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Abstract. The star formation, mass assembly and chemical enrichment histories of galaxies,
and their present distributions of dark matter, remain encoded in their stellar populations. Dis-
tinguishing the actual distribution functions of stellar age, metallicity and kinematics at several
locations in a range of galaxies, sampling across Hubble types and representative environments,
is the information required for a robust description of galaxy histories. Achieving this requires
large aperture, to provide the sensitivity to reach a range of environs and Hubble types beyond
the Local Group, to provide high spatial resolution, since the fields are crowded, and preferably
with optical performance since age-sensitivity is greatest near the main-sequence turn-off, and
metallicity-sensitivity for these warm stars is greatest in the optical.
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1. Understanding galaxy formation: the context

1.1. The theory

The working paradigm for cosmological structure formation is gravitational instability of
initially low-amplitude, adiabatic, Gaussian and near scale-invariant density fluctuations
in a universe dominated by cold dark matter (with dark energy accelerating the expansion
of the Universe at late times). The first structures that form are small, perhaps equal in
mass to a dwarf galaxy now, and large galaxies result from the hierarchical merging and
accretion of many small systems. The merging history of a typical massive-galaxy dark
halo is fairly straightforward to calculate, since only gravity is involved. However, most
simulations lack the resolution to model the smallest scales with more than a few particles,
and cannot follow how far inside a ‘parent’ halo a merging satellite penetrates, crucial to
determine the effect on the baryonic galaxy. The state-of-the-art Millenium Simulation
(Springel et al. 2005) has a particle mass of8.6× 108 h−1M� and a resolution of 5h−1 kpc.
The incorporation of baryonic physics – in particular gas dissipation, star formation and
feedback – is much more complex, and the results much more model dependent. Feedback
from an active nucleus is only very recently beind incorporated into the simulations
(e.g. Croton et al. 2006), with the establishment of the correlations between black hole
properties and stellar bulge/spheroid (e.g. Gebhardt et al. 2000; Ferrarese & Merritt
2000) and recognition of their probably fundamental nature (e.g. Silk & Rees 1998;
Kauffmann & Haenelt 2000). This of course adds more uncertain physics and associated
parameters into the models.

Abadi et al. (2003) present a recent high-resolution simulation of the formation of a
present-day disk galaxy that demonstrates many of the important aspects, including the
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outstanding problem of how to include star formation and gas physics. Generic predic-
tions for disk galaxies include the following:
• Extended disks form late, after a redshift of unity, or a lookback time of ∼8 Gyr,

in order to avoid losing too much angular momentum during active merging at earlier
times
• A large disk galaxy should have hundreds of surviving satellite dark haloes at the

present day
• The stellar halo is formed from disrupted satellites
• Minor mergers (a mass ratio of ∼10 − 20% between the satellite and the disk – a

much smaller ratio between the satellite and the larger host dark halo) into a disk heat
it, forming a thick disk out of a pre-existing thin stellar disk, and create torques that
drive gas into the central (bulge?) regions
• More significant mergers transform a disk galaxy into an S0 or even an elliptical
• Subsequent accretion of gas can reform a thin disk
• Stars can be accreted into the thin disk from suitably massive satellites (dynamical

friction must be efficient) and if to masquerade as stars formed in the thin disk, must be
on suitable high angular momentum, prograde orbits

Elliticals form by ‘major mergers’, with a mass ratio of approximately unity; there is
much uncertainty (freedom in the models) about the gas fraction of the merging entities,
and how much star formation and ‘feedback’ occurs during the merger (e.g. Larson &
Tinsley 1979; Zurek, Quinn & Salmon, 1988; Kauffmann 1996; Cole, Lacey, Baugh &
Frenk 2000).

Dwarf galaxies have the most fragile global potential wells, and are expected to be
the most strongly affected, in any model, by internal feedback processes, by external
ionization and/or ram pressure stripping (e.g. Sandage 1965; Saito 1979; Wyse & Silk
1985; Dekel & Silk 1986; Efstathiou 1992; Bullock, Kravtsov & Weinberg 2000; Robertson
et al. 2005). Detailed baryonic astrophysics has been appealed to, to solve the well-
established predicted excess of satellite halos in CDM models, compared to observed
satellite galaxies (Moore et al. 1999; Klypin et al. 1999).

