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Role of triad interactions in spectral evolution
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It is generally accepted that the evolution of the deep-water surface gravity wave spectrum
is governed by quartet resonant and quasi-resonant interactions. However, it has also
been reported in both experimental and computational studies that non-resonant triad
interactions can play a role, e.g. generation of bound waves. In this study, we investigate the
effects of triad and quartet interactions on the spectral evolution, by numerically tracking
the contributions from quadratic and cubic terms in the dynamical equation. In a finite
time interval, we find that the contribution from triad interactions follows the trend of
that from quartet resonances (with comparable magnitude) for most wavenumbers, except
that it peaks at low wavenumbers with very low initial energy. This result reveals two
effects of triad interactions. (1) The non-resonant triad interactions can be connected to
form quartet resonant interactions (hence exhibiting the comparable trend), which is a
reflection of the normal form transformation applied in wave turbulence theory of surface
gravity waves. (2) The triad interactions can fill energy into the low-energy portion of
the spectrum (low wavenumber part in this case) on a very fast time scale, with energy
distributed in both bound and free modes at the same wavenumber. We further analyse the
latter mechanism using a simple model with two initially active modes in the wavenumber
domain. Analytical formulae describing the distribution of energy in free and bound modes
are provided, along with numerical validations.

Key words: surface gravity waves

1. Introduction
Wave turbulence is a state of motion in systems characterised by nonlinear interactions
among many waves at different scales. The long-term statistical properties of such

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original
article is properly cited. 1008 A41-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

23
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-8820-4256
https://orcid.org/0000-0002-7504-8645
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2025.234&domain=pdf
https://doi.org/10.1017/jfm.2025.234


Z. Zhang and Y. Pan

kc

k2
k4

k1 k3

Figure 1. A diagrammatic representation of a resonant quartet (k1, k2, k3, k4) formed by the connection of
two non-resonant triads satisfying k1 + k2 = kc = k3 + k4, ω1 +ω2 =ωc =ω3 +ω4.

systems are described theoretically in the framework of wave turbulence theory. In this
framework, a kinetic equation can be derived to model the evolution of the wave spectrum
under wave–wave interactions. Such interactions have to satisfy the resonance conditions
(or approximations in the case of quasi-resonances)

k1 ± k2 ± · · · ± kN = 0, (1.1)
ω1 ±ω2 ± · · · ±ωN = 0, (1.2)

where N is the number of modes in the interaction (N = 4 for a quartet, and N = 3 for a
triad), and ki is the wavenumber vector, which is related to frequency ωi by the dispersion
relation.

For surface gravity waves in deep water, it is widely accepted that the relevant
interactions in the kinetic equation are quartet resonant interactions with N = 4. This is
associated with the fact that triad resonant interactions are prohibited by the dispersion
relation ω∼ |k|1/2. As a result, a normal form transformation (see the detailed formulation
in Krasitskii 1994) can be implemented on the dynamical equations to remove the
quadraticnonlinearity terms (corresponding to non-resonant triad interactions). The
resulted equation, named the Zakharov equation (Zakharov 1968), contains only the cubic
terms, based on which the kinetic equation with N = 4 can be further derived. This
process implies that the effect of non-resonant triad interactions, instead of being null,
can be merged into and understood at the level of quartet interactions (see other studies
in the Fermi–Pasta–Ulam–Tsingou system, e.g. Ganapa (2023)). This argument about
triad interactions, however, remains on a theoretical level without any direct numerical
demonstration.

Another effect of triad interactions, which is discussed more often in the literature, is the
generation of bound modes. While such an effect is absent from the Zakharov equation, it
can indeed be expected from the original dynamical equation with quadratic nonlinearity.
Given two free modes k1 and k2, the triad non-resonant interaction is supposed to generate
another mode k3 with ω3 not satisfying the dispersion relation, hence named a bound
mode. Such bound modes can be observed in the wavenumber–frequency spectrum as
branches away from the dispersion relation curves, which are reported and discussed in
many experimental and numerical studies (Lvov, Nazarenko & Pokorni 2006; Krogstad &
Trulsen 2010; Cobelli et al. 2011; Taklo et al. 2015; Aubourg et al. 2017; Campagne et al.
2019; Zhang & Pan 2022b). While the bound mode has been proposed as a building block
connecting two triads to form a resonant quartet (see figure 1 and the discussion in the
previous paragraph), a single triad is considered as purely non-resonant, i.e. it is capable
of generating only bound modes, thus not contributing to the free-wave portion of the
spectrum.

Despite the above-mentioned understanding on triad interactions, their effects on
spectral evolution of gravity waves have not been completely understood, upon which
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questions often arise, say, in interpreting experimental data (Aubourg et al. 2017). In this
work, we aim to provide a comprehensive study of this problem. The core of this study is a
numerical algorithm that we developed to directly track the contributions of quadratic and
cubic terms in the dynamical equation (hence triad and quartet interactions) to spectral
evolution.

Through an analysis of the evolution of a typical gravity wave spectrum in a time
interval, we find that the contributions from triad and quartet interactions share similar
magnitude and trend for most wavenumbers, except that the former shows a much higher
peak at small wavenumbers, where the initial energy level is low. We point out that the
comparable contributions from triad and quartet interactions at most wavenumbers is a
direct manifestation of the normal form transformation, i.e. the effect of triad interactions
understood at the quartet level. We further study the rapid spectral evolution at low
wavenumbers, which according to our results is due to non-resonant triad interactions.
However, an analysis of the spectral content at low wavenumbers shows that there is
significant energy in free waves in addition to bound waves, which seems to contradict
the previous understanding of non-resonant interactions (generating only bound modes).
We reconcile this contradiction by providing a new understanding: whenever a bound
mode is generated, it is always accompanied by a free mode at the same wavenumber.
In nature, this is similar to the scenario of a frictionless pendulum forced at non-natural
frequency, which leads to an oscillation at both forced and natural frequencies (the latter
being a homogeneous solution). Based on this understanding, we analytically derive the
energy ratio between bound and free modes in non-resonant triad interactions through
a perturbation analysis. The obtained formula is finally validated favourably through
simulations of a range of different triad interactions.

