Bull. Aust. Math. Soc. 105 (2022), 507–510 doi:10.1017/S0004972722000223

INTERSECTION OF CONJUGATE SOLVABLE SUBGROUPS IN FINITE CLASSICAL GROUPS

ANTON A. BAYKALOV

(Received 22 December 2021; first published online 14 March 2022)

2020 *Mathematics subject classification*: primary 20D60; secondary 20D06. *Keywords and phrases*: finite groups, conjugate solvable subgroups, groups of Lie type.

1. Statement of the problem

Consider some property Ψ of a finite group inherited by all its subgroups. Important examples of such a property are the following: cyclicity; commutativity; nilpotence; solvability. A natural question arises: how large is a normal Ψ -subgroup in an arbitrary finite group G? A more precise formulation of this question is the following.

QUESTION 1.1. Given a finite group G with Ψ -subgroup H of index n, is it true that G has a normal Ψ -subgroup whose index is bounded by some function f(n)?

Since the kernel of the action of *G* on the set of right cosets of *H* by right multiplication is a subgroup of *H* and such an action provides a homomorphism to the symmetric group Sym(n), it always suffices to take f(n) = n! for every such Ψ . We are interested in stronger bounds, in particular those of shape $f(n) = n^c$ for some constant *c*.

Lucchini [8] and, independently, Kazarin and Strunkov [6] proved the following result.

THEOREM 1.2. If a finite group G has a cyclic subgroup C of index n, then $\bigcap_{g \in G} C^g$ has index at most $n^2 - n$.

The following theorem follows from results by Chermak and Delgado [4].

THEOREM 1.3. Let G be a finite group. If G has an abelian subgroup of index n, then it has a normal abelian subgroup of index at most n^2 .

Zenkov [10] proved the following result when Ψ is nilpotence.

Thesis submitted to the University of Auckland in February 2021; degree approved on 11 October 2021; supervisors Eamonn O'Brien and Jianbel An.

[©] The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

THEOREM 1.4. Let G be a finite group and let F(G) be its maximal normal nilpotent subgroup. If G has a nilpotent subgroup of index n, then $|G : F(G)| \le n^3$.

Babai et al. [1] proved the following statement.

THEOREM 1.5. There is an absolute constant c such that, if a finite group G has a solvable subgroup of index n, then G has a solvable normal subgroup of index at most n^c .

Although their proof does not yield an explicit value, they conjectured that $c \le 7$. This conjecture is closely related to the following problem [7, Problem 17.41(b)].

PROBLEM 1.6. Let H be a solvable subgroup of a finite group G that has no nontrivial solvable normal subgroups. Do there always exist five conjugates of H whose intersection is trivial?

Before we explain how Problem 1.6 is related to Question 1.1, we need to introduce some notation. Problem 1.6 can be reformulated using the notion of *base size*.

DEFINITION 1.7. Assume that a finite group *G* acts on a set Ω . A point $\alpha \in \Omega$ is *G*-regular if its stabiliser in *G* is trivial. Define the action of *G* on Ω^k by

$$(\alpha_1,\ldots,\alpha_k)g = (\alpha_1g,\ldots,\alpha_kg).$$

If *G* acts faithfully and transitively on Ω , then the minimal number *k* such that the set Ω^k contains a *G*-regular point is the *base size* of *G* and is denoted by b(G). For a positive integer *m*, a regular point in Ω^m is a *base* for the action of *G* on Ω . Denote the number of *G*-regular orbits on Ω^m by Reg(*G*, *m*) (this number is 0 if m < b(G)). If *G* acts by right multiplication on the set Ω of right cosets of a subgroup *H*, then G/H_G acts faithfully and transitively on Ω . (Here $H_G = \bigcap_{e \in G} H^g$.) In this case, we denote

$$b_H(G) := b(G/H_G)$$
 and $\operatorname{Reg}_H(G,m) := \operatorname{Reg}(G/H_G,m)$.

Therefore, for *G* and *H*, as in Problem 1.6, the existence of five conjugates of *H* whose intersection is trivial is equivalent to the statement that $b_H(G) \le 5$. We remark that 5 is the best possible bound for $b_H(G)$ because $b_H(G) = 5$ when G = Sym(8) and $H = \text{Sym}(4) \wr \text{Sym}(2)$. This can be easily verified. In fact, there are infinitely many examples with $b_H(G) = 5$ (see [2, Remark 8.3]).

Let *G* act transitively on Ω and let *H* be a point stabiliser, so $|\Omega| = |G : H|$. If $(\beta_1, \ldots, \beta_n)$ is a base for the natural action of G/H_G on Ω , then

$$|(\beta_1, \dots, \beta_n)^G| \le |\Omega| \cdot (|\Omega| - 1) \cdots (|\Omega| - n + 1) < |\Omega|^n = |G: H|^n.$$

Therefore,

$$|G:H_G| < |G:H|^n,$$

and if Problem 1.6 has a positive answer, then $c \le 5$ in Theorem 1.5.

Problem 1.6 is essentially reduced to the case when G is almost simple by Vdovin [9]. In particular, to solve Problem 1.6, it is sufficient to prove

$$\operatorname{Reg}_H(G,5) \ge 5$$

for every almost simple group G and each of its maximal solvable subgroups H.