1.2. Observational tests, Integrated light
A first step in an observational approach to understanding the physics behind galaxy
formation is to obtain and then analyse large datasets, to identify patterns and correla-
tions as a means to underlying physical causal connections. The dataset could be simple
images of galaxies, and the pattern the Hubble Sequence. More detailed correlations such
as the various projections of the Fundamental Plane of ellipticals (Dressler et al. 1987;
Djorgovski & Davis 1987) and the Tully-Fisher relationship for spirals and associated
dark matter scaling relationships (e.g. Bell & de Jong 2001) provide more insight. The
small scatter seen in these correlations at low redshift means that late random merging
of stellar galaxies cannot be the dominant evolutionary trend. Indeed, correlations of
the properties of the stellar populations with overall potential well depth suggest that
if mergers are indeed the dominant mechanism by which galaxies form and evolve, the
mergers must be gas rich, and most stars form during the mergers, with the last signifi-
cant merger dominating the star formation history.

Spectroscopic surveys of faint galaxies, combined with morphological information from
high-resolution HST images, have allowed investigations of the evolution of the Funda-
mental Plane with redshift, out to z ∼ 1, for both cluster E/SO galaxies (e.g. van Dokkum
et al. 1998) and field E/SO galaxies (e.g. Treu et al. 2005). The conclusions (Treu et al.
2005) are that the most massive systems have evolved passively, consistent with the bulk
of star formation at higher redshifts, z ∼ 2, and even for lower masses, most stars formed
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at these high redshift, but a significant fraction (up to ∼40 %) of stars in these systems
could have formed at lower redshifts. The trend is more pronounced in clusters, as ex-
pected from hierarchical clustering, but the density dependence is weaker than model
predictions. Such ‘downsizing’ in star formation (cf. Cowie et al. 1996) is not a natural
prediction of hierarchical clustering models. The dominance of early star formation in
massive systems is consistent with the results of surveys of faint galaxies selected in the
near infra-red, which found a significant population of red, massive galaxies at redshifts
of z <∼ 2 (Glazebrook et al. 2005; Cimatti et al. 2005). That major merging does not
play a major role in determining the star formation rate of galaxies over cosmic time
is also the conclusion of a survey of galaxies at redshift ∼0.7, combining Spitzer Space
Telescope mid-IR observations (to determine the star formation rate) with morphological
information from HST imaging (Bell et al. 2005). The robust identification of progeni-
tor/descendant populations, and untangling number density evolution from luminosity
evolution, requires that surveys be carried out at low, intermediate and high redshift.

Dissipationless (‘dry’ in current jargon) merging of ellipticals to form more massive
ellipticals appears to occur in dense clusters (Tran et al. 2005), and in the field (van
Dokkum 2005). The relative motions of galaxies in clusters are large compared to the
depth of the internal potential well of most galaxies, leading to the expectation that only
the most massive systems should merge (the merging cross-section is a steeply decreasing
function of the ratio of relative velocity to internal velocity dispersion; Makino & Hut
1997). ‘Selective’ merging whereby only massive systems form more massive systems may
preserve the fundamental plane at least in its structural projections (Boylan-Kolchin, Ma
& Quataert 2005); chemical abundances may be a more difficult aspect.