The paper is organised as follows. In § 2, we first review the problem formulation
and normal form transformation. Then we present our algorithm to decompose quadratic
and cubic terms in the gravity-wave dynamical equation, and the method to track
their contributions in spectral evolution. In § 3, we analyse the evolution from a (tail-
damped) JONSWAP spectrum, and elucidate the effect of triad interactions in this process,
regarding the connection to form quartets and non-resonant interactions to distribute
energy in generated bound and free modes. In § 4, we derive the analytical formula for
the distribution of energy in triad interactions, with validations from direct simulations.
Discussions and conclusions are provided in § 5.

2. Formulation and methodology
We consider gravity waves on a two-dimensional (2-D) free surface of an incompressible
and irrotational ideal fluid with infinite depth. The flow field can be described by a
velocity potential φ(x, z, t) satisfying Laplace’s equation, where x = (x, y) denotes the
horizontal coordinates, z is the vertical coordinate, and t is time. The evolution of the
surface elevation η(x, t) and surface velocity potentialψ(x, t)= φ(x, z, t)|z=η satisfy the
Euler equations in Zakharov form (Zakharov 1968; see also Mei, Stiassnie & Yue 2005;
Korotkevich 2023)

∂η

∂t
+ ∇xη·∇xψ − (1 + ∇xη·∇xη)φz = 0, (2.1)

∂ψ

∂t
+ η+ 1

2
∇xψ·∇xψ − 1

2
(1 + ∇xη·∇xη)φ

2
z = 0, (2.2)

where φz(x, t)= ∂φ/∂z|z=η is the vertical velocity evaluated at the free surface, and
∇x = (∂/∂x, ∂/∂y) denotes the horizontal gradient. At each time instant, φz can be
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determined as a solution to a Dirichlet-to-Neumann problem involving the boundary value
ψ on z = η. With proper choice of mass and time units, the density and gravitational
acceleration are both set to be unity so that they do not appear in (2.2).

2.1. Normal form transformation
Here we review the normal form transformation to remove the quadratic terms in (2.1) and
(2.2). The canonical variable for gravity waves is defined as

ak = 1√
2

(
k−1/4η̂k + ik1/4ψ̂k

)
, (2.3)

where a caret denotes the Fourier component in the wavenumber domain, and k = |k|.
Writing (2.1) and (2.2) in terms of ak, we have (truncated up to cubic nonlinearity)

i
∂ak

∂t
=ωkak +

∑
k1,k2

V [1]
012a1a2δ0−1−2 +

∑
k1,k2

V [2]
012a∗

1a2δ0+1−2 +
∑
k1,k2

V [3]
012a∗

1a∗
2δ0+1+2

+
∑

k1,k2,k3

W [1]
0123a1a2a3δ0−1−2−3 +

∑
k1,k2,k3

W [2]
0123a∗

1a2a3δ0+1−2−3

+
∑

k1,k2,k3

W [3]
0123a∗

1a∗
2a3δ0+1+2−3 +

∑
k1,k2,k3

W [4]
0123a∗

1a∗
2a∗

3δ0+1+2+3,

(2.4)
where V [n], W [n] are interaction coefficients, and δ is the compact form of the Kronecker
delta function satisfying δ0±1±2 = δ(k ± k1 ± k2) and δ0±1±2±3 = δ(k ± k1 ± k2 ± k3).

The goal is to introduce a near-identity transformation ak → bk in the form

ak = bk +
∑
k1,k2

A[1]
012b1b2δ0−1−2 +

∑
k1,k2

A[2]
012b∗

1b2δ0+1−2 +
∑
k1,k2

A[3]
012b∗

1b∗
2δ0+1+2

+
∑

k1,k2,k3

B[1]
0123b1b2b3δ0−1−2−3 +

∑
k1,k2,k3

B[2]
0123b∗

1b2b3δ0+1−2−3

+
∑

k1,k2,k3

B[3]
0123b∗

1b∗
2b3δ0+1+2−3 +

∑
k1,k2,k3

B[4]
0123b∗

1b∗
2b∗

3δ0+1+2+3,

(2.5)

so that when we write the equation in terms of bk, it yields the form

i
∂bk

∂t
=ωkbk +

∑
k1,k2,k3

T0123b∗
1b2b3δ0+1−2−3. (2.6)

Equation (2.6) is known as the Zakharov equation, based on which the kinetic equation
associated only with quartet interactions can be derived. In order to obtain the Zakharov
equation, the coefficients A[n] and B[n] in (2.5) need to be chosen in a way such that the
quadratic terms vanish under the transformation. The formulation and explicit expressions
for these coefficients, together with those in (2.4) and (2.6), are well documented and can
be found in e.g. Krasitskii (1994) and Janssen & Onorato (2007). Here, we provide an
example of A[n]:

A[2]
012 = − V [2]

012
ωk +ω1 −ω2

for k2 = k + k1, (2.7)
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where

V [2]
012 = 1

25/2π

[
k1/4

2 (k · k1 + kk1)

(kk1)1/4
+ k1/4

1 (k · k2 − kk2)

(kk2)1/4
+ k1/4(k1 · k2 − k1k2)

(k1k2)1/4

]
. (2.8)

We remark that the denominator in (2.7) remains non-zero since there is no solution to (1.1)
and (1.2) with N = 3. This is the critical point allowing the normal form transformation to
be implemented.

