}. The notion of right FP-injective dimension of a right R-module B,
denoted by r.FP-idR(B), is defined analogously (see [5]).

Let N be in Mod Sop and suppose that

0→ N
δ0
−→ I0

δ1
−→ I1

δ2
−→ · · ·

δi
−→ Ii

δi+1
−→ · · ·

is an exact sequence in Mod Sop, with Ii FP-injective for any i ≥ 0. Such an exact
sequence is called an FP-injective resolution of N . Recall from [3] that an FP-
injective resolution is called ultimately closed if there is a positive integer n such
that Im δn =

⊕m
j=0 W j , where each W j is a direct summand of Im δi j with i j < n.

It is easy to see that r.FP-idS(U )≤ n if and only if there exists an exact sequence
0→US→ E0→ E1→ · · · → En→ 0 in Mod Sop with Ei FP-injective for any
0≤ i ≤ n. It is clear that such an FP-injective resolution is ultimately closed.

Assume that R is a left coherent ring and that US ∈mod Sop. By [3, Theorem 2.4],
if US has an ultimately closed FP-injective resolution (in particular, if r.FP-idS(U )
<∞), then any module in ⊥RU ∩mod R is U -reflexive. The following result is
therefore an immediate consequence of Theorem 1.3.

COROLLARY 3.6. Let R be a left coherent ring, S a right coherent ring and RU a
generalized tilting module with S = End(RU ). If both RU and US have ultimately
closed FP-injective resolutions (in particular, if both r.FP-idS(U ) and l.FP-idR(U )
are finite), then for any nonnegative integer n, the functor Extn(−, RUS) induces a
dualityHn(RU )op

≈Hn(US).

Notice that a left (respectively right) noetherian ring is a left (respectively right)
coherent ring, and that the notions of finitely presented modules and FP-injective
modules coincide with those of finitely generated modules and injective modules over
noetherian rings; thus Theorem 1.2, due to Wakamatsu and Miyashita, is a special case
of Corollary 3.6.
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