Trends with metallicity provide strong constraints on merging, both dissipational and
dissipationless. Kauffmann & Charlot (1998) argue that generically in CDM models large
ellipticals form from a few large disk galaxy progenitors (rather than a large number of
small progenitors) and predict a mass-metallicity relation for ellipticals, provided there
is significant star formation and strong feedback during mergers (see also Nagashima
et al. 2005); this last point is the crucial one, since they found that a different star for-
mation/feedback prescription failed to produce a mass-metallicity trend in agreement
with the observations. Indeed Larson & Tinsley (1979) demonstrated that the mass-
metallicity relationship for ellipticals could be reproduced in a merger scenario provided
mergers were gas rich, and the efficiency of star formation increased with total mass.
Another prediction, that stars in more massive ellipticals should have a younger mean
age than stars in lower luminosity ellipticals does not appear to be in agreement with
the papers discussed above, or with the inferred star formation histories as a function of
mass from the large Sloan Digital Sky Survey (SDSS) spectroscopic database (Jimenez
et al. 2005) which show the opposite trend (see Fig. 1 here). However, these spectra are
for the integrated light of the central regions only, and the analysis depends on detailed
comparisons with spectral synthesis models, necessarily involving inherent degeneracies
among age distribution, metallicity distribution and dust extinction. An ELT with ca-
pabilities to obtain spatially resolved spectra plus deep colour-magnitude diagrams from
resolved stellar populations will provide much superior capabilities to determine age and
metallicity distributions. For the nearer galaxies, spectra of individual stars will provide
even more power.

Kauffmann & Charlot (1998) further predict that the mass-metallicity relationship for
ellipticals should remain ‘virtually unchanged out to high redshift’. With an ELT, we
can test this prediction.

The suggestions above that the gas fraction and amount of star formation in a merger
may vary with mass, with the most massive systems forming in dissipationless mergers,
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Figure 1. Taken from Jiminez et al. 2005, see also Heavens et al. 2004. Top panel: Star Forma-
tion Histories as a function of stellar mass, plotted as fraction of stellar mass formed in each of
6 age bins, only 3 labelled. Bottom panel: same thing but plotted as stellar mass bins. An ELT
will enable the derivation of more detailed star formation histories, with fewer uncertainties.

should leave signatures in the mass-metallicity relationship. The correlation between
central velocity dispersion and the magnesium index Mgb does show a hint of a flattening
at the highest values of the velocity dispersion, as expected if simple stellar mergers
with no chemical evolution occur, but there are few galaxies to define the sample. The
early-type galaxies in the Sloan Digital Sky Survey do not have spectra of high enough
signal-to-noise for robust measurement of line indices for each galaxy (Bernardi et al.
2003). Stacking of spectra of galaxies of similar velocity dispersion (and environment)
does not show evidence of a turnover (Bernardi et al. 2003), especially when allowance is
made at the highest velocity dispersions for possible superpositions of galaxies in the one
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fiber (Bernardi et al. 2005). However, spatially resolved spectra are required to establish
the reality, or otherwise, of interloper companion galaxies.

Tremonti et al. (2004) studied star-forming galaxies in the SDSS spectroscopic database,
confirming a strong correlation between present-day gas metallicity and stellar mass, with
a suggestion of a turnover for masses greater than a few times 1010M�. This is inter-
preted in terms of a varying importance of gas outflows rather than anything to do with
mergers.

Thus analyses of the integrated light (or, in some cases just the central regions) together
with HST-resolution structural information of local and moderate redshift galaxies have
pointed to a general ‘anti-hierarchical’ picture whereby large galaxies form their stars
early, and probably assembled their mass early also.

Extended disks have been identifed by imaging in the rest-frame optical domain out to
redshift <∼ 3 (Trujillo et al. 2006), and their sizes are consistent with little evolution since
then, significantly less than predicted by semi-analytic CDM models (Mo, Mao & White
1998), but consistent with the simplest picture of gaseous infall and star formation within
a fixed potential well, with the star formation rate higher in the central disk. Indeed, the
interpretation from these high redshift observations is that ‘stellar disks form from early
on, in large haloes’ (Trujillo et al. 2006).

The lowest mass galaxies can be studied in the Local Group, where the metallicity-
luminosity relation is extremely well-defined (see e.g. Dekel & Woo 2003). However, this
is not a straightforward metallicity–mass relation, since many of the gas-poor dwarfs
apparently have little variation in total mass, with the internal kinematics pointing to
a total (dark) mass of around 107M� (e.g. Mateo 1998, his Fig. 9). This peaked mass
function is not at all expected in CDM; note that while one can change the luminosity
function significantly (see Cooray & Cen 2005) by appealing to various kinds of feedback,
the mass function is not so amenable to such modifications.