2.2. Algorithm to decompose contributions from quadratic and cubic terms
Our goal here is to compute numerically the contributions from quadratic and cubic
terms in (2.4) to the evolution of modal energy ek =ωkaka∗

k . However, a direct
computation based on (2.4) is very expensive with the convolutions, i.e. O(N 2) and
O(N 3) computational complexity for quadratic and cubic terms, with N being the number
of modes. To achieve an efficient O(N log N ) computation, we need to go back to (2.1)
and (2.2) in the spectral domain where all terms can be computed by making use of the fast
Fourier transform. For this purpose, we decompose (2.1) and (2.2) in the spectral domain
as (the decomposed equations are equivalent to (2.4))

∂η̂k

∂t
= L̂η + N̂ (2)

η + N̂ (3)
η + O(ε4), (2.9)

∂ψ̂k

∂t
= L̂ψ + N̂ (2)

ψ + N̂ (3)
ψ + O(ε4), (2.10)

with linear terms

L̂η = φ̂
(1)
z , (2.11)

L̂ψ = −η̂k, (2.12)

and nonlinear terms (up to cubic nonlinearity)

N̂ (2)
η = φ̂

(2)
z − ̂(∇xη·∇xψ

)
, (2.13)

N̂ (2)
ψ = 1

2

[̂
φ
(1)
z
]2 − 1

2
̂(∇xψ·∇xψ

)
, (2.14)

N̂ (3)
η = φ̂

(3)
z + ̂(

∇xη·∇xηφ
(1)
z

)
, (2.15)

N̂ (3)
ψ = ̂

φ
(1)
z φ

(2)
z . (2.16)

In the above equations, φ(m)z represents mth-order nonlinearity terms in φz when it is
expressed as power series in η and ψ , say, using the method in Dommermuth & Yue
(1987) and Pan, Liu & Yue (2018). With such expressions of φ(m)z , all terms in (2.9) and
(2.10) can be evaluated straightforwardly, employing the fast Fourier transform for the
calculation of derivatives.

We next connect (2.9) and (2.10) to the spectral energy evolution rate rk = ∂ek/∂t , the
quantity of our interest in the study. In terms of η and ψ , ek can be written as

ek = 1
2
(kψ̂kψ̂

∗
k + η̂kη̂

∗
k), (2.17)
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and rk can be written as

rk = 1
2

[
k

(
∂ψ̂k

∂t
ψ̂∗

k + ∂ψ̂∗
k

∂t
ψ̂k

)
+
(
∂η̂k

∂t
η̂∗

k + ∂η̂∗
k

∂t
η̂k

)]
(2.18)

(see a similar implementation in the Majda–McLaughlin–Tabak model in Hrabski & Pan
(2022)). By substituting (2.9) and (2.10) in (2.18), we obtain

r (m)k = Re[k N̂ (m)
ψ ψ̂∗

k + N̂ (m)
η η̂∗

k], m = 2, 3, . . . , (2.19)

where r (m)k gives the k-mode energy evolution rate due to mth-order nonlinearity in (2.9)
and (2.10). By definition, r (1)k = 0, while r (2)k and r (3)k correspond to the contributions from
quadratic and cubic terms.

2.3. Numerical set-up
In this work, we simulate the evolution of a spectrum via (2.1) and (2.2), with (2.19)
implemented to track the contributions of triad and quartet interactions to spectral
evolution. The initial condition for the simulation is chosen as a directional tail-
damped JONSWAP spectrum (Hasselmann et al. 1973). Specifically, the spectrum in the
frequency–angle domain is written as S(ω, θ)= G(ω) D(θ), where θ is the angle with
respect to the positive x direction. We set G(ω)= J (ω) H(ω), where J (ω) is a JONSWAP
spectrum with the peak enhancement factor γ = 6 (peak period Tp and significant wave
height Hs specified later), and H(ω) is a tail-damped function in the form

H(ω)=
{

1, ω2 < ka,

eλ(ω
2−ka), ω2 � ka,

(2.20)

where λ and ka are parameters controlling the damping rate and the effective range of
damping, chosen as ka = 40 and λ= −0.21 in this study. The purpose of including H(ω)
is to allow more room for evolution at the tail of the spectrum (since the spectrum J (ω)
is relatively close to the stationary state at the tail). The angle spreading function D(θ) is
chosen as a cosine-squared function in the form

D(θ)=
{ 2
π

cos2 θ, |θ |� π/2,
0, |θ |>π/2,

(2.21)

which satisfies
∫ π
−π D(θ) dθ = 1. The initial phase of each mode is set as a random number

uniformly distributed in [0, 2π), which rules out otherwise possible spectral adjustment
due to phase randomisation in the initial stage of the simulation. We also note that while
results in § 3 are based on the initial JONSWAP spectrum, the physical mechanisms of
interest do not depend on the specific choice of the initial spectrum.

The simulation of (2.1) and (2.2) is conducted in a doubly periodic domain of size
2π × 2π (corresponding to a fundamental wavenumber k0 = 1) with 512 × 512 modes.
An order-consistent high-order spectral (HOS) method (West et al. 1987) is used to
compute the nonlinear terms up to cubic nonlinearity. For the time integration, we apply an
integration factor scheme to solve for the linear terms analytically, and use a fourth-order
Runge–Kutta method to integrate the nonlinear terms explicitly. (A detailed description
of these time-marching schemes can be found in Pan (2020) in the context of capillary
waves.)