2. Results

We study the situation when G_0 is a simple classical group of Lie type isomorphic to $PSL_n(q)$, $PSU_n(q)$ or $PSp_n(q)'$ for some (n, q) and G is an almost simple classical group with socle isomorphic to G_0 . In particular, we identify G_0 with its group of inner automorphisms, so

$$G_0 \leq G \leq \operatorname{Aut}(G_0).$$

When $G_0 = \text{PSL}_n(q)$ or $G_0 = \text{PSp}_n(q)$, we also assume that *G* contains neither graph nor graph-field automorphisms (see [5, Definition 2.5.10]). Therefore, in our results, *G* is an arbitrary almost simple group with socle G_0 if

G₀ = PSU_n(q);
G₀ = PSp_n(q) for n > 4 and for n = 4 if q is odd.

If q is even, then $PSp_4(q)$ has a graph automorphism [3, Proposition 12.3.3].

If X is $\Gamma L_n(q)$, $\Gamma U_n(q)$ or $\Gamma S_n(q)$, and N is the subgroup of all scalar matrices in X, then X/N is isomorphic to a subgroup of $\operatorname{Aut}(G_0)$ where G_0 is equal to $\operatorname{PSL}_n(q)$, $\operatorname{PSU}_n(q)$ and $\operatorname{PSp}_n(q)'$, respectively. Hence G can be considered as a subgroup of X/N. A maximal solvable subgroup H of G lies in some maximal solvable subgroup H_1 of X/N. Assume that $b_{H_1}(H_1 \cdot G_0) \leq c$, so there exist $a_1, \ldots, a_c \in H_1 \cdot G_0$ such that

$$H_1^{a_1} \cap \cdots \cap H_1^{a_c} = 1.$$

Since $a_i \in H_1 \cdot G_0$, $a_i = h_i x_i$ for $h_i \in H_1$, $x_i \in G_0$ and $i = 1, \dots, c$,

$$H_1^{x_1} \cap \cdots \cap H_1^{x_c} = 1$$

and, finally,

$$H^{x_1} \cap \cdots \cap H^{x_c} = 1.$$

Thus, it suffices to consider the situation when *H* is a maximal solvable subgroup of X/N and $G = H \cdot G_0$.

If S and \hat{G} are the full preimages of H and G in X, then S is solvable and

$$b_H(G) = b_S(\hat{G}).$$

It is convenient to work with matrix groups, so we formulate our main results as follows.

A. A. Baykalov

THEOREM 2.1. Let $X = \Gamma L_n(q)$, $n \ge 2$, where (n, q) is neither (2, 2) nor (2, 3). If S is a maximal solvable subgroup of X, then $\operatorname{Reg}_S(S \cdot SL_n(q), 5) \ge 5$, and in particular $b_S(S \cdot SL_n(q)) \le 5$.

THEOREM 2.2. Let $X = \Gamma U_n(q)$, $n \ge 3$ where (n, q) is not (3, 2). If S is a maximal solvable subgroup of X, then one of the following holds:

- (1) $b_S(S \cdot SU_n(q)) \le 4$, so $\operatorname{Reg}_S(S \cdot SU_n(q), 5) \ge 5$;
- (2) (n,q) = (5,2) and S is the stabiliser in X of a totally isotropic subspace of dimension 1, $b_S(S \cdot SU_n(q)) = 5$ and $\text{Reg}_S(S \cdot SU_n(q), 5) \ge 5$.

THEOREM 2.3. Let $X = \Gamma S_n(q)$ and $n \ge 4$. If S is a maximal solvable subgroup of X, then $b_S(S \cdot Sp_n(q)) \le 4$, so $\operatorname{Reg}_S(S \cdot Sp_n(q), 5) \ge 5$.

References

- L. Babai, A. Goodman and L. Pyber, 'Groups without faithful transitive permutation representations of small degree', J. Algebra 195 (1997), 1–29.
- [2] T. Burness, 'Base sizes for primitive groups with soluble stabilisers', Algebra Number Theory 15 (2021), 1755–1807.
- [3] R. W. Carter, *Finite Groups of Lie Type: Conjugacy Classes and Complex Characters* (John Wiley and Sons, Inc., New York, 1985).
- [4] A. Chermak and A. Delgado, 'A measuring argument for finite groups', *Proc. Amer. Math. Soc.* 107(4) (1999), 907–914.
- [5] D. Gorenstein, R. Lyons and R. Solomon, *The Classification of the Finite Simple Groups, Number 3: Part I, Chapter A*, Mathematical Surveys and Monographs, 40 (American Mathematical Society, Providence, RI, 1998).
- [6] L. S. Kazarin and S. P. Strunkov, 'On intersections of subgroups in groups', J. Math. Sci. (N.Y.) 100(1) (2000), 1888–1892.
- [7] E. I. Khukhro and V. D. Mazurov (eds.), *The Kourovka Notebook: Unsolved Problems in Group Theory*, 19th edn, Sobolev Institute of Mathematics (Russian Academy of Sciences, Siberian Branch, Novosibirsk, 2019).
- [8] A. Lucchini, 'On the order of transitive permutation groups with cyclic point-stabilizer', *Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.* 9(4) (1999), 241–243.
- [9] E. P. Vdovin, 'On the base size of a transitive group with solvable point stabilizer', *J. Algebra Appl.* 11(1) (2012), Article no. 1250015, 14 pages.
- [10] V. I. Zenkov, 'Intersections of three nilpotent subgroups in a finite group', Sib. Math. J. 62(4) (2021), 621–637.

ANTON A. BAYKALOV, Department of Mathematics, University of Auckland, Auckland, New Zealand e-mail: a.baykalov@auckland.ac.nz