2. Resolved disk galaxies: the four(?) stellar population types

Much more astrophysics can be derived from studies of individual stars. The large
galaxies of the Local Group are accessible to study with current telescopes, and indeed the
first significant spectroscopic studies of significant samples of stars in M31 and M33 are
underway (e.g. Ferguson et al. 2006 and references therein; Reitzel, Guhathakurta & Rich
2004), complemented by wide-area shallow imaging (Ibata et al. 2001; Ferguson et al.
2002) and deep narrow-field imaging with the Hubble Space Telescope (Brown et al. 2003;
Ferguson et al. 2005; Brown et al. 2006). The fascinating results from these observations –
there is significant substructure in all stellar components, in all their properties – under-
line the need for large samples of stars with good spectra, for metallicities and kinematics,
over as much of the face of the galaxy as possible, with matched deep colour-magnitude
data.

This is what we desire from an ELT, for as broad a range of Hubble types as possible.
Such datasets will exist in the near future for the Milky Way, as a results of the new

efforts to map its stellar content (e.g. RAVE, SDSS-II/SEGUE, surveys with AAOmega,
WFMOS...). We already have sufficient knowledge to use the Milky Way as a template
disk galaxy, and identify four stellar populations with properties that constrain the star
formation history, the chemical evolution history (flows, feedback..) and the mass assem-
bly history. There may even be a fifth type, Pop III, as yet undetected but suspected.
Comparing and contrasting external galaxies with the Milky Way then constrains these
crucial aspects of galaxy formation and evolution.
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• The thin disk, also known as Baade’s population I. This is composed of stars and gas
on high angular momentum orbits, moving about the center with close to the circular
velocity, and thus with only low amplitude random motions. Such a cold thin system
probably formed by dissipational collapse of gas, in a potential that is at most adiabat-
ically changing, and conserved angular momentum to spin-up as it collapsed (see Fall
& Efstathiou 1980; Mo, Mao & White 1998). Hierarchical merging models however pre-
dict significant angular momentum transport and produce generically disks that are too
small (Navarro & Steinmetz 1997). Appeal to ‘feedback’ can prevent much of the angu-
lar momentum losses from the proto-disk, but at the expense of delaying the collapse to
centrifugal equilibrium (e.g. Eke, Efstathiou & Wright 2000) and thus predicting few old
stars in disks, and no extended high-redshift disks. Contributions from accretion of stellar
systems into the thin disk plane is possible, and predicted in some models (e.g. Abadi
et al. 2003). Identification of such substructure is complicated by the fact that dynam-
ical perturbations certainly exist in the form of spiral arms and giant molecular cloud
complexes, and create ‘moving groups’ (e.g. Famaey et al. 2005). However, disruption of
a satellite is a viable explanation for the apparent ‘ring’ of stars seen in the very outer
regions of the Galactic disk, if it is real (e.g. Newberg et al. 2002; Ibata et al. 2003). Per-
turbations to the thin disk cannot be too strong however, or the disk will be destroyed
(e.g. Ostriker 1990) and thus the properties of stars in the thin disk constrains merging
histories and other energetic dynamical processes. The age and metallicity distributions
of the disk, well-defined only at the solar neighbourhood, point to extended infall of
metal-poor gas, and steady star formation from a redshift of >∼ 1.5 (e.g. Binney et al.
2000) to the present.
• The thick disk - this was identified as a separate component some 25 years ago

(Gilmore & Reid 1980). The dominant population is old, as old as the globular cluster
47 Tuc, <∼ 12 Gyr, and of intermediate metallicity in the mean, [Fe/H] ∼ −0.6, with a
significant spread. The chemical enrichment history revealed by the pattern of element
ratios is distinct from that of stars in the thin disk (Bensby et al. 2004). A plausible
origin for the thick disk is the heating of a pre-existing thin disk by a violent dynamical
event such as a minor merger; the old mean age for the thick disk limits such events to
have occurred only long ago, an important constraint – and a problem, if found to be
a typical result – for CDM models. Thick disks are now observed in resolved stars in
other galaxies (e.g. Mould 2005; Yoachim & Dalcanton 2005) but their properties remain
to be robustly determined. An ELT would allow such detailed studies beyond the Local
Group.
• The central bulge - this too was not in the classic Baade list of stellar populations.