To stabilise the simulation, we add dissipation terms Dη(k)= γkη and Dψ(k)= γkψ

to the right-hand sides of (2.1) and (2.2), respectively, with the dissipation coefficients
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defined as γk = γ0(k/kd)
ν . Such a dissipation scheme serves as a low-pass filter modelling

the dissipation due to wave breaking (Xiao et al. 2013), which has been tested against wave
tank experimental data and also applied in previous work (e.g. Zhang & Pan 2022b). Here,
we use γ0 = −50, kd = 115 and ν = 30, and have tested that the resultant dissipation is
negligible compared to the evolution due to nonlinear terms, so the evaluated r (2)k and r (3)k
provide a correct view of the total evolution of the spectrum.

3. Results
We start by defining the angle-integrated modal energy and its evolution rate:

E(kr )=
∑

|k−kr |<δk
ek, (3.1)

R(m)(kr )=
∑

|k−kr |<δk
r (m)k , (3.2)

where δk, chosen as 1, is a parameter characterising the width of the (ring-shaped) region
for the summation. Our interest is in the normalised and averaged energy evolution rate
|R(m)|/|E | obtained from a time interval of spectral evolution, with the overbar denoting
the time average in this interval. The denominator |E | accounts for the significant variation
of energy level at different scales, which enables a fair comparison over all wavenumbers.
We also remark that the quantity |R(m)|/|E | has dimensions of inverse time [t]−1 and can
be considered as an estimate of the reciprocal of the nonlinear time scale.

Starting from the tail-damped JONSWAP spectrum introduced in § 2.3, we perform
simulations up to 80Tp, where Tp is the peak wave period corresponding to the peak
wavenumber kp = 20. This simulation time is found to be sufficient to capture the physics
of interest in this work. The nonlinearity level ε = Hskp/2 is controlled by varying Hs
in the initial spectrum. Figure 2 shows the evolution of the surface-elevation spectrum
Sη(k) and the associated |R(m)|/|E | (with m = 2, 3) computed over [0, 80Tp] at two
nonlinearity levels, ε = 0.1259 and 0.0629. From figures 2(a) and 2(b), we see significant
spectral evolution occurring at small and large scales for both nonlinearity levels, with
the evolution at higher nonlinearity being more pronounced (a phenomenon related to the
finite size effect, which limits the spectral evolution at lower nonlinearity; see e.g. Pan &
Yue 2014; Zhang & Pan 2022b). The quantities |R(m)|/|E | shown in figures 2(c) and 2(d)
reveal two observations that are true for both nonlinearities. (i) For most wavenumbers,
especially closer to the tails of the spectrum, |R(2)|/|E | and |R(3)|/|E | show a comparable
amplitude and similar trend. (ii) At small wavenumbers, |R(2)|/|E | is dominant to drive
the spectral evolution. These two observations actually hold for more nonlinearity levels
that we have tested. To see this, we define another quantity

Q = |R(2)|
|R(2)| + |R(3)|

, (3.3)

to measure the relative intensity of triad interactions. Figure 3 plots Q(kr ) as a function
of ε for kr = 3, 61 and 99. It is clear that both facts can be observed, in terms of Q ≈ 1
for kr = 3 for observation (i), and Q = 0.3−0.6 for kr = 61 and 99 for observation (ii). We
next discuss in detail the mechanisms associated with the two facts.
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Figure 2. Spectra of surface elevation obtained at t = 0 (dashed orange line) and t = 80Tp(solid black line)
for (a) ε = 0.1259 and (b) ε = 0.0629. Plots of |R(2)|/|E | (red) and |R(3)|/|E | (blue) as functions of kr for
(c) ε = 0.1259 and (d) ε = 0.0629.
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Figure 3. Plots of Q as functions of ε at kr = 3 (red), kr = 61 (green) and kr = 99 (blue).
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3.1. Discussion for observation (i)

The observation that |R(2)| ∼ |R(3)| for most wavenumbers is in fact a manifestation of the
normal form transformation discussed in § 2.1. In particular, for any resonant quartet, there
are two ways for energy transfer to occur. The first way is obviously from cubic terms in
the governing (2.1) and (2.2). The second way is through quadratic terms, whose effect on
spectral evolution is equivalent to the corresponding part in T0123 in (2.6) obtained from
the normal form transformation. As a result, the effects of both quadratic and cubic terms
can be seen on the quartet level, leading to comparable trend and magnitude between |R(2)|
and |R(3)| in most wavenumbers.

The effect of the quadratic term on the quartet level can also be understood in a
diagrammatic way. As shown in figure 1, for any resonant quartet consisting of modes
k1, k2, k3 and k4, one can always find a bridging mode kc = k1 + k2 = k3 + k4, so
that the resonant quartet is decomposed into two non-resonant triads (k1, k2, kc) and
(k3, k4, kc). Moreover, the bridging mode is associated with the same bound frequency in
the two triads, simply because ωc =ω1 +ω2 =ω3 +ω4. This ensures that the (frequency)
oscillation of the bridging mode generated from the first triad can be perfectly transferred
to the second triad, which is a critical condition for the transfer to be established. We note
that this condition is satisfied only when k1, k2, k3 and k4 form a resonant quartet, which is
the only situation (as opposed to non-resonant quartets) where such triad-induced transfer
becomes effective.