The dominant stellar population in the bulge of the Milky Way is old and metal-rich,
with a broad spread in metallicities. Elemental abundances are available for remarkably
few stars, given the capabilities of current telescopes, and point to a fairly rapid enrich-
ment, being dominated by products of Type II supernovae. This, together with the old
age and high (phase-space) density, point to in situ formation, in a ‘starburst’, at high
redshift. Could this be connected to the formation of the supermassive black hole at
the Galactic Center? The relationships between the ‘bulge’, the ‘bar’ and the inner disk
remain unclear.
• The stellar halo, also known as Baade’s Population II. This is a dominantly old

and metal-poor component, with Type II dominated element ratios, indicating a short
duration of star formation in each of the star-forming entities that created the halo.
The outer parts show indications of significant accretion, most dramatically due to the
Sagittarius dwarf (Ibata, Gilmore & Irwin 1994; Majewski et al. 2003), which is mostly
intermediate-age and more metal-rich. Accretion to the dominant Population II halo can
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only have occured at early times (Unavane, Wyse & Gilmore 1996). The Population II
halo may be connected to the stellar bulge; one can tie gas outflow from halo star-forming
regions, required to provide the low mean metallicity, to gas inflow to the central regions
to form the bulge. The low angular momentum of proto-halo material means that it will
only come into centrifugal equilibrium after collapsing in radius by a significant factor.
The predicted mass ratio of bulge to halo is around a factor of ten, just as would be
expected, and the specific angular momentum distributions of stellar halo and bulge
match (Wyse & Gilmore 1992; see Figure 2 here). We have yet to obtain the data to
allow a study in detail of the bulge-stellar halo connection in external galaxies; an ELT
would allow this.
• Population III – which we take to mean stars formed from primordial gas, most

probably precursors to galaxy formation. Where are the low-mass Pop III stars? On-
going searches for extremely low metallicity stars in the Galactic halo have not found
any strong indications of a separate population (e.g. Beers et al. 2005), but have identified
a few stars with extreme deficiencies in iron, and relatively strong carbon (e.g. Aoki et al.
2005). The origins of this abundance pattern are unclear. There is little observational
evidence in favour of significant variations in the stellar IMF for any of the components
discussed above, but there is strong theoretical prejudice that primordial stars form with
a narrow range of masses, around ∼200 M� (e.g. Bromm & Larson 2004). The supernovae
from such stars would provide elemental abundance patterns in the stars they enrich that
do not match those of the extremely metal-poor stars. An ELT could perhaps see massive
Population III starbursts at high redshift.
• and the dark matter - how is this related, and is its physics really trivially simple??

Figure 2. Adapted from Wyse & Gilmore 1992, their Figure 1. Angular momentum distri-
butions of the bulge (solid curve), the stellar halo (short-dashed/dotted curve), the thick disk
(long-dashed/dotted curve) and the thin disk (long-dashed curve). The bulge and stellar halo
have similar distributions, as do the thick and thin disks. Does this hold for external galaxies,
pointing to fundamental relationships between bulge and halo, and thick and thin disks? An
ELT with an IFU could tell us.
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3. Implications for ELT capabilities
It is not our purpose here to quantify a science requirements document for any specific

telescope. Rather, we end by noting that the wide range of science questions briefly
introduced above require observations beyond the Local Group, and observations with
high sensitivity and high spatial resolution. It is a reasonable assumption that extant
8-10m telescopes will be developed and used to their limits, with the same set of next-
generation enhancements that are also the learning curve for the ELT-instruments and
capabilities.

International technological developments, using the best 8-10m telescopes as test-beds,
will both optimise scientific gains for today’s astronomy, and allow development of next
generation facilities. The science questions introduced above are those we believe will
survive our best efforts over the next decade, and truly need next generation capabilities.

Extending current efforts to the ELTs can push galaxy formation understanding into
contact with reality, with testable predictions, and real science as ambitious outcomes.
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