Furthermore, as seen in figure 2, the relative contributions of |R(2)| and |R(3)| to the
tail of the spectra remain similar at the two nonlinearity levels even though the finite
size effect limits the spectral evolution at lower nonlinearity. This suggests that both
cubic- and quadratic-term-induced transfers on the quartet level are subject to the interplay
between nonlinear broadening and wavenumber discreteness. When the nonlinearity level
is sufficiently low in a finite domain, we can expect that quasi-resonances corresponding
to both cubic and quadratic terms are depleted, leading to a wave field where the nonlinear
interactions are dominated by exact resonances (Kartashova, Nazarenko & Rudenko 2008;
Zhang & Pan 2022a).

3.2. Discussion for observation (ii)
We now turn to the spectral evolution at small wavenumbers induced by triad interactions
dominantly. Although the evolutions seen in figures 2(a) and 2(b) look like an ‘inverse
cascade’, the mechanism is completely different from the well-studied inverse cascade due
to quartet resonant interactions, i.e. those resulting in the Kolmogorov-Zakharov solution
(Annenkov & Shrira 2006; Korotkevich 2008) or spectral peak downshift (Annenkov &
Shrira 2006). The time interval of our simulation, 80Tp, is simply too short for these
quartet-based processes to become relevant.

One may instead think that triad interactions resulting in the spectral evolution are
quasi-resonant. Indeed, this is a question that often arises in the context of non-local
triad interactions (Onorato et al. 2009; Korotkevich et al. 2024). In our case, a low-
wavenumber mode kL can be excited by two high-wavenumber modes k1 and k2 (say
kL + k1 = k2), so the interaction can be non-local. Now consider the limit kL → 0 ; then
we have the frequency mismatch 
ω≡ωL +ω1 −ω2 ∼ O(k1/2

L )→ 0. Will this trigger
energy transfer by triad quasi-resonances and invalidate the normal form transformation
due to small/zero divisor in (2.7)? It turns out that this is not a problem since as kL → 0,
the numerator (2.8) of the transformation coefficient satisfies V [2]

L12 ∼ O(k3/4
L )→ 0 faster

than the denominator, so the full term approaches zero instead of blowing up. Physically,
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Figure 4. Time evolution of E(kr , t) with ε = 0.0629 (blue), ε = 0.0944 (green) and ε = 0.1259 (red) at
kr = 3.

this means that as kL → 0, the triad interaction coefficient approaches zero sufficiently
fast so that there is no energy transfer by quasi-resonances. We note that the situation is
different in shallow-water gravity waves as discussed in Onorato et al. (2009). One can
show that in the case of shallow-water waves, the denominator is 
ω∼ O(kL), and the
numerator approaches zero following O(k1/2

L ), leading to a blow-up of the whole term.
This means that for shallow water, the normal form transformation should be applied with
more caution, and the quasi-resonant triad interactions can indeed be relevant.

The absence of triad quasi-resonances is consistent with figure 4, which plots the
evolution of modal energy E(kr ) with kr = 3 at three nonlinearity levels. We see that the
modal energy rises from 0 to a stationary value in a very short linear time scale O(Tp),
which is a feature of non-resonant interactions instead of quasi-resonant interactions.
Does this mean that the energy level at low wavenumbers is sustained by bound modes
(according to the reasoning for non-resonant interactions)? To answer this question, we
examine the wavenumber–frequency spectrum Sη(k, ω), defined as

Sη(k, ω)=
∫ 2π

0
|η̂(k, ω)|2k dθ, (3.4)

where η̂(k, ω) is the spatiotemporal Fourier transform of η(x, t):

η̂(k, ω)= 1
4π2TL

∫∫∫
[0,TL ]×[0,2π]×[0,2π]

η(x, t) hT (t) e−i(k·x−ωt) dx dt, (3.5)

with hT (t) the Tukey window (Bloomfield 2004) of length TL . Figure 5(a) shows Sη(k, ω)
with a zoom-in view of the low-wavenumber region. A more specific view is also provided
in figure 5(b), which plots Sη(k = 3, ω) as a function of ω, together with a vertical line
denoting the free-mode frequency ω= √

3. Somewhat to our surprise, significant energy is
located at the free mode, which is at least comparable to those away as bound modes. How
do we reconcile the free-mode generation and non-resonant interactions? In § 4, we will
show explicitly that non-resonant interactions indeed generate both bound and free modes,
with the distribution between these two components solved analytically with validations.
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Figure 5. (a) Wavenumber–frequency spectrum Sη(k, ω) in log scale with the dispersion relation marked by a
red line, obtained with ε = 0.0315 and TL = 40Tp . A zoom-in view at small wavenumbers is shown to illustrate
the portion of interest. (b) Plot of Sη(k = 3, ω) as a function of ω (blue), with the corresponding free-mode
frequency ω f (k = 3) marked by a black dashed line.

4. Analytical study on triad non-resonant interactions with validations
We consider a simple model of a wave field consisting of two modes as the initial
condition. In physical space, the initial field is described by

η(x)= η1(x)+ η2(x), (4.1)
ψ(x)=ψ1(x)+ψ2(x), (4.2)

with

ηi (x)= Ãi exp (iki · x)+ Ã∗
i exp (−iki · x), (4.3)

ψi (x)= − i
ωi

[ Ãi exp (iki · x)− Ã∗
i exp (−iki · x)], (4.4)

where Ãi ∈C, ki = (kxi , kyi ) ∈R2 and ωi = k1/2
i , with ki = |ki | for i = 1, 2. This

model allows two triad non-resonant interactions to occur, generating new modes at
wavenumbers

k1+2 = k1 + k2, (4.5)
k1−2 = k1 − k2, (4.6)

respectively. Our goal is to show and elucidate the energy distribution between free
and bound modes in this simpler problem. With the solution to this problem obtained,
the spectral behaviour at low wavenumbers observed in figures 4 and 5 can be simply
understood as the result of a collection of such non-resonant interactions.

We first provide an illustrative HOS simulation by setting k1 = (25, 0), k2 = (20, 0),
| Ã1| = 4 × 10−4, | Ã2| = 5 × 10−4, with initial phases arg ( Ãi ) assigned as random values
within [0, 2π). The simulation is conducted up to quadratic nonlinearity to avoid potential
higher-order effects. Our interest is in the wavenumbers k1+2 = (45, 0) and k1−2 = (5, 0).
Figure 6 plots Sη(k, ω) (computed over [0, 30T0], where T0 = 2πk−1/2

0 is the fundamental
wave period) as a function of ω for k = k1+2 = 45 (figure 6a) and k = k1−2 = 5 (figure 6b).
We see that for each wavenumber of interest, there are two peaks located at the free-wave
frequency (ω f =ω1+2 = 6.71 for k1+2, and ω f =ω1−2 = 2.24 for k1−2) and bound-wave
frequency (ωb =ω1 +ω2 = 9.47 for k1+2, and ωb =ω1 −ω2 = 0.53 for k1−2). This is
clear evidence that non-resonant triad interactions can distribute comparable amounts
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Figure 6. Plots of Sη(k, ω) as functions of ω at (a) k = k1+2 = 45 and (b) k = k1−2 = 5, with TL = 30T0. The
corresponding free-mode frequencies ω f are marked by black dashed lines, and bound-mode frequencies ωb
are marked by red dashed lines. Insets: same plots in semi-log scale.

of energy between the free and bound modes. Defining Sb = Sη(k1±2, ωb) and S f =
Sη(k1±2, ω f ), we can calculate that Sb/S f = 0.63 and 0.1 for k1+2 and k1−2 in this
case.

We next develop an analytical solution to describe quantitatively the distribution of
energy, i.e. to obtain the value of Sb/S f , for a general configuration of k1 and k2. For
this purpose, we perform a perturbation analysis based on (2.1) and (2.2). As detailed
in Appendix A, we set the first-order linear solution to match the linear wave field
corresponding to the initial conditions (4.1) and (4.2). Then we seek a second-order
solution to describe the energy generation at free mode S f and bound mode Sb. A critical
condition applied at second order is a quiescent wave field for wavenumbers k1+2 and k1−2
at t = 0, which allows the calculation of distribution of energy between the two frequencies
at each wavenumber. The final solution yields the ratios between Sb and S f at k1+2 and
k1−2 respectively:

(Sb/S f )1+2 = |Γ1 + Γ2|2
|Γ1|2 + |Γ2|2 , (4.7)

(Sb/S f )1−2 = |Λ1 +Λ2|2
|Λ1|2 + |Λ2|2 , (4.8)

where

Γ1 = α1,2 + α2,1 + β1,2 + β2,1

ω1 +ω2 −ω1+2
, (4.9)

Γ2 = α1,2 + α2,1 − β1,2 − β2,1

ω1 +ω2 +ω1+2
, (4.10)

Λ1 = α1,−2 − α−2,1 − β1,−2 − β−2,1

ω1 −ω2 −ω1−2
, (4.11)

Λ2 = α1,−2 − α−2,1 + β1,−2 + β−2,1

ω1 −ω2 +ω1−2
, (4.12)
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with

αi, j = 1
ωiωi+ j

(ki · ki+ j − ki ki+ j ), (4.13)

βi, j = 1
2ωiω j

(ki · k j + ki k j ). (4.14)

If we further consider the one-dimensional (1-D) case where k1 = (kx1, 0) and
k2 = (kx2, 0) are along the x direction, then with some manipulations, the expressions
for Sb/S f are reduced to

(Sb/S f )1+2 = 2
/[(

ω1 +ω2

ω1+2

)μ
+ 1

]
, (4.15)

(Sb/S f )1−2 = 2
/[(

ω1−2

ω1 −ω2

)μ
+ 1

]
, (4.16)

where

μ= 2
k1 · k2

k1k2
. (4.17)

Physical intuition on the coexistence of bound and free modes can also be established
as a reflection of the analytical derivation: this phenomenon is physically similar to
a frictionless pendulum subject to an external forcing at non-natural frequency. Both
the homogeneous solution at natural frequency (i.e. free mode) and the inhomogeneous
solution at forcing frequency (i.e. bound mode) can be excited, with the former persisting
under the frictionless condition (which is usually not satisfied for vibration systems, but is
indeed true for our water wave problems, at least for long waves not significantly affected
by physical dissipation mechanisms such as those from breaking and viscosity).

We then conduct numerical validations for the analytical solution (4.7) and (4.8) via
the HOS method. Two cases are considered: (1) a 1-D case where we fix k1 = (25, 0)
and vary k2 = (kx2, 0); (2) a 2-D case where we fix k1 = 20, k2 = 25, and vary angle θ1,2
between them. The numerical solutions of Sb/S f are plotted in figures 7(a,b) as functions
of kx2 and θ1,2, respectively, comparing against the analytical solutions (4.7) and (4.8) for
2-D cases, and (4.15) and (4.16) for 1-D cases. We see a very good match overall. The
minor deviation at a few points may be attributed to the finiteness of wave amplitude in
the simulation, and a finite time window in data processing that cannot exactly resolve ωb
and ω f .

Finally, we notice that the analytical solution of Sb/S f is bounded in [0, 2] in figure 7.
This is, in fact, a general condition for Sb/S f that can be seen easily in the formulae (4.7)
and (4.8) (simply because 0 � (u + v)2/(u2 + v2)� 2 for any u, v ∈R). This indicates
that it is possible for the free-wave energy to be much larger than the bound-wave energy,
but not vice versa. In other words, the free waves, instead of bound waves, should always
be considered as a major generation from the non-resonant triad interactions.

5. Conclusions and discussions
In this paper, we present a study on the role of triad interactions in the spectral evolution
of surface gravity waves in deep water. A decomposition technique is developed for Euler
equations, which allows us to quantify the contributions from quadratic and cubic terms
in spectral evolution. We find that the contribution from quadratic terms is comparable
to that from cubic terms at most wavenumbers. This is consistent with the normal form

1008 A41-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

23
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2025.234


Z. Zhang and Y. Pan

–50 0 50
0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 3
kx2 θ1,2

S b
/
S f

0

0.5

1.0

1.5

2.0

2.5

3.0
(a) (b)

Figure 7. Plots of Sb/S f as functions of (a) kx2 in the 1-D case, with k1 = (25, 0), k2 = (kx2, 0) and
TL = 225T0, and (b) θ1,2 in the 2-D case, with k1 = 20, k2 = 25 and TL = 20T0. For k = k1+2, analytical
solutions are shown by blue lines, and numerical data are shown by circles. For k = k1−2, analytical solutions
are shown by red lines, and numerical data are shown by triangles.

transformation applied in theory, which converts the quadratic to cubic terms so that both
effects can be observed on the quartet kinetic time scale for all wavenumbers. On the other
hand, the quadratic terms dominates the spectral evolution at small wavenumbers with low
initial energy levels. This is shown to be from non-resonant triad interactions that are found
to distribute energy between free modes and bound modes. To understand this discovery
of energy distribution, we start from a simple model with two existing modes and solve
analytically for the generated modes. Our analytical solution to describe the distribution
is validated by numerical simulations for a range of configurations, thus providing sound
interpretation of our observation in the spectral evolution.

The results in this paper should not be considered as a challenge to the gravity-wave
kinetic equation. The normal form transformation is indeed valid (see the discussion for
non-local triads in § 3.2), although the rigorous mathematical justification exists only for
one dimension (Berti, Feola & Pusateri 2023). However, some new understanding under
the current framework should be noted. First, the contribution from triad interactions
to spectral evolution is very significant, instead of null, which may be expected by
some researchers due to their non-resonant nature. Such contributions can come from
resonant interactions connected by triads, which is comparable to cubic-term resonant
interactions, or simply non-resonant triad interactions. In the latter case, the non-resonant
triad interactions can fill in the low-energy portion of the spectrum on a fast time scale,
generating both free waves and bound waves. Only in a longer time scale does the spectral
evolution become dominated by quartet interactions as described by the wave kinetic
equation.
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F. Pusateri and Dr M. Shavit for their valuable discussions and insights during the development of this work.

Funding. We acknowledge the Simons Foundation for the funding support for this research.

Declaration of interests. The authors report no conflict of interest.

Appendix A. Analytical solution of the ratio Sb/S f in § 4
To compute the ratio between the bound- and free-mode energies Sb/S f at a given
wavenumber k, we perform a perturbation analysis in this appendix. This can be done by
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solving either the governing (2.1) and (2.2) directly or the equation for the complex wave
amplitude ak followed by the calculation of η̂k. We have checked that both approaches are
equivalent and give the same analytical result. Here, we follow the former way, starting
from the transformation of (2.1) and (2.2) into the wavenumber domain with a 2-D spatial
Fourier transform. The key procedure of this process is to express the surface vertical
velocity φz in terms of η and ψ in the wavenumber domain, which is based on the small
steepness assumption (i.e. kη∼ O(ε)
 1). The details of this process can be found in
Mei et al. (2005) and Nazarenko & Lukaschuk (2016) (see also Pan (2017) in the context
of capillary waves). For our purpose of investigating triad interactions, we consider the
equations truncated up to O(ε2):

∂η̂k

∂t
= kψ̂k +

∑
k1,k2

(k1 · k − k1k)ψ̂k1 η̂k2δ0−1−2, (A1)

∂ψ̂k

∂t
= −η̂k + 1

2

∑
k1,k2

(k1 · k2 + k1k2)ψ̂k1ψ̂k2δ0−1−2, (A2)

where k1, k2 ∈Z2
L = 2πZ2/L , with L being the size of the periodic square domain. We

set the initial conditions as in (4.1)–(4.4), expressed in the wavenumber domain as

η̂k(t = 0)= Ã1δ0−1 + Ã2δ0−2 + Ã∗
1δ0+1 + Ã∗

2δ0+2, (A3)

ψ̂k(t = 0)= − i
ωk
( Ã1δ0−1 + Ã2δ0−2 − Ã∗

1δ0+1 − Ã∗
2δ0+2). (A4)

We note that the Kronecker delta functions on the right-hand side mean that η̂k and ψ̂k take
non-zero values only for k = k1, k2,−k1,−k2, with the whole expression guaranteeing
the two quantities to be real in the physical domain.

Our goal is to perform a perturbation analysis on (A1) and (A2), with the first-order
solution set as the wave field corresponding to initial conditions (A3) and (A4). Then we
seek the second-order solution on wavenumbers k1+2 and k1−2, which identifies Sb/S f as
our quantity of interest. For this purpose, we first write the solutions of (A1) and (A2) as
perturbation series in the wave steepness ε:

η̂k = η̂
(1)
k + η̂

(2)
k + O(ε3), (A5)

ψ̂k = ψ̂
(1)
k + ψ̂

(2)
k + O(ε3), (A6)

where η̂(m)k , ψ̂
(m)
k ∼ O(εm) (m = 1, 2, . . .). By substituting (A5) and (A6) into (A1) and

(A2), we collect terms to obtain a set of equations at each order. The first-order linear
equation reads

∂η̂
(1)
k

∂t
= kψ̂(1)k , (A7)

∂ψ̂
(1)
k

∂t
= −η̂(1)k . (A8)

The solution to (A7) and (A8) is a combination of linear waves propagating in the domain.
Here, we set this solution to correspond to the initial wave field (A3) and (A4), written as

η̂
(1)
k = ( Ã1δ0−1 + Ã2δ0−2) e−iωk t + ( Ã∗

1δ0+1 + Ã∗
2δ0+2) eiωk t , (A9)
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ψ̂
(1)
k = − i

ωk
[( Ã1δ0−1 + Ã2δ0−2) e−iωk t − ( Ã∗

1δ0+1 + Ã∗
2δ0+2) eiωk t ]. (A10)

Now we consider the second-order equations

∂η̂
(2)
k

∂t
= kψ̂(2)k +

∑
k1,k2

(k1 · k − k1k)ψ̂(1)k1
η̂
(1)
k2
δ0−1−2, (A11)

∂ψ̂
(2)
k

∂t
= −η̂(2)k + 1

2

∑
k1,k2

(k1 · k2 + k1k2)ψ̂
(1)
k1
ψ̂
(1)
k2
δ0−1−2. (A12)

With the linear solutions η̂(1)k and ψ̂(1)k available, (A11) and (A12) are solved as a system of
non-homogeneous linear differential equations. The corresponding second-order solutions
at k = k1+2 and k = k1−2 can be expressed as

η̂
(2)
k = iωk(C1 e−iωk t − C2 eiωk t + N1 − N2), (A13)

ψ̂
(2)
k = C1 e−iωk t + C2 eiωk t + N1 + N2, (A14)

where N1, N2 have the forms

N1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
(−α1,2 − α2,1 − β1,2 − β2,1)

i Ã1 Ã2

ω1 +ω2 −ωk
e−i(ω1+ω2)t , k = k1+2,

1
2
(−α1,−2 − α−2,1 + β1,−2 + β−2,1)

i Ã1 Ã∗
2

ω1 −ω2 −ωk
e−i(ω1−ω2)t , k = k1−2,

(A15)

N2 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
2
(α1,2 + α2,1 − β1,2 − β2,1)

i Ã1 Ã2

ω1 +ω2 +ωk
e−i(ω1+ω2)t , k = k1+2,

1
2
(α1,−2 + α−2,1 + β1,−2 + β−2,1)

i Ã1 Ã∗
2

ω1 −ω2 +ωk
e−i(ω1−ω2)t , k = k1−2,

(A16)
with

αi, j = 1
ωiωi+ j

(ki · ki+ j − ki ki+ j ), (A17)

βi, j = 1
2ωiω j

(ki · k j + ki k j ). (A18)

According to the initial conditions (A3) and (A4), the wave field is quiescent except for
modes k1 and k2. We therefore have the condition at k = k1+2 and k = k1−2 ,

η̂
(2)
k (t = 0)= 0, (A19)

ψ̂
(2)
k (t = 0)= 0, (A20)

from which the coefficients C1 and C2 in (A13) and (A14) are solved as

C1 = −N1(t = 0), (A21)

C2 = −N2(t = 0). (A22)
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With the second-order solutions obtained, we can now express η̂k at k1+2 and k1−2 in
compact forms. For k1+2, we have

η̂1+2 = −ω1+2 Ã1 Ã2

2
[Γ1 e−iω1+2t + Γ2 eiω1+2t − (Γ1 + Γ2) e−i(ω1+ω2)t ], (A23)

where Γi (i = 1, 2) are coefficients that can be evaluated explicitly from (A15), (A16),
(A21) and (A22). On the right-hand side of (A23), the first two terms correspond to
free waves with frequency ω1+2 (propagating in opposite directions), while the third term
corresponds to bound waves with frequency ω1 +ω2. Therefore the ratio between energy
in bound and free modes is expressed as

(Sb/S f )1+2 = |Γ1 + Γ2|2
|Γ1|2 + |Γ2|2 , (A24)

where

Γ1 = α1,2 + α2,1 + β1,2 + β2,1

ω1 +ω2 −ω1+2
, (A25)

Γ2 = α1,2 + α2,1 − β1,2 − β2,1

ω1 +ω2 +ω1+2
. (A26)

For k1−2, similar procedures are applied, yielding

η̂1−2 = −ω1−2 Ã1 Ã∗
2

2
[Λ1 e−iω1−2t +Λ2 eiω1−2t − (Λ1 +Λ2) e−i(ω1+ω2)t ], (A27)

which gives the ratio

(Sb/S f )1−2 = |Λ1 +Λ2|2
|Λ1|2 + |Λ2|2 , (A28)

where

Λ1 = α1,−2 − α−2,1 − β1,−2 − β−2,1

ω1 −ω2 −ω1−2
, (A29)

Λ2 = α1,−2 − α−2,1 + β1,−2 + β−2,1

ω1 −ω2 +ω1−2
. (A30)

Finally, we consider the results in the 1-D case where k1 = (kx1, 0) and k2 = (kx2, 0)
are along the x direction. Then with some manipulations, the expressions for Sb/S f are
reduced to

(Sb/S f )1+2 = 2
/[(

ω1 +ω2

ω1+2

)μ
+ 1

]
, (A31)

(Sb/S f )1−2 = 2
/[(

ω1−2

ω1 −ω2

)μ
+ 1

]
, (A32)

where

μ= 2
k1 · k2

k1k2
. (A33)
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